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1 Problem Formulation

The classical one dimensional bin packing problem consists of a set of pieces,
which must be packed into as few bins as possible. Each piece j has a weight wj ,
and each bin has capacity c. The objective is to minimise the number of bins
used, where each piece is assigned to one bin only, and the weight of the pieces in
each bin does not exceed c. To avoid large plateaus in the search space around
the best solutions, we employ an alternative fitness function to the number of
bins, which is explained in section 5. A mathematical formulation of the bin
packing problem is shown in equation 1, taken from [1].

Minimise
n∑
i=1

yi

Subject to
n∑
j=1

wjxij ≤ cyi, i ∈ N = {1, . . . , n},

n∑
i=1

xij = 1, j ∈ N,

yi ∈ {0, 1}, i ∈ N,
xij ∈ {0, 1}, i ∈ N, j ∈ N, (1)

Where yi is a binary variable indicating whether bin i contains pieces, xij indi-
cates whether piece j is packed into bin i, and n is the number of available bins
(and also the number of pieces as we know we can pack n pieces into n bins).

A practical application of the one dimensional bin packing problem is cut-
ting lengths of stock material that has fixed width, such as pipes for plumbing
applications, or metal beams. A set of orders for different lengths must be
fulfilled by cutting the stock lengths into smaller pieces while minimising the
wasted material.
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2 Initialisation of solutions

In this domain module, solutions are initialised by first randomising the order
of the pieces, and then applying the ‘first-fit’ heuristic [2]. This is a constructive
heuristic, which packs the pieces one at a time, each into the first bin that they
will fit into.

3 Low Level Heuristics

Sections 3.1, 3.2, 3.3, and 3.4 explain the local search, mutational, ruin-recreate,
and crossover low-level heuristics respectively. We have implemented seven low
level heuristics in total, some of which are taken from [3].

3.1 Local Search Heuristics

These heuristics implement ‘first-improvement’ local search operators. In each
iteration, a neighbour is generated, and it is accepted immediately if it has
superior or equal fitness. If the neighbour is worse, then the change is not
accepted. The behaviour of these heuristics is controlled with the ‘depth of
search’ parameter. At the default value of 0.2, these heuristics iterate 10 times.
If it is set higher, the heuristics iterate up to 20 times. Local search heuristics
cannot produce a solution of worse fitness.

3.1.1 Swap

Select two different pieces at random, and swap them if there is space, and if it
will produce an improvement in fitness.

3.1.2 Swap from Lowest Bin

Take the largest piece from the lowest filled bin, and exchange with a smaller
piece from a randomly selected bin. If there is no such piece that produces a
valid packing after the swap, then exchange the first piece with two pieces that
have a smaller total size. If there are no such pieces then the heuristic does
nothing.

3.2 Mutational Heuristics

The behaviour of these heuristics is controlled with the ‘intensity of mutation’
parameter. At the default value of 0.2, these heuristics run once. If it is set
higher, the heuristics repeat up to five times, meaning a greater mutation is
performed.

3.2.1 Swap

Select two different pieces at random, and swap them if there is space. If one of
the pieces does not fit into the new bin then put it into an empty bin.
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3.2.2 Split a Bin

This heuristic selects a bin at random from those with more pieces than the
average. It then splits this bin into two bins, each containing half of the pieces
from the original bin.

3.2.3 Repack the Lowest Filled Bin

Remove all of the pieces from the lowest filled bin, and repack them into the
other bins if possible, with the best-fit heuristic.

3.3 Ruin-Recreate Heuristics

The behaviour of these heuristics is controlled by the parameter ‘x’. At the
default ‘intensity of mutation’ value of 0.2, x is set to three. If it is set higher,
the value of x increases to fifteen. x = 3 when ‘intensity of mutation’ is between
0 and 0.2, x = 6 when ‘intensity of mutation’ is between 0.2 and 0.4, and so on,
with x increasing by three at each interval.

3.3.1 Destroy x Highest Bins

Remove all the pieces from the x highest filled bins, where x is an integer
determined by the ‘intensity of mutation’ parameter. Repack the pieces using
the best-fit heuristic.

3.3.2 Destroy x Lowest Bins

Remove all the pieces from the x lowest filled bins, where x is an integer de-
termined by the ‘intensity of mutation’ parameter. Repack the pieces using the
best-fit heuristic.

3.4 Crossover Heuristics

3.4.1 Exon Shuffling Crossover

This crossover is detailed in [4].

4 Problem Instances

The instances of this class are taken from the literature. Interesting instances
are selected from the following sources [5, 6, 7, 8]. Some instances are generated
using the same methods as explained in those sources. Table 1 summarises the
characteristics of the instances.
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Set Piece Sizes Bin Number
Name Capacity of Pieces
bp1 Uniform [20,100] 150 1000
bp2 Triples [25,50] 100 2004
bp3 Triples [25,50] 100 1002
bp4 1-700 1000 160
bp5 Uniform [10,30] 100 2000
bp7 Bimodal Distribution: Half pieces from Gaussian (50,5) 100 5000

Half of pieces from Gaussian (35,5)
bp8 Bimodal Distribution: Half pieces from Gaussian (50,5) 100 5000

Half of pieces from Gaussian (20,5)

Table 1: The available instance sets

5 Fitness Function

A solution is given a fitness calculated from equation 2, where: n = number
of bins, fullnessi = sum of all the pieces in bin i, and C = bin capacity.
The function puts a premium on bins that are filled completely, or nearly so.
It returns a value between zero and one, where lower is better, and a set of
completely full bins would return a value of zero.

Fitness = 1−

(∑n
i=1(fullnessi/C)2

n

)
(2)
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