
A Population Based Incremental Learning for Delay
Constrained Network Coding Resource Minimization

Huanlai Xing and Rong Qu

The Automated Scheduling, Optimisation and Planning (ASAP) Group
School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, UK

{hxx, rxq}@cs.nott.ac.uk

Abstract. In network coding based multicast, coding operations are expected to
be minimized as they not only incur additional computational cost at
corresponding nodes in network but also increase data transmission delay. On
the other hand, delay constraint must be concerned particularly in delay
sensitive applications, e.g. video conferencing. In this paper, we study the
problem of minimizing the amount of coding operations required while meeting
the end-to-end delay constraint in network coding based multicast. A
population based incremental learning (PBIL) algorithm is developed, where a
group of best so far individuals, rather than a single one, is maintained and used
to update the probability vector, which enhances the global search capability of
the algorithm. Simulation results demonstrate the effectiveness of our PBIL.

Keywords: multicast; network coding; population based incremental learning

1 Introduction

Network coding has been attracting an increasing research attention since 2000 [1].
Instead of simply replicating and forwarding data packets at the network layer,
network coding allows any intermediate node, if necessary, to perform mathematical
operations to recombine data packets received from different incoming links. By
doing so, the maximized multicast throughput is always obtained [2].

In most of the previous research on network coding, coding is performed at all
coding-possible nodes without concerning issues raised in real life applications. One
such issue is that, to obtain an expected multicast throughput, coding may only be
necessary at a subset of coding-possible nodes [3,4,5]. As they consume public
resources, e.g. buffer and computational resources, coding operations should be
minimized to leave more public resources for other network applications. Another
issue in real time applications is that transmission delays, especially in delay sensitive
applications, e.g. video conferencing and distributed game, should be bounded. It is
therefore important to minimize coding operations while meeting the end-to-end
delay requirement. However, such problem has not drawn enough research attention.

A number of algorithms have been proposed to minimize coding resources,
however, without concerning the delay constraint. In [6] and [7], original topologies
were decomposed and transformed into secondary graphs, based on which greedy

algorithms were developed to reduce the amount of coding operations. In [8], linear
programming formulations based on a model allowing continuous flows were
proposed to optimize various resources used for network coding. In addition, Kim et
al investigated centralized and distributed genetic algorithms (GAs) with problem-
specific operators to minimize the required network coding resources [3,4,5].

Population based incremental learning (PBIL), a combination of evolutionary
algorithm and competitive learning, was first introduced in 1994 [9]. Without using
crossover and mutation, PBIL retains the stochastic search nature of GA by simply
maintaining a probability vector. Since its introduction, PBIL has shown to be very
successful on numerous benchmark and real-world problems [10].

In this paper, we propose the first PBIL algorithm for the problem of minimizing
network coding resources with the delay bound in network coding based multicast.
We put forward a new probability vector update scheme based on statistical
information of a group of, rather than a single, best so far individuals. In addition, we
observed that the use of the all-one vector in the initialization of PBIL greatly helps to
guide the search towards promising solutions. Simulation results demonstrated that
our PBIL is highly effective for the problem concerned.

2 Problem Description

A communication network can be modeled as a directed graph G = (V, E), where V
and E denote the set of nodes and links, respectively [2]. We assume each link e has a
unit capacity. A delay constrained single-source network coding based multicast
scenario can be defined as a 5-tuple set (G, s, T, R, Ω), where the information needs to
be transmitted at the data rate R from the source node s∈V to a set of sinks T =
{t1,…,td}⊂V in the graph G (V, E), satisfying a given end-to-end delay constraint Ω.
Rate R is achievable if there is a transmission scheme that enables each sink tk, k =
1,…,d, to receive information at data rate R [4,5]. As each link has a unit capacity, a
path from s to tk thus has a unit capacity. If we manage to set up R link-disjoint paths
{P1(s, tk),…,PR(s, tk)} from s to each sink tk∈T, we make the data rate R achievable.
We concern linear network coding which is sufficient for multicast [2].

