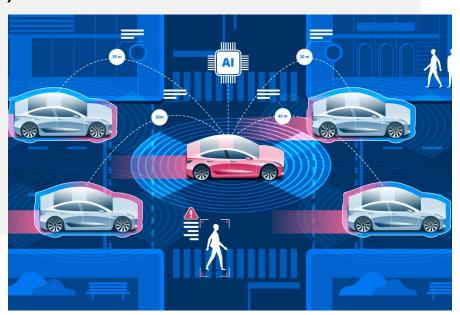


AI-DRIVES

- Al-Driven Secured Connected and Autonomous Vehicles (CAVs)

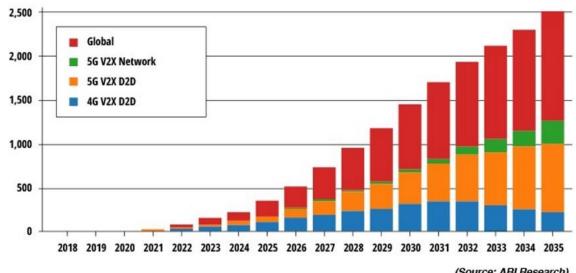

Why: Fast emerging CAVs vulnerable to security risks

Product: Secured and fast Vehicle-to-Everything (V2X) communications

How: Machine learning compliant to V2X standards

Who: Tier 1 automotive transceiver providers

Rong Qu, Jeremie Clos, Vaughan Wang School of Computer Science
Mr George Rice
Head of Commercialisation

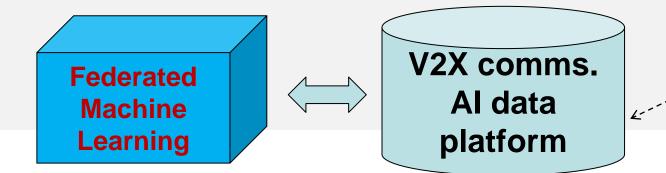


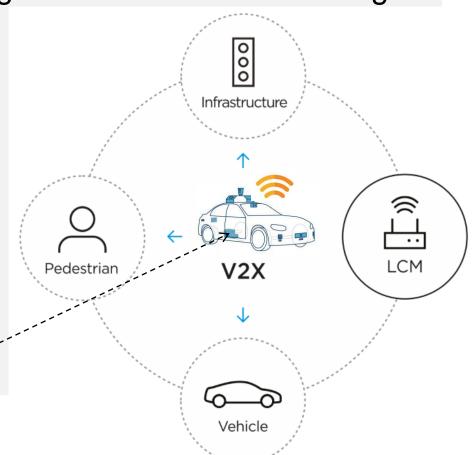
Challenges

- By 2026: all new cars in the UK will be connected (SMMT 2019)
- By 2030: 146M connected cars, 31.3M in 2017 (statista.com)
- Significant and urgent need of secured V2X communications
 - "most readily-used tech focuses entirely on the autonomous elements and not on connectivity" (UK AutoDrive, 2017)
 - Risks: fatalities, data / financial losses Cellular V2X Subscriptions by Type

World Markets, Forecast: 2018 to 2035

Technologies

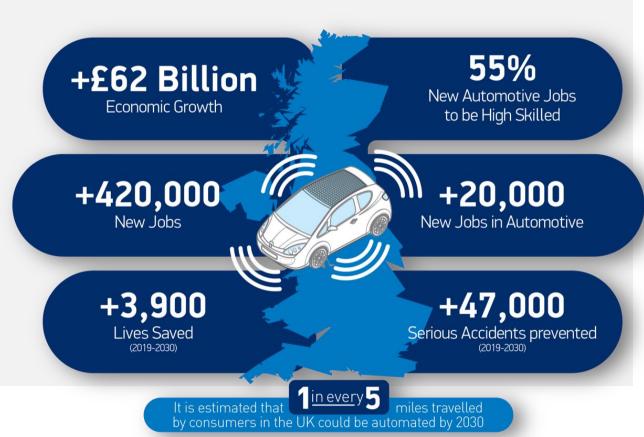



AI-DRIVES: V2X communications secured by federated machine learning

1) Security as a Service: V2X anomaly detection engine with federated learning

Quicker: reduce V2X communications

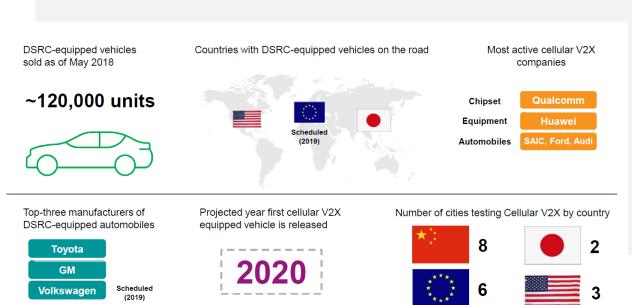
- Data privacy: learning on own data
- Scalable: local knowledge shared globally
- 2) Al data platform: V2X communications data
 - Knowledge on anomaly of different severities
 - Standards: DSRC | C-V2X | hybrid

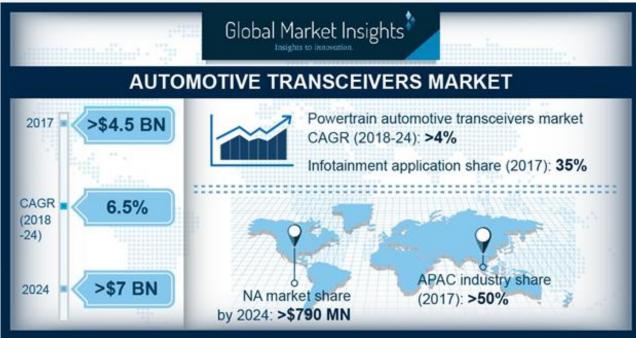

Market Drivers

- Efficiency & productivity
 - 237% increased highway capacity if all cars use sensors and V2V comms.
 - On demand Mobility As a Service

