
3 Functors and natural transformations

3.1 Functors

A functor is a morphism between categories, the standard example is the List
functor which is an endofunctor on the category of sets, i.e. it is a functor from
Set to Set, I write List : Set ! Set overloading !6. The list functor has an
e↵ect on objects, i.e. sets, given A : Set we obtain ListA : Set which is the set
of lists over A which we write as [a

0

, a
1

, . . . , an�1

], this includes the empty list
[]. The List functor comes with map function which maps a function f : A ! B
to List f : ListA ! ListB, which is defined as

List f [a
0

, a
1

, . . . , an�1

] = [f a
0

, f a
1

, . . . , f an�1

]

Note that we overload List to mean at the same time a map on objects and a map
on morphisms. List also preserves the categorical structure, it maps identity to
identity, that is List idA = id

ListA and List (f � g) = (List f) � (List g). This can
be easily seen by showing that both sides are pointwise equal when applied to
a generic list

List idA [a
0

, a
1

, . . . , an�1

] = [id a
0

, id a
1

, . . . , id an�1

]

= [a
0

, a
1

, . . . , an�1

]

= id
ListA [a

0

, a
1

, . . . , an�1

]

and

List (f � g) [a
0

, a
1

, . . . , an�1

] = [(f � g) a
0

, (f � g) a
1

, . . . , (f � g) an�1

]

= [f (g a
0

), f (g a
1

), . . . , f (g an�1

)]

= List f [g a
0

, g a
1

, . . . , g an�1

]

= List f (List g [a
0

, a
1

, . . . , an�1

])

= ((List f) � (List g)) [a
0

, a
1

, . . . , an�1

]

More formally the proofs proceed by list induction.
Inspired by List we define the notion of a functor in general: given categories

C and D a functor F : C ! D is given by a map on objects F : |C| ! |D|
and a map on morphisms F : C(A,B) ! D(F A,F B) that preserves identities
F idA = idF A and composition F (f � g) = (F f) � (F g).

Exercise 13 Show that every functor preserves isomorphisms. That is if � :
A ! B is an isomorphism then so is F � : F A ! F B.

We note that functors between preorder categories are simply monotone
maps, i.e. correspond to morphisms in Pre and functors between monoids
are monoid morphisms, i.e. correspond to morphisms in Mon. Given these
observations above it may appear a good idea to define a category of categories

6In the literature people often write [Set,Set].
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with functors as morphisms. You find this definition in many classical text
books. We will not do this because it isn’t clear what equality of functors is,
they do not form a set in our sense. 7

Categories form another structure, a higher category. Functors between two
categories don’t form a set they form a category themselves. The morphisms be-
tween functors are called natural transformations and in the case of endofunctors
on sets they correspond to a well known concept from functional programming:
polymorphic functions.

3.2 Natural transformations

Let’s look at an example: the reverse function on lists. Given a set A we have
a function revA : ListA ! ListA which reverses its input, i.e.

revA [a
0

, a
1

, . . . , an�1

] = [an�1

, . . . , a
1

, a
0

]

This is a family of functions, but using a bit of type-theoretic mumbo jumbo we
can view it as one function rev : ⇧A:SetListA ! ListA and we agree to omit
the set parameter (or put it in subscript).

This function has an important property it is natural, which means that it
commutes with the map operation on lists, that is given any function f : A ! B

ListA ListA

ListB ListB

revA

List f List f

revB

Let’s check that this diagram commutes by applying both paths from the top
left to the bottom right to a generic list:

(revB � List f) [a
0

, a
1

, . . . , an�1

] = revB (List f [a
0

, a
1

, . . . , an�1

])

= revB [f a
0

, f a
1

, . . . , f an�1

])

= [f an�1

, . . . , f a
1

, f a
0

])

= List f [an�1

, . . . , a
1

, a
0

]

= List f (revA [a
0

, a
1

, . . . , an�1

])

= (List f � revA) [a0, a1, . . . , an�1

]

and we conclude that revB �List f = List f � revA. As before formally the proof
uses list induction to get rid of the . . . .

