
Categories for the lazy functional programmer
Lecture notes

Thorsten Altenkirch

April 7, 2024

Abstract

The course is an introduction to category theory emphasising appli-
cations in computer science, especially functional programming, from a
type theoretic perspective. We cover the basic concepts of category the-
ory: categories, duality, functors and natural transformations, adjunc-
tions, the Yoneda lemma, products, coproducts and exponentials, initial
algebras and terminal coagebras, limits and colimits.

Contents

1 Preliminaries 2

2 Categories 3
2.1 From sets to categories . 3
2.2 Terminal and initial objects . 4
2.3 Preorders and monoids . 5
2.4 Monos and epis . 6

3 Functors and natural transformations 9
3.1 Functors . 9
3.2 Natural transformations . 10
3.3 Adjunctions . 12
3.4 The Yoneda lemma . 16

4 Products, coproducts and exponentials 20
4.1 Products . 20
4.2 Coproducts . 21
4.3 Exponentials . 23

5 Initial algebras and terminal coalgebras 28
5.1 Natural numbers . 28
5.2 Initial algebras . 31
5.3 Lambek’s lemma . 33

1

5.4 Streams . 33
5.5 Terminal coalgebras . 35

6 Limits and colimits 37
6.1 Pullbacks and equalizers . 37
6.2 Pushouts and coequalizers . 40

6.2.1 Pushouts . 40

1 Preliminaries

We will use naive type theory as a metalanguage, this is not very di↵erent from
a disciplined use of set theory. It is not necessary to have any knowledge about
the formalism of type theory in as much as it is not necessary to know the
axioms of set theory when using set theory naively.

However, a few notes are in place. We write a : A to mean that a is an
element of the type A unlike a 2 A in set theory this is a judgement not a
proposition, i.e. it is a static property.

We write Set for the type of sets and Prop for the type of truth values,
which we do not assume to be equal to Bool. We have an embedding from Prop
to Set which is justified by the proposition as types translation: a proposition
corresponds to a set with at most one inhabitant, it is true if the type is non-
empty. For every A : Set we have an equality relation, that is for a, b : A we
have a = b : Prop, expressing that a and b are equal. Set is a type but not
every type is a set, and we avoid talking about equality of elements of types
that are not sets1. On the other hand Prop : Set and equality of propositions
is logical equivalence.

We will assume that there is a hierarchy of of types, eg. Type0 : Type1 :
. . . and correspondingly Seti,Propi : Typei+1 and Propi : Seti+1. 2 We
usually assume implicitly that we are working for some fixed level i and write
Type,Set,Prop for Typei,Seti,Propi. We say types (sets, propositions) are
small if they are in Seti and large if they are in Seti+1.

We also use function types (sets, propositions) A ! B extensively, we view
them as primitive and not defined as relations. Given f : A ! B and a : A we
write application as juxtaposition f a : B as usual in functional programming
and type theory. We assume functional extensionality: two functions are equal,
if they are pointwise equal.

We borrow Agda’s convention to write mixfix operations by using where the
arguments should go, e.g. a binary infix operator is written + : N ! N ! N.
There are some notations I borrow from set theory, e.g. I am going to write
finite sets as {c0, c1, . . . , cn} where ci are some names for the constructors. I also
use comprehension notation {x : A | P x} where A is a type and P : A ! Prop,

1That is I adopt an agnostic view you can view types as Zermelo-Fraenkel sets or as types
in the sense of HoTT

2Some people like to assume that Propi : Set0 which is a consequence of Propi = Bool.

2

type theoretically this can be interpreted as the type of pairs (a, p) where a : A
and p : P a.

2 Categories

2.1 From sets to categories

We start with the standard example of a category: the category of sets Set. To
define a category we need a type of objects which is Set . We write |Set| = Set.
Given two objects A,B : Set we define the set of morphisms which in this case
is the set of functions, Set(A,B) = A ! B. For every object A : Set we have
an identity function idA : A ! A which is defined as idA a = a, given functions
f : B ! C and g : A ! B we define function composition f � g : A ! C

as (f � g) a = f (g a). The strange order of arguments in composition is a
consequence of the fact that we write function application this way around,
hence there is no change of direction in the definition of �. We observe that there
are a number of laws for function composition: identity is neutral, that is given
f : A ! B we have that idB�f = f and f�idA = f and moreover it is associative,
that is given three composable function f : C ! D, g : B ! C, h : A ! B we
have that f � (g � h) = (f � g) � h.

Exercise 1 Write down the proofs that identity is neutral and composition is
associative in detail.

We abstract from this example to define what is a category: A category
C is given by a type of objects |C| and given two objects A,B : |C|, a set of
morphisms C(A,B) : Set called the homset. For every object A : |C| we have
an identity function3 idA : C(A,A), given functions f : C(B,C) and g : C(A,B)
there is a composite f � g : C(A,C) satisfying the following laws: identity is
neutral, that is given f : C(A,B) we have that idB � f = f and f � idA = f

and moreover it is associative, that is given three composable functions f :
C(A,B), g : C(B,C), h : C(C,D) we have that h � (g � h) = (h � g) � f .