In this paper, a subgraph is referred to as a network coding based multicast
subgraph (NCM subgraph, denoted by GNCM(s, T)) if there are R link-disjoint paths
Pi(s, tk), i = 1,…,R, from s to each sink tk in this subgraph. We refer to a non-sink
node with multiple incoming links as a merging node [4,5]. Only merging nodes and
their outgoing coding links have the potential to serve as coding nodes and coding
links, respectively [4,5]. To determine if an outgoing link of a merging node becomes
a coding link, we only need to check if the information via this link is dependent on at
least two incoming links of the merging node.

For a given multicast scenario, the number of coding links is more precise to
indicate the total amount of coding operations [7]. We hereinafter investigate how to
construct a NCM subgraph GNCM(s, T) with the minimal number of coding links while
achieving the expected data rate and satisfying the end-to-end delay constraint Ω.

We define the following notations in our paper:

• xij: a variable associated with the j-th outgoing link of the i-th merging node, i =
1,…,M, j = 1,…,Zi, where M is the total number of merging nodes and the i-th
node has Zi outgoing links. xij = 1 if the j-th outgoing link of the i-th node serves
as a coding link; xij = 0 otherwise.

• Ncl(GNCM(s,T)): the number of coding links in a NCM subgraph GNCM(s, T).
• R(s, tk): the achievable rate from s to tk.
• R: the defined data rate (an integer) at which s expects to transmit information.
• e(na, nb): a directed link from node na to node nb.
• Pi(s, tk): the i-th established path from s to tk, i = 1,…,R in GNCM(s, T).
• Wi(s, tk) = {e | e∈Pi(s, tk)}: the link set of Pi(s, tk).
• kts

iP → (na, nb): the subpath from node na to node nb on the path Pi(s, tk). Along
a path, we assume that node nj-1 is the parent node of node nj, j = 2,…,p, n1 = s
and np = tk.

• D(ω): the delay of the term ω. D(ω) represents the data processing delay of a
node ω; or it is the propagation delay of a link ω. If ω is a path P(ni,nj), D(ω) is
the end-to-end delay from node ni to node nj; if ω is a NCM subgraph GNCM(s,T),
D(ω) denotes the maximal path delay in GNCM(s,T).

Based on the above notations, we define the problem of delay constrained coding
resource minimization as to minimize the number of coding links while achieving the
desired multicast throughput and meeting the delay restriction, shown as follows:

Minimize: ∑ ∑= =
=

M

1

Z

1
)),((

i j ijNCMcl
i xTsGN (1)

Subject to: R(s, tk) ≥ R, ∀ tk∈T (2)

 TttsW k
R

i ki ∈∀∅=
=

,),(
1∩ (3)

 D(GNCM(s, T)) ≤ Ω (4)

where,

 D(GNCM(s, T)) = max{D(Pi(s, tk)) | i = 1, 2, …, R, ∀ tk∈T } (5)

Objective (1) defines our problem as to find a NCM subgraph with the minimal
number of coding links; Constraint (2) defines that the practical achievable data rate
from s to every sink must be at least R so that R paths can be constructed for each sink;
Constraint (3) restricts that for each tk the R constructed paths Pi(s, tk), must have no
common link; Constraint (4) defines that the maximal delay of the constructed NCM
subgraph cannot be greater than the pre-defined delay bound Ω; The delay of the
NCM subgraph is defined in (5) as the maximal delay among all paths. Note that in
this paper we only consider the transmission delay from s to tk along each path Pi(s, tk).
The decoding delay to obtain the original information in each sink is omitted.

Along a path Pi(s, tk), there are in general four types of nodes: the source, the sink,
forwarding node(s) and coding node(s). If a node nj is a sink or a forwarding node, we

ignore its data processing delay, i.e. D(nj) = 0. The delay of the path from s to the sink
or the forwarding node is thus defined as follows:

)),(()),(()),((11 jjj
ts

ij
ts

i nneDnsPDnsPD kk
−−

→→ += (6)

If a number of data packets are required to be coded together at a coding node,
coding operation cannot start until the arrival of the last data packet. If a node nj is a
coding node, we assume that among the R·d paths in GNCM(s, T) there are Y paths that
pass through nj. Obviously, along each of the Y paths there is a subpath from s to nj.
We denote the delays of the Y subpaths by D1(s, nj), D2(s, nj), …, DY(s, nj). The delay
of the subpath from s to coding node nj is defined as follows:

cjrj
ts

i YrnsDnsPD k Δ+==→ },...,1|),(max{)),(((7)

where Δc is the time consumed by the coding operation. We assume any coding
operation consumes the same time Δc.