Naturality actually corresponds to the idea of parametricity in functional
programming: rev is defined uniformly for all sets. It is good to look at a
counterexample but actually we cannot define one because in type theory and
in functional programming all functions are parametric and hence natural. To

7We can however, define the category of strict categories, i.e. categories whose objects
form a set. Because in this case equality of functors is a proposition and hence functors form
a set.
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get our hands on an unnatural function let us allow for the moment to define a
weird function which analyses a set, that is we define

weird : ⇧A:SetListA ! ListA

by

weird
Bool

= rev
Bool

weirdA = id
ListA for all other A : Set

That is weird reverses lists of booleans but is the identity every else. weird
has the same type as rev hence we have to check the same naturality square.
Consider the function even : N ! Bool which returns true if the input is an even
number and false otherwise and apply both sides to the input [1, 2, 3] : ListN:

(weird
Bool

� List even) [1, 2, 4]
= weird

Bool

(List even) [1, 2, 4])

= weird
Bool

([false, true, true])

= [true, true, false]

(List even � weirdN) [1, 2, 4]
= List f (weirdN [1, 2, 4])

= List f [1, 2, 4]

= [false, true, true]

Hence, clearly the diagram doesn’t commute since [true, true, false] 6= [false, true, true].
Here is some notation for the type of natural transformations. As we use ⇧

in type theory we use an integral in category theory, that is we write 8

rev :

Z

A:Set
ListA ! ListA

The integral here is a general concept called an end, but I am not going to define
it in full generality here. There are also coends (corresponding to ⌃-types in
type theory) which also use the integral notation but the index is on the top.

We define in general, what a natural transformation is: Given two functors
F,G : C ! D a natural transformation ↵ from F to G is given by a family of
morphisms:

↵ : ⇧A:|C|D(F A,GA)

such that the following diagram commutes:

F A GA

F B F B

↵A

F f Gf

↵B

8Just think of parametric ⇧ type when you see the integral.
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To express that ↵ is a natural transformation we write:

↵ :

Z

A:|D|
D(F A,GA)

Exercise 14

1. Show that Maybe : Set ! Set where MaybeA is given by the constructors:

nothing : MaybeA

just : A ! MaybeA

is a functor.

2. Show that the function hd : ⇧A:SetListA ! MaybeA which is defined as

hd [] = nothing

hd [a
0

, a
1

, . . . , an�1

] = a
0

is a natural transformation (i.e. hd :
R
A:Set ListA ! MaybeA).

Functors between any two categories C,D and natural transformations form
a category, the functor category C!D. It’s objects are functors F : C ! D

and given two functors F,G the homset is the set 9 of natural transformationsR
X:C D(F X,GX), the identity natural transformation id :

R
X:C D(F X,F X)

is given by idX = idF X and given ↵ :
R
X:C D(F X,GX),� :

R
X:C D(GX,H X)

their composition is

(� � ↵) :
Z

X:C
D(F X,H X)

(� � ↵)X = �X � ↵X

Exercise 15 Check that these are indeed natural transformations and that the
laws for a category hold.

3.3 Adjunctions

An important class of functors are the forgetful functors which just forget some
property or structure; they are usually denoted by U , for example U : Mon !
Set which assigns to any monoid the carrier of the monoid, i.e. U (A, e, ⇤ ) = A.
Since functions between monoids are given by functions on the carrier that
preserve the structure the morphism part of the functor and the functor laws
are straightforward.

