G53KRR 2014-2015 handout on description logic

OWL Web Ontology Language - W3C standard, extends most description logics and has slightly different terminology (based on RDF rather than description logic semantics. OWL DL based on DL).

Reading:

The Description Logic Handbook. Franz Baader, Diego Calvanese, Deborah L.McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. Cambridge University Press, 2003. ISBN 0-521-78176-0.

A good on-line course: http://www.inf.unibz.it/%7Efranconi/dl/course/

Basic idea description logics talk about relationships between *concepts* (noun phrases). There are many different description logics.

Description logics \mathcal{EL} , \mathcal{ALC} , \mathcal{ALCQ} :

Concept descriptions in \mathcal{EL} are formed using the following syntax rule:

$$C, D \longrightarrow A \mid \top \mid \bot \mid C \sqcap D \mid \exists R.C,$$

where A is an atomic concept, R is an atomic role, n is a non-negative natural number. Concept descriptions in ALC are formed using the following syntax rule:

$$C, D \longrightarrow A \mid \top \mid \bot \mid C \sqcap D \mid \neg C \mid \forall R.C,$$

where A is an atomic concept, R is an atomic role.

 $C \sqcup D \equiv \neg(\neg C \sqcap \neg D). \exists R.C \equiv \neg(\forall R.(\neg C))$

Concept descriptions in \mathcal{ALCQ} are formed using the following syntax rule:

$$C, D \longrightarrow A \mid \top \mid \bot \mid C \sqcap D \mid \neg C \mid \forall R.C \mid \exists^{>n} R.C \mid \exists^{=n} R.C \mid \exists^{$$

where A is an atomic concept, R is an atomic role, n is a non-negative natural number. $\exists^{>n}R \equiv \exists^{>n}R.\top . \exists^{\geq n}R \equiv (\exists^{>n}R) \sqcup (\exists^{=n}R).$

A sentence ϕ is defined as follows:

$$\phi := C \sqsubseteq D \mid C(a) \mid R(a, b),$$

where C, D are concept descriptions, a, b are individual names, R is an atomic role. $C \equiv D$ is short for $C \sqsubset D$ and $D \sqsubset C$.

An interpretation (Δ, \mathcal{I}) consists of a non-empty set Δ as the interpretation domain and an interpretation function \mathcal{I} , which assigns every atomic concept A to a set $A^{\mathcal{I}} \subseteq \Delta$, every atomic role R to a binary relation $R^{\mathcal{I}} \subseteq \Delta \times \Delta$, and every individual name a to an element $a^{\mathcal{I}} \in \Delta$. The interpretation function is extended to concept descriptions as follows:

- 1. $\top^{\mathcal{I}} = \Delta, \perp^{\mathcal{I}} = \emptyset;$
- 2. $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}};$
- 3. $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}};$
- 4. $(\forall R.C)^{\mathcal{I}} = \{a \in \Delta \mid \forall b. (a, b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\};$
- 5. $(\exists^{>n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| > n\};$
- 6. $(\exists^{=n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a, b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| = n\};$
- 7. $(\exists^{\leq n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a, b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| < n\}.$

The truth conditions for sentences are as follows:

- 1. $(\Delta, \mathcal{I}) \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$;
- 2. $(\Delta, \mathcal{I}) \models C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$;
- 3. $(\Delta, \mathcal{I}) \models R(a, b)$ iff $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$.

A description logic knowledge base is a set of sentences.

TBox and ABox A description logic knowledge base is usually split into terminological part or TBox which describes general relationships between concepts, e.g. $Surgeon \sqsubseteq Doctor$, and assertions about individuals or ABox (e.g. Doctor(mary)).

Reasoning Entailment is defined exactly like in FOL: a set of sentences Γ entails a sentence ϕ (in symbols $\Gamma \models \phi$) if and only if ϕ is true in every interpretation where all of the sentences in Γ are true.

 \mathcal{ALC} is a proper fragment of first order logic. Reasoning in \mathcal{ALC} it is decidable (it is decidable whether a sentence is satisfiable, or whether a finite set of sentences entails another sentence; however algorithms for checking this take exponential time).

Example of a description logic where reasoning is very efficient: \mathcal{EL} only has \sqcap and $\exists .R$ as concept constructors. Reasoning not just decidable, but very efficient (polynomial time algorithm for checking subsumption of concepts).

Other features used to define more expressive description logics: functional roles (for example, to say that only one object can be connected by an Age role), cardinality restrictions on the number of objects connected by a role, ability to say that roles are transitive, reflexive, express inclusion relation between roles. Some very expressive description logics are undecidable.

G53KRR 2012, Q6 This question is on description logic. A summary of its syntax and semantics is given after this question.

- 1. Express the following sentence in description logic:
 - (a) Bob is a student.
 - (b) Bob and David are friends.
 - (c) Every child has a mother.
 - (d) Bob has more than 2 sisters which are students.
 - (e) Bob has no brothers.
 - (f) Bob has no more than 2 sisters but no brothers
 - (g) Each of Bob's sisters has 2 brothers.
 - (h) All of Bob's friends are students.
 - (i) Some of Bob's friends are not students.