3 The Proposed PBIL

As an estimation of distribution algorithm, PBIL maintains a real-valued probability
vector which, when sampled, generates promising solutions with high probabilities.
The procedure of the standard PBIL with elitism [9] is shown in Fig.1. In the
probability vector P(t) = {P1

t, P2
t,…, PL

t} at generation t, where L is the solution
length, and Pi

t, i = 1, 2, …, L, is the probability of generating ‘1’ at the i-th position of
a solution and is initialized as 0.5. At each generation, P(t) is sampled to form a set
S(t) of N individuals (i.e. solutions) which are evaluated and assigned a fitness value
using a given fitness function. The best so far individual B(t) = {B1

t, B2
t,…, BL

t} is
then selected to update P(t) as follows:

Pi
t = (1.0 − α) ⋅ Pi

t + α ⋅ Bi
t, i = 1, 2, …, L (8)

where α is the learning rate.
After the P(t) is updated, a bit-wise mutation operation may be adopted to maintain

the diversity and avoid local optima [9]. We denote by pm and σ the mutation
probability and the amount of mutation at each locus Pi

t, respectively. For each locus
Pi

t, a uniformly distributed random number rndi in [0.0, 1.0] is generated. If rndi < pm,
Pi

t is mutated by the following formula:

Pi
t = (1.0 − σ) ⋅ Pi

t + rnd({0.0, 1.0}) ⋅ σ (9)

where rnd({0.0, 1.0}) is 0.0 or 1.0, randomly generated with a probability 0.5.
After mutation, a sampling set is generated by the new P(t). Step 6 to 11 is

repeated until the termination condition is met. Along with the evolution, P(t)
gradually converges to an explicit solution.

In this paper, we propose a new probability vector update scheme where a number
of best so far individuals are adopted. In addition, an all-one vector is employed at the
beginning of the algorithm to guide the search towards feasible solutions.

Standard PBIL with elitism The new probability vector update scheme

1) Initialization
2) Set t = 0;
3) for i = 1 to L, do set Pi

t = 0.5
4) Generate a sampling set S(t) of N

individuals from P(t)
5) repeat
6) Set t = t + 1
7) Evaluate the samples in S(t-1)
8) Find the best individual B(t) from

B(t-1)∪S(t-1)
9) Update P(t) by Eq.(8)
10) Mutate P(t) by Eq.(9)
11) Generate set S(t) by sampling P(t)
12) until termination condition is met

1) Find the H best individuals from S(t-1)
and sort them in sequence {C1, C2,…,
CH}, where f(C1)≤ f(C2) ≤…≤ f(CH)

2) for i = 1 to H do
3) Find the worst individual BMAX in the

set of best so far individuals SBSF,
where f(BMAX) = max{ f(B1), f(B2), …,
f(BH)}

4) if f(Ci) ≤ f(BMAX) do
5) BMAX = Ci;
6) f(BMAX) = f(Ci);
7) end if
8) end for
9) Update P(t) by Eq.(10) and Eq.(11)

 Fig. 1. Procedure of PBIL Fig. 2. The new probability update scheme

3.1 The New Probability Vector Update Scheme

Contrary to the traditional PBIL [9] that updates P(t) by shifting it towards the best
individual B(t), our PBIL concerns a set of best so far individuals SBSF = {B1,…, BH},
where H ≥ 1 is a constant number. Initially, P(t) is sampled H times to create H
individuals to form SBSF. At each generation, when a number of fitter individuals
appear, we update SBSF by replacing those with worse fitness values in SBSF by the
fitter ones. Then, the statistical information of SBSF, i.e. PBSF, is extracted and used to
update P(t), as shown in formula (10) and (11).