9This is a set in our sense because two natural transformations are equal when they are
pointwise equal (and we don’t need to talk about equality of objects). However, they are not
necessarily small. The natural transformations between two endofunctors on Seti are not in
Seti because we quantify over all small sets.
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Is there an interesting functor in the other direction, that is F : Set ! Mon?
Indeed there is: we can use the fact that lists form a monoid with append
++ : ListA ! ListA ! ListA and [] : ListA, hence on objects we can define

F A = (ListA, [], ++ )

We have already observed that List is a functor but to show that F is a functor
we also need that List f is a monoid morphism:

Exercise 16 Show that for any f : A ! B, List f : ListA ! ListB is a
monoid morphism, that is

List f [] = []

List f (l ++m) = (List f l) ++(List f m)

Hence we can define F f = List f , the functor laws follow because List is a
functor on Set.

The monoid constructed with lists is special, it is the free monoid over a
given set. Here free means that it only satisfies the laws of a monoid but is not
subject to any other laws. There are other functors with the type Set ! Mon

for example the finite multisets or the finite sets over a given set. These do
satisfy additional laws, the counterpart to the append operation is commutative
in the case of multisets l++m = m++l and idempotent in the case of finite sets
l ++l = l, hence they are not free over monoids.

How can we say in the language of category theory that a functor is a free
functor? We can do this by using the forgetful functor U : Mon ! Set.
Because the free functor doesn’t impose any additional laws there is a (natural)
isomorphism between the monoid morphisms between F A and a monoid M =
(|M |, e, ⇤ ) and A and the underlying set |M | = U M of the monoid. We say
that the two functors form an adjunction, where F is the left adjoint and U is
the right adjoint. We write this as F a U or in a diagram:

Mon

Set

UaF

Let’s go through this in detail, a monoid morphism f : Mon(F A,M) is
given by a function f : ListA ! |M | that preserves the monoid structure. We
obtain a function �A,M f : A ! |M | by just using f on singleton lists:

� f a = f [a]

On the other hand given a function g : A ! |M | we can define a function
 A,M g : ListA ! |M | using

 g [] = e

 g [a
0

, a
1

, . . . , an�1

] = (g a
0

) ⇤ (g a
1

) ⇤ · · · ⇤ (g an)
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Exercise 17 Show that  g is a monoid morphism, i.e. � g : Mon(F A,M)

Hence we have constructed functions:

Mon(F A,M) Set(A,U M)

�A,M

 A,M

Next we show that this is an isomorphism, i.e. � and  are inverse to each
other. To show that �� = id we use extensionality and apply it to an arbitrary
g : A ! |M | and a : A and show that (� �  ) g a = id g a :

(� �  ) g a = � ( g) a

=  g [a]

= g a

= (id g) a

The other direction is a bit more interesting: to show that  � � = id we
again use extensionality and apply both sides to f : ListA ! |M | and an
arbitrary [a

0

, a
1

, . . . , an�1

] : ListA and show that ( � �) f [a
0

, a
1

, . . . , an�1

] =
id f [a

0

, a
1

, . . . , an�1

:

( � �) f [a
0

, a
1

, . . . , an�1

] =  (� f) [a
0

, a
1

, . . . , an�1

]

= (� f a
0

) ⇤ (� f a
1

) ⇤ · · · ⇤ (� f [an])

= (f [a
0

]) ⇤ (f [a
1

]) ⇤ · · · ⇤ (f an)

= f([a
0

] ++[a
1

] ++ . . .++[an])

since f is a monoid morphism!

= f [a
0

, a
1

, . . . , an�1

]

= (id f) [a
0

, a
1

, . . . , an�1

]

Exercise 18 Verify that � is a natural transformation, that is for any f :
Set(B,A) and g : Mon(M,N) the following diagram commutes:

Mon(F A,M) Set(A,U M)

Mon(F B,N) Set(B,U N)

�A,M

�h.g�h�(F f) �k.(U g)�k�f

�B,N

Question 19 Why don’t we need to verify that  is a natural transformation?

In practice one rarely checks naturality conditions because they follow from the
construction.