End users

- With CAVs: reduce traffic deaths by 90% (McKinsey & Company)
- With V2V: reduce 13% accidents,
 439k fewer crashes a year (US DoT)





Market Size

- CAVs globally
 - Overall £907bn by 2035 (Transport Systems Catapult, 2017)
- Automotive transceiver market
 - More than \$7bn by 2024

Next Steps

- Validate AI-DRIVES solution and clarify technical specifications
 - Customers/channels: approach Tier 1 providers via UbiPOS network
 - Commercial model
- IP position: being assessed
- Routes to commercialisation
- Funding
 - SIGKDD, June 2020
 - Data collection: simulations
 - MVP: simulations within six months
 - Innovate UK, Cyber Security in IoT, next round

Marke

TABLE 3.7 Assumed share of autonomy package value by component. At L3, 35% of the total value is assumed to be software, and at L4/5 this is assumed to rise to 50%. Assumptions are described in full in Appendix B.

Components	Value at L3 (at scale)	Value at L4/5 (at scale)
LIDAR	\$800	\$900
Cameras	\$300	\$255
Embedded controls	\$200	\$200

	Component	Percentage of value at L3	Percentage of value at L4/5
	LIDAR	25%	24%
	Radar	12%	8%
	Cameras	9%	7%
	V2X hardware	3%	1%
	V2X software	12%	14%
	Embedded controls hardware	2%	1%
	Embedded controls software	7%	9%
	Mapping hardware	2%	1%
	Mapping software	6%	9%
	Data security software	5%	12%
	HMI hardware	2%	2%
	HMI software	6%	6%
	Actuators	2%	2%
notive		3%	3%
ıı		2%	1%
ь	efore 50% OEM mark-up)	0.3%	0.1%
	Embedded modem	0.3%	0.3%

0.5%

0.7%

CAV TECHNOLOGIES For CAV technology sales to automotive sector: market value is £63bn.

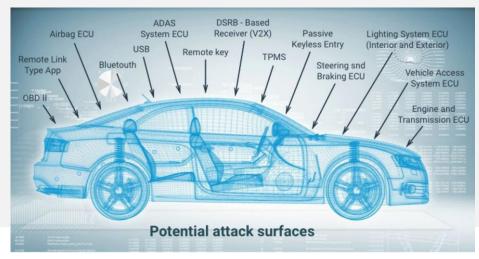
Value based on CAV technology sales values (before 50% OEM mark-up

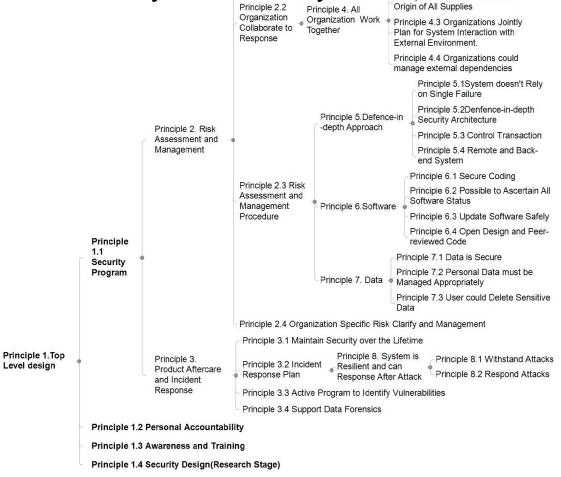
Passive components

UoN: Ongoing Research

- Collaborator:
 - NGI: GNSS/INS sensor integrated board, with DSRC/Cellular enabled device for collaborative navigation
 - UbiPOS UK Ltd

UoN: Ongoing Research


UNITED KINGDOM · CHINA · MALAYSIA


Principle 4.1 Organizations must

Principle 4.2 Possible to Validate

Provide Assurance

- Current: lack of commonly used framework in CAV cyber security
 - CAV attacks types defined
 - CAV attack points classified
 - Prevention mechanisms conducted
- A common framework of CAV security
- A database of CAV cyber-attacks

Principle 2.1 Risk Definition

Level design

UoN: Ongoing Research

- CAV cyber-attacks
 - Passive: eavesdropping, traffic analysis
 - Active: spoofing, replay, modification, DOS
- Derived CAV-KDD dataset
 - Four major types
 - 39 sub-attacks
 - 39 CAV atrributes
 - 14 comm.-based sub-attacks
- Machine learning
 - Decision tree vs. SVM

Attack points
Sensors(LiDAR, Radar, Camera), GNSS device,
vehicle system (OBD, CAN-bus, power system)
etc.
Mobile applications installed on the vehicle, in-
vehicle system (entertainment system), data pro-
cessing system, decision making system etc.
local data (vehicle ID, payment information,
userś personal information), Exchange data (Ve-
hicle's speed, brake status) etc.
V2I (Vehicle to Infrastructure), V2V (Vehicle to
vehicle), V2C (Vehicle to Cloud), V2X (Vehicle
to everything) etc.

Q. He, X. Meng, R Qu. Towards a Severity Assessment Method for Potential Cyber Attacks to Connected and Autonomous Vehicles. Journal of Advanced Transportation, 20, 2020

Q. He, X. Meng, R Qu, R. Xi. Machine Learning-Based Detection for Cyber Security Attacks on Connected and Autonomous Vehicles. Mathematics, 8(8): 1311, 2020