∑ =
⋅=

H

1H
1

k kBSF BP (10)

P(t) = (1.0 − α) ⋅ P(t) + α ⋅ PBSF (11)

Given an individual X, we denote its corresponding fitness value by f(X). The
procedure of the new probability vector update scheme at generation t is shown in
Fig.2. Note that this new update scheme generalizes the update scheme in standard
PBIL. When H = 1, it is equivalent to a standard PBIL where only one best so far
individual, i.e. B1, is maintained in SBSF.

3.2 The Use of All-one Vector

As the problem concerned is highly constrained, P(t) in the initialization of PBIL may
not be able to create feasible individuals, and thus deteriorates the effectiveness and

efficiency of PBIL. Kim et al [4,5] significantly improved the performance of their
GA by inserting an all-one vector into the randomly generated population to enable
that all merging nodes are active (coding nodes), and their GA begins with at least
one feasible solution in the population.

Inspired by the above idea, we employ all-one vector(s) in the probability vector
update scheme to improve the performance of the proposed PBIL. The all-one vector
compensates for the absence of feasible individuals in SBSF in the initialization of our
algorithm. For example, if there are u (0 < u ≤ H) infeasible individuals in SBSF, these
individuals are replaced by u all-one vectors. Note that, different from the problem
concerned in [4,5], our problem also considers the delay constraint. Therefore, all-one
vector may still be infeasible as the delay constraint may not be met.

3.3 The Structure of the Proposed PBIL

The proposed PBIL
1) Initialization
2) Set t = 0;
3) For i = 1, 2, …, L, set Pi

t = 0.5
4) Generate a sampling set S(t) of N individuals from P(t)
5) Generate a set SBSF of H individuals by sampling P(t)
6) Replace infeasible individuals in SBSF by all-one vectors
7) repeat
8) Set t = t + 1
9) Evaluate the samples in S(t-1)
10) Update P(t) by using the probability vector update scheme (Fig.2)
11) Mutate P(t) by Eq.(9)
12) Generate a set S(t) of N samples by P(t)
13) until termination condition is met

Fig. 3. Procedure of the proposed PBIL

We use the graph decomposition method proposed in [4,5] to transform the given
network G into a secondary graph GD. In PBIL, each individual X corresponds to a
secondary graph GD. Each bit of X is associated with one of the newly introduced
links between the so-called auxiliary nodes in GD. Bit ‘1’ and ‘0’ means its
corresponding link exists and does not exist in the secondary graph GD, respectively.

Fitness evaluation measures each obtained GD. For an individual X, we first check
if a feasible NCM subgraph GNCM(s,T) can be found from its corresponding GD. For
each sink tk∈T, we use the Goldberg algorithm[11], a classical max-flow algorithm,
to compute the max-flow between the source s and tk in the corresponding GD. If all d
max-flows are at least R, for each sink tk we select R least-delay paths from all link-
disjoint paths obtained from s to tk. All the selected paths are mapped to GD to form
the GNCM(s, T). If the maximal path delay in the GNCM(s,T) satisfies the delay
constraint, i.e. D(GNCM(s,T)) ≤ Ω, we set the number of coding links in GNCM(s,T) to
f(X). If GNCM(s,T) cannot be found or it violates the delay constraint, X is infeasible
and we set a very large fitness value Ψ to f(X) (in this paper, Ψ = 50).

The procedure of the proposed PBIL is shown in Fig.3. The termination criteria are
subject to two conditions: 1) a coding-free subgraph is obtained, or 2) the algorithm
reaches a pre-defined number of generations.

4 Numerical Experiments and Discussions

We evaluate the performance of the following two algorithms:
• GA: the simple GA with binary link state encoding, tournament selection,

uniform crossover, simple mutation and all-one vector inserted into initial
population [5].

• PBIL-H(num): the proposed PBIL with the new probability vector update
scheme and the use of all-one vector(s), where num is the integer number set to
H.

