3 The University of
' | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA

G54SIM (Spring 2016)

Lab 02

Introduction to AnylLogic

Peer-Olaf Siebers

pos@cs.nott.ac.uk



HAPPY CHINESE

NEW YEAR
- 2016 -

- YEAR OF MONKEY -

IIIIIIIIIIIIIIIIIIIIIIIIIII



AnylLogic

* We use AnylLogic 7.2.0 PLE

— You will have to apply for a new license key whenever you change your
desktop machine (not sure about the virtual desktop)

Agnylogic*

Personal Learning Edition

@ AnylLogic Morth America. All rights reserved

The University of

I Nottingham G54SIM 3

UNITED KINGDOM -« CHINA - MALAYSIA




AnyLogic IDE

A AnyLogic Personal Learning Edition [PERSONAL LEARNING USE ONLY]

File Edit View Draw Model Tools Help

B-=2HE S

g

KO -®m|va o -] |- # G-

& 58 [0 anyLogic Users on Linkedin

=10l x|

&

% Pro;ects[@Palette E@] = 8 || @ main E@] = B || properties E@l 4 = 0
[ 3 service - Service
H Process Modeling Library &2 &4 ‘ Mame: service Showname [ Ignore —
., FY
D € AgentType = Seize: =, @ (alternative) resource sets
% € Resource Type soUrce service sink O units of the same pool
* Space Markup
DZ.: Path Resource sets (alternatives): = I
6 \51 Point Node
& 2 T3
=] ﬂ Rectangular Mode T ~
L=}
P T4, Polygonal Node g0 Add list
& Attractor
™ et PalletRack Queue capadity: = | 108
NCI: ~ Blocks Maimum queue capacity: = 0O
Fl
@ Source
s (0 sink e Delay time: | triangular( @.5, 1, 1 |seconds
® Delay ‘I I LI
IB I Quewe Send seized resources:
o <> Select Output : =0
&> Select Outputs
G & Hold Agent location (queue): =, R
oE Match
Ei] =t Agent location (delay): = !
Fa ] split 4 .
Combine
n|7 } Priorities | preemption b
BQ Assembler » Advanced
=B Move To b Actions
:=  Conveyor hd hd
oo b, Ao A
Tr =l A | » 4| =0
|BlE] |
- .
The University of

Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA

G54SIM




AnyLogic IDE

A AnyLogic Personal Learning Edition [PERSONAL LEARNING USE ONLY] =10l x|
File Edit View Draw Model Tools Help
B-2d@d| 4R Rm0-8| @ <[0% |- # FHH- N 40 Danytogcusersontikedn El
?gProjedsEEl@Pﬂethe| = B @Mainﬁ@] = g EPropertiesE@l 4 v 7 O
[ () source - Source
=4 Model2* =
%ﬁ Main MName: source Show name _I
’ D Ignore
source service sink Arrivals defined by: - [Rate ﬂ
@7% @ Arrival rate: = [ |per second |7 |
“"' Links to agents Set agent parameters from DB: = 0O
73 Simulation: Main Multiple agents per arrival: =0
----- Database ‘
Limited number of arrivals: =0
a4
Mew agent: = m
create a custom type
Location of arrival: =, INotspeciﬁed 'I
» Advanced
b Actions
» Advanced
} Description
- .
4 | o | 4
Model2 | El&l |'I'rne:seconds
B | The University of
Nottingham G54SIM

UNITED KINGDOM -« CHINA - MALAYSIA




AnyLogic IDE

* Important things

F1: Help

Ctrl-Space: Code completion support

Ctrl-Enter: Perform refactoring (replace name occurrences)
Make sure you select the correct model when pressing "Run"
Make sure you set up model time units correctly in the "Model"
Use the "magic lightbulb" ...

* Since AnylLogic 7 ...

) g

Everything is called "Agent" (entities, resources, agents, ...)
PLE version limits number of entities per simulation run to 50,000

The University of

Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA



AnyLogic IDE

Model2 : Simulation - AnyLogic PLE [PERSONAL LEARNING USE ONLY]

=1of =]
okl ® | L M @I x1 (N O | e 8 L@.Iroot:Main VI‘ | [ # anylogic

source service sink:
o 1
i )
L)
°13 13 L1z 129
service X
root.service: Service

Cueue capacity: 100
Timeout: disabled
Preemption: disabled
in: 13
out: 12

Queue contains: 0
Delay contains: 1
13

Run: 0 Paused | Time: 15.05 Simulation: Stop time notset | Date: Feb 8, 2016 12:00:15 AM | [ Memory: [ 320 or z2am ﬁ'

The Uniyersitg of
Nottingham G54SIM

UNITED KINGDOM -« CHINA - MALAYSIA



AnyLogic IDE

Model? : Simulation - AnyLogic PLE [PERSONAL LEARNING USE ONLY] N [=1
BBl B | § B[ & G | @ @ (3 [service 1% | o ¥ Anylogic

o 1
13-12 G queuesize

G queueGet @ ?eizeFromDnePooI
2
resourceSets
(& resourcePool
G queusRemove
@ resourceuantity