Answer.

- (a) *Student(bob)*
- (b) *hasFriend(bob, david)* or *hasFriend(david, bob)*
- (c) $Child \sqsubseteq \exists hasMother. \top;$
- (d) $(\exists^{>2}hasSister.Student)(bob);$
- (e) $(\forall hasBrother. \bot)(bob);$
- (f) $(\exists^{\leq 2}hasSister \sqcap \forall hasBrother. \bot)(bob);$
- (g) $(\forall hasSister.(\exists \geq^2 hasBrother))(bob);$
- (h) $(\forall has Friend. Student)(bob);$

(i) $(\exists hasFriend.(\neg Student))(bob)$

Other equivalent DL expressions are also correct.

- 2. Consider the following interpretation (D, I): $D = \{d_1, d_2, d_3\}, R^I = \{\langle d_1, d_2 \rangle, \langle d_1, d_3 \rangle\}, a^I = d_1$ (a is a constant), $C^I = \{d_2, d_3\}$ (C is an atomic concept). Which of the following sentences are true in this interpretation and why?
 - (a) $(\forall R.C)(a)$
 - (b) $(\exists^{\geq 1} R)(a)$
 - (c) $(\exists^{\geq 2}R) \sqsubseteq (\exists^{\geq 1}R)$

Answer.

- (a) True. $a^{I} = d_{1}$. Since $R^{I} = \{\langle d_{1}, d_{2} \rangle, \langle d_{1}, d_{3} \rangle\}, d_{2} \in C^{I}$ and $d_{3} \in C^{I}$, we have $\forall x. (d_{1}, x) \in R^{I} \rightarrow x \in C^{I}$. By the definition of $(\forall R.C)^{I}, d_{1} \in (\forall R.C)^{I}$. This is, $a^{I} \in (\forall R.C)^{I}$. By the truth condition of $(\forall R.C)(a), (D, I) \models (\forall R.C)(a)$.
- (b) True. $a^{I} = d_{1}$. $|\{x \in D \mid (d_{1}, x) \in R^{I}\}| = 2$, since x could be d_{2} or d_{3} .
- (c) True. As $(\exists^{\geq 2}R)^I \subseteq (\exists^{\geq 1}R)^I$, $(\exists^{\geq 2}R) \sqsubseteq (\exists^{\geq 1}R)$ is a valid sentence, which is true in every interpretation.

Summary of the syntax and semantics of the DL: Concept descriptions in the DL are formed using the following syntax rule:

$$C, D \longrightarrow A \mid \top \mid \bot \mid C \sqcap D \mid \neg C \mid \forall R.C \mid \exists^{>n} R.C \mid \exists^{=n} R.C \mid \exists^{$$

where A is an atomic concept, R is an atomic role, n is a non-negative natural number. $C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$. $\exists R.C \equiv \neg(\forall R.(\neg C))$. $\exists^{>n}R \equiv \exists^{>n}R.\top$. $\exists^{\geq n}R \equiv (\exists^{>n}R) \sqcup (\exists^{=n}R)$.

A sentence ϕ is defined as follows:

$$\phi := C \sqsubseteq D \mid C(a) \mid R(a, b),$$

where C, D are concept descriptions, a, b are individual names, R is an atomic role.

An interpretation (Δ, \mathcal{I}) consists of a non-empty set Δ as the interpretation domain and an interpretation function \mathcal{I} , which assigns every atomic concept A to a set $A^{\mathcal{I}} \subseteq \Delta$, every atomic role R to a binary relation $R^{\mathcal{I}} \subseteq \Delta \times \Delta$, and every individual name a to an element $a^{\mathcal{I}} \in \Delta$. The interpretation function is extended to concept descriptions as follows:

- $\top^{\mathcal{I}} = \Delta, \perp^{\mathcal{I}} = \emptyset;$
- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}};$
- $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}};$
- $(\forall R.C)^{\mathcal{I}} = \{a \in \Delta \mid \forall b. (a, b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\};$
- $(\exists^{>n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| > n\};$
- $(\exists^{=n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| = n\}.$
- $(\exists^{\leq n} R.C)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}| < n\};$
- $(\exists^{>n}R)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}}\}| > n\};$
- $(\exists^{=n}R)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a,b) \in R^{\mathcal{I}}\}| = n\};$
- $(\exists^{\leq n} R)^{\mathcal{I}} = \{a \in \Delta \mid |\{b \in \Delta \mid (a, b) \in R^{\mathcal{I}}\}| < n\}.$

The truth conditions for sentences are as follows:

- $(\Delta, \mathcal{I}) \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}};$
- $(\Delta, \mathcal{I}) \models C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$;
- $(\Delta, \mathcal{I}) \models R(a, b)$ iff $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$.