Question 20 What goes wrong if we would have used one of the other functors,
e.g. finite multisets or finite sets?
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We abstract from the concrete case and define adjunctions in general: Given
functors L : C ! D and R : D ! C an adjunction is given by a natural
isomorphism (in A,B): that is there is a family of isomorphisms

C(LA,B) D(A,RB)
�A,B

⇠
=

 A,B

which is natural in A,B,i.e. f or f : D(A,C) and g : C(B,D) the following
diagram commutes

C(LA,B) D(A,RB)

C(LC,D) D(C,RD)

�A,B

�h.g�h�(Lf) �k.(Rg)�k�f

�C,D

In this case we say that L is left adjoint to R (or that R is right adjoint to L)
and write L a R or in a diagram:

C

D

RaL

We can actually obtain the list functor as the composition of the forgetful
and the free functor: List = F � U . We will return to this observation later,
because functors which are obtained by composing a free and a forgetful functor
are always monads and indeed List is a monad.

Exercise 21 There is also a forgetful functor from the category of preorders
to the category of endorelations U : Pre ! Rel, which is defined just as for
preorders but without any conditions, i.e. the objects are sets X : Set with a
relation R : X ! X ! Prop and morphisms are defined as functions that
preserve the relation (as for Pre). Now U doesn’t do anything but it just forgets
that the relation is a preorder. Can you find a left adjoint F : Rel ! Pre which
constructs the free preorder over a given relation?

There are many ways to define adjunctions, the one I have given here is
maybe not the best, especially the naturality conditions are quite complicated.
A popular alternative is to observe that we can obtain two natural transforma-
tions from the natural equivalence, which are called the unit and the counit of
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an adjunction:

⌘ :

Z

A:D
D(A,R (LA))

⌘A = �A,LA idLA

✏ :

Z

B:C
C(L (RB), B)

✏B =  RB,B idRB

which make the following diagrams commute (the triangle laws):

LA L (R (LA))

LA

L ⌘A

✏LA

RB R (L (RB))

RB

⌘RB

R ✏B

Exercise 22 Give explicit definitions of ⌘ and ✏ for the adjunction between
Mon and Set we have defined.

Exercise 23 Show that the two definitions of an adjunctions between two func-
tors L : C ! D and R : D ! C are equivalent:

• An adjunction is given by a natural isomorphism

C(LA,B) ⇠= D(A,RB)

• A adjunction is given by two natural transformations:

⌘ :

Z

B:D
D(B,R (LB))

✏ :

Z

A:C
C(F (GB), B)

s.t. ✏LA � L ⌘A = idLA and R ✏B � ⌘RB = idRB.

3.4 The Yoneda lemma

The Yoneda lemma is famous for mystifying the students of category theory, not
so much because it is di�cult to prove but rather because it is not immediately
obvious what it is good for. But then it shows up, maybe unexpectedly again
and again, and many constructions proceed with the magic appeal to Yoneda.

Let F be a functor C

op ! Set this is called a presheaf 10 . An example
for such a functor is C( , A) 11 where A : |C|, in this case the functor is called

10This immediately triggers the question: what is a sheaf? but the answer is beyond this
course. It su�ces to say that in order to say what a sheaf is we need a topological structure
on the category.

11As indicated in the prelimenaries we write C( , A) for �X.C(X,A). In particular we can
apply it, e.g. C( , A)B = C(B,A).
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representable. The morphism part is given by composition, that is given f :
C(B,C) = C

op(C,B):

C(f,A) : C(C,A) ! C(B,A)

C(f,A) g = g � f

Exercise 24 Check that C( , A) satisfies the functor laws.

Indeed, since we already learnt that functors and natural transformations form
a category, preshaves over C form a category which we denote as PShC. Now
using the other input of the homset of C we can form a functor Y : C ! PShC,
called the Yoneda embedding, which is defined on objects as YA = C( , A). To
define the morphism part assume f : C(A,B):

Y f :

Z

X:C
C(X,A) ! C(X,B)

(Y f)X g = f � g

Exercise 25 Check that Y f is a natural transformation and that Y satisfies
the functor laws.

