4 Products, coproducts and exponentials

4.1 Products
The product of two sets A, B : Set is A x B its elements are tuples, that is given

a:Aandb: B we can form (a,b) : A x B which are the only elements of this
type. We can define the projections:
m:AXxB— A
71 (a,b) = a
M AX B — A
7 (a,b) = b

Moreover given another set C : Set and functions f: A — C and g: B — C
we define

[f,g]:C—>AxB
[figle=(fe,g¢)

this is the unique function that makes the following diagram commute

The uniqueness is indicated by the dashed arrow.

By unique we mean that for any other function h : C — A x B which
makes this diagram commute we have that h = [f, g]. Using extensionality it is
sufficient to show that hx = [f, g]x

[f,glz=(fz,9)

(

= (

= (m (h ) 2 (hm))
= (Az.(m z,m22)) 0 h

Using the fact that all elements of A x B are tuples it is easy to see that
Az.(m1 2,2 2)) = Az.z = id and hence

(Az.(m z,m22))oh =idoh
=h
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Moreover, [, ] is natural, this means that [f,g]och = [foh,gohl:

(If,gloh)x = [f,g] (hz)
= (f(hz),g(hx))

= ((foh)x),(goh)x))
—[foh.gohla

We abstract from products in Set and say that in any category C a product
A x B of two objects A, B is given by two morphisms 71 : C(A x B, A) and 7 :
C(Ax B, B) and for any pair of morphisms f : C(C, A) and ¢ : C(C, B) a unique
morphism [f, g] : C(C, A x B) that makes the following diagram commute:

Moreover this assignment is natural, i.e. [f,g]oh =[f o h,goh].

Question 30 Has the category w, which corresponds to < on natural numbers,
got products? In general what are products for a preorder?

As for terminal and initial objects we can show that products are unique up
to isomorphism. This also implies that A x B = B x A because it is easy to see
that B x A is a product of A and B.

We have only defined binary products, what about ternary products? There
are at least two ways to derive them from binary propducts A x (B x C) and
(Ax B) xC.

Exercise 31 Show that A x (B x C) 2= (A x B) x C.

This suggests that we can indeed derive all non-empty products from binary
products. The only things which is missing is the empty product, which corre-
sponds to the terminal object. Hence we say that a category has finite products
if it has a terminal object and binary products. Note that this also means that
we chose a particular terminal object 1 and for any pair of object A and B
another object A x B.

4.2 Coproducts

It is easy to say what are coproducts: they are simply products in the opposite
category. However, it is useful to develop some intuition by looking at coprod-
ucts 2 in Set first: Given A, B : Set we define A + B : Set whose elements

12They are also called disjoint union due to the way they are defined in set theory. However,
since unions don’t make sense in type theory this isn’t a very good name. A better alternative
to coproducts is sums.
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are inj;a: A+ B for a : A and inj, b : A+ B for b : B and these are the only
elements. Now given f: A — C and g : B — C we define [ﬂ tA+B—-C
which allows us to do case analysis:

4] (miva) = fa
4] (iniz ) = g0

This is the unique function which makes the following diagram commute:

Moreover this assignment is natural, i.e. h o [5} = mg:ﬂ

Exercise 32 Verify unicity and naturality of [5 }

This leads directly to the definition of binary coproducts in a category C,
a coproduct A + B of A and B is given by injections: inj; : C(A,A + B)
for and inj, b : C(B, A + B) and for any pair of morphisms f : C(A,C) and
g : C(B,C) a unique morphism [_ﬂ : C(A + B,(C) that makes the following
diagram commute:

c

i

inj, injy

Moreover this assignment is natural, i.e. h o [5} = [225}
Question 33 Has the category w, which corresponds to < on natural numbers,
got coproducts? In general what are coproducts for a preorder?

As for produts we say that a category has all finite coproducts if it has an
initial object and all binary coproducts.

In Set and actually in many categories products and coproducts are very
different, but this is not always the case. We have already seen that in Mon
ths initial object and the terminal object coincide. For the following consider
the category of commutative monoids CMon which is like monoids but with
the additional property that =« y = y * x for any object (A, e,_x _). Given two
commutative monoids (A, e, x_), (B, z, +_) we define A®B as (Ax B, (e, z), -e_)
where (a,b) e (a’,b') = (axa’,b+1b'). It is easy to see that this is a commutative
monoid again.
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Exercise 34 Show that A @ B is both a product and a coproduct of A and
B.

Question 35 What happens if we give up commutativity, i.e. if we consider

Mon instead.