Equations in category theory are often shown as commuting diagrams. Com-
position corresponds to completing a triangle

A B

C

f�g

f

g

I am using a dashed arrow to indicate that this is the unique arrow that makes
this diagram commute. The identity laws can be drawn as follows where I use

3We are overloading id and � to be precise we should annotate these symbols with the
category, i.e. write idC and �C. However, it is usually clear from the context which category
is meant.

3

a double line to indicate an identity arrow:

A B

B

f

f
A A

B

f
f

The associativity law can be drawn as below, the arrow on the right makes both
the big triangle and the small triangle commute corresponding to the two sides
of the associativity law:

D

C

A B

h

g�f
f

h�(g�f)

(h�g)�f

g

h�g

A good intuition for a commuting diagram is to consider that the inside of the
diagram is filled so that a path on the one side can be continuously transformed
into a path on the other side. In the diagram for associativity we use the rule
that we can also complete tetraeders, hence the bottom side of the tetraeder
commutes and hence because composition is unique, associativity holds.

The sort of geometric, or rather homotopic, thinking suggest a clear path to
higher categories, but this is beyond the scope of this course.

2.2 Terminal and initial objects

Here is an example how we can use the language of category theory to define
concepts in the category of sets. We are interested in the concept of a set with
exactly one element, but there are lots of choices for this element: some people
write () and in Agda it is called tt other people write ⇤. In category theory
we avoid this confusion and say that a terminal object 1 is an object such that
there is exactly one morphisms from any other object, let’s say

A 1
!A

Clearly one element sets are terminal objects in the category of sets. Now
terminal objects are unique up to isomorphism.

We say that two objects A,B are isomorphic if there are morphisms f : A !
B and g : B ! A such that there compositions are identities: f � g = idB and
g � f = idA.

A B

f

idA

g

idB

We call f and g isomorphisms. We write f : A ⇠= B or omitting the witness we
write A ⇠= B to express that A and B are isomorphic.

4

Exercise 2 Show that inverses are unique, i.e. if (f, g) and (f, g0) are an iso-
morphisms then g = g

0.

Now given two terminal objects 1,10 we have !01 : 1 ! 10 and !10 : 1 ! 10.
There compositions are the identity because for example !10�!10 : 1 ! 1 but
there is also the identity id1 : 1 ! 1 and since we said that there is exactly one
morphism from any object to the terminal object it must be that !10�!10 =!1 =
id1. The same reasoning shows that the other composition is also the identity.

In category theory we are only interested in concepts up to isomorphism and
all constructions are preserved by isomorphism. In the category of sets isomor-
phic objects have the same elements up to a renaming given by the isomorphism.
Hence we ignore the irrelevant detail how the elements are called.

There is also a dual concept: the empty set is an initial object 0, that is
there is a unique morphism from the empty set into any set,

0 A
?A

this exists trivially because we don’t have to say what the functions returns
since there are no elements in its domain. In this case we are lucky there is
only one way to write the initial object. We can make the symmetry precise
by introducing the concept of a dual category: given a category C the opposite
category Cop has the same objects as C but the homsets are given by reversing
the order Cop(A,B) = C(B,A) and consequently composition also reverses
order f �Cop

g = g �C f . We can now say that an initial object is a terminal
object in the opposite category, or vice versa a terminal object is an initial
object in the opposite category. We use the syllable co- in this situation, we
could say that an initial object is a co-terminal object or that a terminal object
is a co-initial object (but nobody says this).

Exercise 3 Prove explicitly that initial objects are unique upto isomorphism.

When I say that a category has a terminal or initial object this also indicates
that I assume that we have chosen one which I indicate by 1 or 0 respectively.
The same principle applies to all categorical constructs we are going to intro-
duce. We will later discuss the concept of univalent categories which entails
that categorical constructions are unique.

2.3 Preorders and monoids

Let us look at some other examples of categories. We can use the natural
numbers to define some categories: The category ! has as objects the natural
numbers and morphisms are given as !(m,n) = m  n. This is a category
because  is reflexive and transitive and those properties give rise to identity
and composition. The laws hold trivial because there is at most one element of
a proposition. This category is an example of a degenerate case of a category:
it is a preorder, i.e. a relation that is reflexive and transitive.

5

Question 4 Has this category an initial or a terminal object?

Another category we can be build from natural numbers has only one object
and its morphisms are the natural numbers. The identity morphism is 0 and
composition is given by addition. The laws follow from the fact that 0 is neutral
(n+ 0 = n = 0+ n) and associative (l+m) + n = l+ (m+ n). Here we exploit
the algebraic properties of +, namely that it is a monoid ; hence categories with
one object correspond to monoids.

Question 5 Has this category an initial or a terminal object?

