Unification

An equation: $u \approx v$.
A unification problem
Input: A set of equation $\left\{u_{1} \approx v_{1}, u_{2} \approx v_{2}, \ldots, u_{n} \approx v_{n}\right\}$.
Output: A substitution θ such that
$u_{1} \theta \approx v_{1} \theta, u_{2} \theta \approx v_{2} \theta, \ldots, u_{n} \theta \approx v_{n} \theta$ or not unifiable.

Unification algorithm

Input: $S=\left\{u_{1} \approx v_{1}, u_{2} \approx v_{2}, \ldots, u_{n} \approx v_{n}\right\}$.
Output: mgu θ or not unifiable.

- $\theta=\{ \}$.
- While $S \neq\{ \}$:
- Select $u \approx v \in S$.
- $S=S \backslash\{u \approx v\}$.
- Apply one of the following rules:

1. If $u \approx v$ is of the form $X \approx t$ or $t \approx X$ and X does not occur in t then $\theta=\theta\{X / t\}$ and $S=S \theta$.
2. If $u \approx v$ is of the form $X \approx X$ then do nothing.
3. If $u \approx v$ is of the form $f\left(s_{1}, \ldots, s_{m}\right) \approx f\left(t_{1}, \ldots, t_{m}\right)$ then $S=S \cup\left\{s_{1} \approx t_{1}, \ldots, u_{m} \approx v_{m}\right\}$.
4. Otherwise return not unifiable.