Products and coproducts can also be defined as an adjunction: Given a
category C we write C2 = C x C '3 whose objects are pairs of objects and
whose morphsims are pairs of morphisms in C. There is a functor A : C — C2
(called the diagonal functor) which just copies, that is A A = (A, A) and the
same on morphisms. Now if C has binary products and coproducts resepctively
we also have _x _,_+_:C2 = C

Exercise 36 Define the morphism parts of these functors using only the
properties of products / coproducts.

Moreover, they are left and right adjoint to A:

Exercise 37 Verify these adjunctions, i.e. show that
C(X,Z)xC(Y,2)=C(X +Y,2)
C(Z,X xY) = C(Z,X) x C(Z,Y)

are natural isomorphisms.

4.3 Exponentials

Next we look at the set of functions which is called an exponential in category
theory. One of the basic properties of functions in functional programming is
currying, which is the following isomorphism:

o Pasc T~

AxB—C A— (B—=C0C)

IR

S
>
®
Q

where
¢aBc:(AxB—=C)— (A= (B—0))

¢ f= zMy.f(z,y)
Yapc: (A= (B—C) = (AxB—=C)

Vg = p.g(mip)(map)

13¥es, this is a product in the category of categories which is not a category in our sense.
We already develop a taste for higher categories. ..
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Exercise 38 Verify that ¢ and v are inverse to each other.

If we fix B this looks like an adjunction, namely the functors _x B, B — _:
Set — Set form an adjunction. All that is left is to check naturality:

Exercise 39 Derive the morphism part of - x B and B — _ and check that
¢4a,B,c is natural in A, C, that is given f: A - A" and g: C — C’

¢a,B,C

AxB—-(C —= A— (B—C()
JAh.goho(fxB) J)\k.(Bﬁg)okof

A’><B—>C’¢*>A’—>(B—>C’)

A, B,C’

This directly leads to the definition of exponentials (aka function objects) for
a category C with products, we say that for a fixed object B : |C| an exponential
B = _or () is the right adjoint to _x B. We can compare _ = _ with homsets
C(,, -) both take two objects as input but the first one returns an object while
the latter returns a set. This is why exponentials are also called internal homs.
Only on Set the two are actually the same.

By definition B =¢ - is a covariant functor C — C but exponentials also
give rise to a contravariant functor:

Exercise 40 Show that - =¢ C is a contravariant functor, i.e.

_=C:C?—=C.

A category which has all finite products and exponentials is called a a carte-
sian closed category (CCC) if it is also has coproducts it is a Bicartesian closed
category (BiCCC). As we have already observed Set is cartesian closed and has
finite coproducts hence it is a bicartesian closed category.

The following example of a bicartesian closed category is a good justification
for the notation: the category of finite sets Fin: its objects are natural numbers,
and its homsets are defined as Fin(m,n) = Finm — Finn where Fink = {i :
N| i <k}, i.e. Fink has exactly k elements. Fin has (given m, n : [Fin| = N):

an initial object 0

coproducts m+n

a terminal object | 1

products mXxn
exponentials m—=n=n"

Exercise 41 Verify that these definitions indeed have the required properties.

Another standard example for a bicartesian closed category is the category
of propositions Prop: its objects are propositions and its homsets are given
by implication (which correspond to functions): Prop(P,Q) = P — Q. This
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category is a preorder (because all its homs are propositions) and it has (given
P,Q : Prop) :

an initial object False
coproducts PVQ
a terminal object | True
products PAQ
exponentials P—-Q

Exercise 42 Verify that these definitions indeed have the required properties.
A bicartesian closed category which is a preorder is called a Heyting algebra,
it is a model for intuitionistic propositional logic.
In every bicartesian closed category products and coproducts distribute as
in ordinary algebra. That means we have the following isomorphisms

O0x A0
(B+C)x A2BxA+CxA

We don’t need the symmetric cases since we alreay know that commutativity of
products (A x B = B x A) and coproducts (A+ B = B + A) are isomorphisms.

The easiest way to show this is to use the corollary from the Yoneda lemma:
to show an isomorphism it is enough to show that the homsets out of (or into)
these objects are naturally isomorphic. Let’s do the 2nd isomorphism:

C((B+C)x A, X)2C(B+C,A=¢c X)

C(B,A=c X)xC(C,A=¢c X)
C(BxAX)xC(CxAX)
C(BxA+CxAX)

1R

IR

and hence (B+C)x A = Bx A+ C x A. In each line we only used the
adjunctions defining x, + and =-.