In Mathematics we are also interested in equivalence relations (preorders that
are symmetric) and groups (monoids that have a inverses), like the integers Z
with addition on negation). We can also do this for categories by saying that
a category is a groupoid, if for every morphism f : A ! B there is an inverse
f
�1 : B ! A such that f � f

�1 = id and f
�1 � f = id. A groupoid whose

homsets are propositions is an equivalence relation and a groupoid with one
object is a group.

Exercise 6 Show that sets with isomorphisms are a groupoid. Here the objects
are sets and the homsets are isomorphisms. First you need to show that this is
indeed a category.

A rich source of categories are sets with structure. For example we define
the category of preorders Pre: Its objects are preorders that is a set A together
with a relation R : A ! A ! Prop which is reflexive and transitive. Given
preorders (A,R) and (B,S) a morphism is a function f : A ! B which preserves
the relation that is if Raa

0 then S (f a) (f a
0). We use identity and composition

as in Set, we need to check that identity is a preorder morphism and that the
composition of preorder morphisms is a preorder morphism.

Another example is the category of monoids Mon: Its objects are monoids,
that is a set A with a neutral element e : A and a binary operation ⇤ such
that the laws of a monoid hold (x ⇤ e = x, e ⇤ x = x, x ⇤ (y ⇤ z) = (x ⇤ y) ⇤ z). A
morphism between monoids (A, e, ⇤) and (B, e

0
, ⇤0) is a function f : A ! B

which preserves the structure, i.e. f e = e
0 and f (x ⇤ y) = (f x) ⇤0 (f y). Again

we only have to show that identity is a morphism and that morphisms are closed
under composition to see that this is a category.

Question 7 Do the categories Pre and Mon have initial and terminal objects?

2.4 Monos and epis

A function f : A ! B is injective if every element appears at most once in the
image, i.e. 8x, y : A.f x = f y =) x = y, it is surjective if every element of
the codomain is in the image: 8y : B.9x : A.f x = y, it is bijective if it is both
injective and surjective.

So for example the function double : N ! N which doubles its input is
injective (but not surjective), while the function half : N ! N which divides by

6

2 ignoring remainders (eg. half 5 = 2) is surjective but not injective. On the
other hand the function swap : N ! N which sends every even number to its
successor and every odd number to its predecessor (e.g. swap 5 = 4, swap 4 = 5
is both injective and surjective and hence it is a bijection.

We can translate these notions into the language of category theory by noting
that an injective function can be cancelled on the left side of a composition that
is if i : A ! B is injective then for all f, g : C ! A it is the case that if i�f = i�g
then f = g. We call such a function a monomorphism or short mono. We draw
monos with a tail at the end of the arrow:

A B
i

On the other hand a surjective function can be cancelled on the right hand
side. That is given a surjective function e : A ! B and f, g : B ! C then if
f � e = g � e then f = g. We call a function with this property an epimorphism
or short an epi. We draw epis with a double arrowhead:

A B
e

Exercise 8 Show that the monos in Set are exactly the injective functions and
the epis are exactly the surjective functions.

4

If a function f : A ! B has a left inverse l : B ! A with l � f = id then it
is mono, because

f � g = f � h =) l � (f � g) = l � (f � h)
=) (l � f) � g = (l � f) � h
=) id � g = id � h
=) g = h

Exercise 9 Explicitly prove the dual construction: if f : A ! B has a left
inverse r : B ! A with f � r = id then it is an epi.

Since half � double = id we can conclude that double is a mono (because it has
a left inverse) and half is an epi (because it has a right inverse). On the other
hand swap is self inverse that is swap � swap = id hence it has both a left and
a right inverse (itself) and hence it is both a mono and an epi. Indeed it is
isomorphism and from the above it is easy to see that isomorphisms are always
monos and epis.

In Set the inverse direction is also true:

4To prove that an epimorphism is a surjection, you need to use (e↵ective) quotients: If
A : Set and R : A ! A ! Prop is an equivalence relation then A/R : Set with [] : A ! A/R

and Raa0 () [a] = [a0] and given f : A ! B such that Raa0 then we have f̂ : A/R ! B

with f̂ [a] = f a.

7

Exercise 10 Show that in Set a morphism that is both mono and epi (i.e.
bijections) is an isomorphism. 5

However, this is not true in general: consider the embedding i : N ! Z, this is
a monoid morphism i : Mon((N, + , 0), (Z, + , 0)).

Exercise 11 Show that i is both an epi and a mono. But it cannot be an iso.
Why?

However, if we know that the function is a mono and an epi because of inverses
(we say it is a split mono and a split epi) that it is always an isomorphism:

Exercise 12 Show that in any category a function that has both an left and a
right inverse is always an isomorphism.

5One direction uses the principle of unique choice, that is for R : A ! B ! Prop

(8x : A.9!y : B.Rx y) ! 9f : A ! B.8x : A.Rx (f x)

where 9! means there exists unique, i.e. 9!x : A.�x = 9x : A.�x ^ 8y : A.� y ! x = y. This
principle is provable from univalence in Homotopy Type Theory.

8