Simulations have been carried out upon two networks, i.e. a 15-copies network
(with R = 2) adopted in [5] and a random directed network (with 60 nodes, 150 links,
11 sinks, and R = 5). The propagation delay over each link D(e) is uniformly
distributed from 2ms to 10ms and the time consumed for coding Δc is set to 2ms. For
each topology, we set two different delay constraints, a severe one and a loose one, i.e.
for the 15-copies topology, 136ms and 300ms, respectively; for the 60-nodes topology
71ms and 300ms, respectively. The solution lengths in 15-copies and 60-nodes are
176 bits and 235 bits, respectively. In all scenarios, the population size and the pre-
defined termination generation is set to 40 and 300, respectively. In GA, tournament
size, crossover and mutation probabilities are set to 2, 0.8 and 0.01, respectively. In
PBIL-H(num), α = 0.1, pm = 0.02, and σ = 0.05. To study how H affects the
performance of our PBIL, we set 1, 8, 16, 24, 32, and 40 to num, respectively. All
experimental results were collected by running each algorithm 20 times. The
performance analysis is based on the following criteria:

• The evolution of the average fitness. Note that the termination condition here
is that algorithm stops after 200 generations.

• The successful ratio (SR) of finding a coding-free subgraph (i.e. subgraph
without coding performed). Note that the optimal solutions in our experiments
are solutions that produce coding-free subgraphs.

• The average best fitness (ABF). It is the average value of the obtained best
fitness values in 20 runs.

• The average computational time (ACT) to run an algorithm.
Table 1 shows the results of GA and PBIL-H(1) on the 15-copies and 60-nodes

networks. Obviously, GA is beaten by PBIL-H(1) in every case, showing to be
ineffective in solving the problems concerned. In terms of SR, the maximum value
GA obtains is 60% while PBIL-H(1) has at least 80%. In particular, for 15-copies
network, GA even cannot reach coding-free subgraph(s). In contrast, the performance
of PBIL-H(1) is stabilized and with high-quality, which shows PBIL-H(1) is more
effective compared with GA. We also see that PBIL-H(1) performs better than GA
with respect to ABF and sometimes the superiority is substantial, e.g. in severely
constrained cases.

Table 1. Results by GA and PBIL-H(1)

15-copies network 60-nodes networkEvaluation Criteria
Ω = 136 ms Ω = 300 ms Ω = 71 ms Ω = 300 ms

GA 0.0 0.0 5.0 60.0SR (%)
PBIL-H(1) 100.0 95.0 80.0 80.0
GA 50.0 9.05 47.5 1.00ABF
PBIL-H(1) 0.0 0.05 0.20 0.20

 (a) DelayC = 136 ms in 15-copies (b) DelayC = 300 ms in 15-copies

 (c) DelayC = 71 ms in 60-nodes (d) DelayC = 300 ms in 60-nodes

Fig. 4. Average fitness vs. generation. DelayC denotes the delay bound.

Fig.4 compares the average fitness obtained by PBIL-H(num) for the 15-copies and
60-nodes networks. We find that the convergence characteristics of these algorithms
are affected by H, i.e. the number of best so far individuals kept in SBSF, in such a way
that the larger H, the slower convergence. As aforementioned, the statistical
information of SBSF is used to update the probability vector. With more individuals in
SBSF, the contribution to adjust the probability vector from a single individual in SBSF
becomes less. Therefore, a larger H is more likely to slow down the convergence of
the proposed algorithm. However, PBILs with a smaller H may suffer from rapid
diversity loss and converge to local optima.

On the same network with different delay bounds, the performances of PBIL-
H(num) deteriorate on severely constrained cases. For example, PBIL-H(1) for the 60-
nodes network with smaller delay bound in Fig.4(c) obtains a worse average fitness
than that of the same network with larger delay bound in Fig.4(d). Obviously, this is
due to that there are less feasible solutions in the solution space of the severely
constrained topologies compared to that of loosely constrained cases.