Exercise 43 Prove the first isomorphism 0 x A 22 0 using the same idea. Note
that C(0,A) = 1

Not every category with products and coproducts is distributive. A coun-
terexample is Mon where the terminal object and the initial object agree, i.e.
0 = 1. hence we can just use the first isomorphism to show that every object is
isomorphic to the initial object (and the terminal):

A=21x A
~0Ox A
=N

But this is certainly not true in Mon, hence we can conclude that Mon is not
cartesian closed.
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Exercise 44 Is w (bi)cartesian closed? What about w°P?

An important example for a bicartesian closed category is the category of
presheaves of a given category PSh C. Its objects are functors F' : C°P — Set
and its morphisms are natural transformations. Products (and coproducts) are
calculated pointwise: That is given F, G : C°? — Set

(FxG)A=FAxGA
(F+G)A=FA+GA

Exercise 45 Verify that these are indeed products and coproducts in PSh C.

But what about exponentials? We cannot have (F' =pghc G)A=F A —
G A because this wouldn’t be a contravariant functor since F' appears on the left
hand side of the exponential. The construction of the exponential is actually a
nice application of the Yoneda lemma: If we assume that the exponential exists
we have then

(F =pshc G)A = C(X,A4) = (F =psnc G) X
X:C

=PShC(C(,, A),F =psnc G)
=PShC(C(-,4) x F,G)

— [ CX,A)xFX5GX
X:C

= C(X,A)»FX—>GX
X:C

So the last line is a candidate for the exponential but in this case we do need
to think about size. If the type of objects is not small (for example it could be
Set) then the set of natural transformations isn’t small either. However, if we
assume that |C| is small we can just define

(F =pshc G) A= C(X,A) - FX —-GX
X:C

We also need to check that this definition actually satisfies the universal prop-
erty:

Exercise 46 Show that the above definition of ' =pgnc G satisfies the
universal property of exponentials, i.e. for H : PShC

PShC(H x F,G) ~PShC(H, F =psnc G)
ie.

/ HXXxFX—-GX~| HX—(F=psncG)X
X:C X:C -
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This shows that the category or presheaves over a small category (i.e. a
category with a small type of objects) is cartesian closed. However, it does
for example not imply that the category of presheaves over Set, i.e. functors
Set®? — Set is cartesian closed.

Given a preorder, that is |R| : Set and _R_: |R| — |R| — Prop that is
reflexive and transitive, a propositional presheaf P : R°® — Prop is just a
predicate P : |R| — Prop that is inverse monotone wrt R, i.e. if Pz and y Rx
then Py. Morphisms are given by pointwise inclusion

(PShR)(P,Q) =Vz : |R|.Pz = Qu.

This is a bicartesian closed category the constructions are simplified versions of
the ones for set valued presehaves, in particular

(P=Q)z=Vy:|RlyRx — Py — Qy

These categories are called Kripke models and the fact that they are bicartesian
closed corresponds to the fact that they model intuitionistic propositional logic.

Exercise 47 Use Kripke models to show that the law of the excluded middle
P Vv =P is not derivable in intuitionistic logic.

You may have noticed that bicartesian closed categories are a bit asymmetric.
They have a right adjoint to _ x B but what about a left adjoint to B+ _7 Let’s
denote such an object as - — B (minus); it should satisfy the following natural
isomorphism:

C(A,B+C) = C(A-B,C)

natural in C.

An example for such a symmetric cartesian closed category is the category
of booleans which is similar to the category of propositions, but we use booleans
instead of propositions. In particular, the type of objects is Bool and the homsets
are given as Bool(p,q) = Tp — Tgq where T : Bool — Prop is defined as
Tb = (b = true). We can define products, coproducts and exponentials as for
Prop, i.e. by using the usual truthtable semantics. Subtraction can be defines

asp—q=pA—gq.
Exercise 48 Check that Bool is a symmetric cartesian closed category.

You may notice that this example is a preorder. This is no accident because
all symmetric cartesian closed categories are preorders. This is because in such
a category also the dual form of distributivity hold:

1+A=1
(BxC)+ A= (B+A)x (C+A)

The first one is already suspicious because it implies in particular that 1+1 =1,
which basically says that true = false in Bool. Moreover:
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Exercise 49 In a bicartesian closed category with 1 = 1 + 1 all morphisms
are equal (i.e. it is a preorder).

You may wonder wether symmetry already implies excluded middle PV =P,
which certainly holds in Bool. The answer is no, because we can extend Kripke
semantics to the symmetric logic (using boolean valued presheaves over finite
preorders) and uses this to show that excluded middle isn’t implied.

Exercise 50 Show that the category 1+ w is a symmetric cartesian closed
category. It’s definition is similar to w its objects are the natural numbers and
a top element w such that ¢ < w for all elements.
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