Maybe you wondered why presheaves are defined as contravariant functors. The
reason is that this way the Yoneda embedding is covariant (otherwise it could
be hardly called an embedding).

For any presheaf F : Cop ! Set we can use its morphism part to define

�X : F X !
Z

Y :C
(YX)Y ! F Y

: F X !
Z

Y :C
C(Y,X) ! F Y

as �X x f = F f x.

Exercise 26 Check that � is natural in X : C.

Now the Yoneda lemma says that this is a natural isomorphism. It is easy
to define the inverse (fixing X : C):

 : (

Z

Y :C
C(Y,X) ! F Y ) ! F X

 ↵ = ↵ id
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Now we need to verify that these functions are inverse to each other: We need
to prove that  �� = id which by extensionality means that ( ��)x = x where
x : F X

( � �)x = ( (�x)

= �x id

= F idx

= x

In the other direction we have to show � �  = id which again by extension-
ality means that ( �  )↵ = ↵ where ↵ :

R
Y :C C(Y,X) ! F Y is a natural

transformation. Actually we need to go further and apply this to Y : C and
f : C(Y,X). If as usual we hide the application to Y using extensionality we
need to show that ( �  )↵ f = ↵ f

(� �  )↵ f = � ( ↵) f

= F f ( ↵)

= F f (↵ id)

At this point we are a bit stuck and it is helpful to draw a diagram. To do this
observe that

F f (↵ id) = (F f � ↵) id

We need to exploit that ↵ is natural, that means that the following square
commutes:

C(X,X) F X

C(Y,X) F Y

↵X

C(f,X)

F f

↵Y

Hence using naturality we can continue:

(F f � ↵) id = (↵ �C(f,X)) id

= ↵ (C(f,X) id)

= ↵ (id � f)
= ↵ f

Hence (� �  )↵ f = ↵ f and using extensionality we can conclude � �  = id
so together with  � � = id we have established that they constitute a natural
isomorphism (we have already checked the � is natural which is su�cient).

.
An important corollary of the Yoneda lemma is that the Yoneda embedding

is full and faithful, that is the e↵ect of the functor on morphisms is both injective
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(faithful) and surjective (full) which is a good reason why it deserves the name
embedding. We can see this by applying the Yoneda lemma to Y Z

� :

Z

X:C
(Y Z)X ⇠=

Z

Y :C
(YX)Y ! (YZ)Y

:

Z

X:C
C(X,Z) ⇠=

Z

Y :C
(YX)Y ! (YZ)Y

this looks like the morphism part of Y but is it? We need to do a little calcu-
lation:

�X f g = YZ g f

= C(g, Z) f

= g � f
= Y f g

and hence the e↵ect of Y on morphisms is an isomorphism and Y is full and
faithful.

We can expand the isomorphism further:

Y :

Z

X:C
C(X,Z) ⇠=

Z

Y :C
(YX)Y ! (YZ)Y

:

Z

X:C
C(X,Z) ⇠=

Z

Y :C
C(Y,X) ! C(Y, Z)

We know that every functor preserves isomorphisms, a functor which is full and
faithful also reflects them. That is if Y f is an isomorphism then f is one.

Exercise 27 Proof that every full and faithful functor reflects isomorphisms.

This gives rise to a useful corollary: to show that f : C(A,B) is an isomorphism
it is enough to show that YA and YB are naturally isomorphic, i.e.

Z

X:C
C(A,X) ⇠= C(B,X),

and this is often easier because we can just calculate with natural isomorphisms.
Sometimes we need the Yoneda lemma for covariant functors but this is no

problem we just have to replace C by C

op. Hence another way to show that
f : C(A,B) is an isomorphism is to show

Z

X:C
C(X,A) ⇠= C(X,B).
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