 (a) SR vs. H in 15-copies (b) ACT vs. H in 15-copies

 (c) SR vs. H in 60-nodes (d) ACT vs. H in 60-nodes
 Fig. 5. The effect of H

Fig.5 shows the effect of H to SR and ACT in the 15-copies and 60-nodes networks.

In Fig.5(a) and (b), we notice that the larger the value of H, the higher the SR, and the
larger ACT. In the case of severe delay constraint, the ACT of PBIL-H(num), num = 1,
8, 16, 24, 32 and 40, become increasingly worse. This phenomenon demonstrates the
tradeoff between diversification and intensification. The more the best so far
individuals are maintained in SBSF, the better the diversity is kept, thus avoiding pre-
maturity. However, larger H, on the other hand, slows down the convergence, where
PBIL cannot efficiently exploit and find an optimal solution from a certain area of the
solution space yet consumes a large amount of computational time. Concerning SR in
Fig.5(c), we also notice that the larger the value of H, the higher the SR in cases with
different delay constraints. On the other hand, in Fig.5(d), the ACT falls first and then
rises up. This is because at beginning with H increasing, the global exploration ability
of the algorithm is improved and the ACT to obtain optimal solutions is reduced.
However, with H continuing to grow larger, the convergence speed of PBIL decreases,
requiring more ACT before stop. If we focus on the sections of curves where SR is
100% (i.e. H ≥ 16 in loosely constrained case and H ≥ 24 in severely constrained case,
respectively), it is also clear that larger H still results in larger ACT. From the above
analysis, we find that if the value of H is properly selected, e.g. set H = 8 in 15-copies
network and H = 24 in 60-nodes network, rapid convergence and global search
capability can be achieved simultaneously.

5 Conclusions

In this paper, we investigate for the first time the delay constrained minimization
problem on network coding operations. A population based incremental learning
algorithm with a new probability vector update scheme and all-one vector(s) is
proposed. The new update scheme makes use of a group of best so far individuals to
adjust the probability vector. The number of best individuals in this scheme needs to
be carefully devised so that high performance and low computational time are
achieved at the same time. Besides, all-one vectors are adopted to drive the
probability vector towards feasible solutions at the early evolutionary generations,
which greatly improve the performance of our proposed algorithm. Simulation results
demonstrate that the proposed algorithm is highly effective in solving the problem
concerned.

Acknowledgements

This research is supported by China Scholarship Council and The University of
Nottingham, UK.

References

1. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung R.W.: Network coding flow. IEEE Trans. Inform.
Theory 46(4) (2000) 1204-1216

2. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inform. Theory 49(2)
(2003) 371-381

3. Kim, M., Ahn, C.W., Médard, M., Effros, M.: On minimizing network coding resources: an
evolutionary approach. In: Proc. NetCod. (2006)

4. Kim, M., Médard, M., Aggarwal, V., O’Reilly, V., Kim, W., Ahn, C.W., Effros, M.:
Evolutionary approaches to minimizing network coding resources. In: Proc. Inforcom. (2007)

5. Kim, M., Aggarwal, V., O’Reilly, V., Médard, M., Kim, W.: Genetic representations for
evolutionary minimization of network coding resources. In: Proc. EvoCOMNET. (2007)

6. Fragouli, C., Soljanin, E.: Information flow decomposition for network coding. IEEE Trans.
Inform. Theory 52(3) (2006) 829-848

7. Langberg, M., Sprintson, A., Bruck, J.: The encoding complexity of network coding. IEEE
Trans. Inform. Theory 52(6) (2006) 2386-2397

8. Bhattad, K., Ratnakar, N., Koetter, R., Narayanan, K.R.: Minimal network coding for
multicast. In: Proc. ISIT2005. (2005)

9. Baluja, S.: Population-based incremental learning: a method for integrating genetic search
based function optimization and competitive learning. Technical Report CMU-CS-94-163,
Carnegie Mellon University (1994)

10.Larranaga, P., Lozano, J.A.: Estimation of distribution algorithms: a new tool for
evolutionary computation. MA: Kluwer, Norwell (2002)

11.Goldberg, V.: A new max-flow algorithm. Technical Report MIT/LCS/TM-291, MIT (1985)