(:‘? onEnter G delaySize

(& onExit G delayGet @) ?ustomizeResourceChoice
i3
Cg resourceChoiceCondition

& onRemove G delayRemove

(™ forceStatisticsCallection
False (3 gqueueCapacity
0o

1
G maximumCapacity
false
G restoreEntityLocationOnExit

true
) FnabIeTimeout
2
timeout
G getResourcelnits G size @ onxitTi "
onExitTimeou
(¥ enablePreemption
G remove 2
onExitPreempted
G suspend O entityLocationQueus
G resume
F - W ) am
Run: 0 Paused | Time: 1506 | Simulation: Stop time notset | Date: Feb 8, 2016 12:00:15AM | [ | Memory: (I 37 =7 22sn (]

The Uniyersitg of
Nottingham G54SIM

UNITED KINGDOM -« CHINA - MALAYSIA



Java Basics for AnylLogic

A- Help - AnylLogic 7 Personal Learning Edition _I- _ll:' 5'
Search: E Scope: All topics
Contents @v|-=-;-vgﬁ SO h | % el e O
B L‘ﬂ] AnyLogic Help 2| Advanced Modeling with Java > Java Basics for AnyLogic -

[ Release Notes T
£ Back Concepts Primitive data types

[0 anylogic User Interface There are eight primitive dats types in Java, but in AnyLogic models we typically use these four:
[ running a Model

5L) Agent Based Modeling Type name Represents Examples of constants

4 15 Madels

[ system Dynamics int Integer numbers 12 10000 15 0

8] Parameters, Vanables, Collections
(4 2D and 3D Animation

[ space Markup

[ Interactive Controls

[ Database Biring Text strings "AnylLogic” "X =" "Ling'nMNew ling" "
LA Defining Behavior. Events and Statecharts
[ Functions and Action Charts

double Real numbers 87713 120 12, 0153 153 -11.7 3.6e-d

boolean Boolean values true false

The word "double” means real value with double precision. In AnyLogic engine all real values (such as time, coordinates,

[ schedules and Table Functions length, speed, random numbers) have double precision. The type String is actually a class (a non-primitive type, notice
[ collecting Output Data that its name starts with a capital letter), but it is a fundamental class, so some operations with strings are built into the
(A visualizing Data Using Charts | core of Java language.

[ Experiment Framewoark

Consider the numeric constants. Depending on the way you write 2 number, Java will treat it either as real or as integer.
[ stochastic Modeling

Any number with the decimal delimiter "." is treated as a real number, even if its fractional part is missing or contains only

[ Exporting Models zeros (this is important for integer division). If integer or fractional part is zero, it can be skipped, so ".153" is the same as
@ Tutorials "0.153", and "12." is the same as ™12.0"
@ Library Ref, Guides . o . . .
Y fhrary Relerence b Boolean constants in Java are true and false and, unlike in languages like C or C++ they are not interchangeable with
= FAQ numbers, so you cannot treat false as 0, or non-zero number as crue. —
B LJI Advanced Modeling with Java
=l B3 Java Basics for AnyLogic String constants are sequences of characters enclosed between the quote marks. The empty string (the string containing
B Java in AnyLegic no characters) is denoted as "". Special characters are included in string constants with the help of escape sequences
that start with the backslash. For example the end of line is denoted by ‘n, so the string "Line one‘\nline two" will
Bl Qagses -l appear as:

& - = | = | an Line one LI

The University of

Nottingham G54SIM

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

* Book Chapter:
— http://www.xjtek.com/files/book/Java for Anylogic users.pdf

‘Simulation Modeling with AnyLogic: Agent Bosed, Discrete Event and System Dynamics Methods 1

Java for AnyLogic users

It would be nice if any simulation model could be put together graphically, in drag and
drop manner. In practice, however, only very simple models are created by usinga
‘mouse and not touching the keyboard. As you try to better reflect the real world in the
model, you inevitably realize the need to use probability distributions, evaluate
expressions and test conditions containing properties of different objects, define
custom data structures and design the corresponding algorithms. These actions are
Detter done in text, not in graphics, and therefore any simulation modeling tool
includes a textual scripting language.

From the very beginning we did not want to invent a proprietary scripting language
for AnyLogic. Moreover, the creation of AnyLogic was significantly inspired by Java,
which we think is the ideal language for modelers. On one hand, Java s a sufficiently
‘high-level language in which you do not need to care about memory allocation,
distinguish between objects and references, etc. On the other hand, Java is a fully
powerful object oriented programming language with high performance. In Java, you
can define and manipulate data structures of any desired complexity; develop efficient
algorithms; and use numerous packages available from Sun™, Oracle™ and other
vendors. Java is supported by industry leaders and as improvements are made to Java,
AnyLogic modelers automatically benefit from t.

Amodel developed in AnyLogic is fully mapped into Java code and, having been linked
with the AnyLogic simulation engine (also written in Java), and, optionally, with a Java
optimizer, becomes a completely indep Java appli This makes
AnyLogic models cross-platform: they can run on any Java-enabled environment or
even in a web browser as applets.

A frequently asked question is “How much Java do I need to know to be successful
with AnyLogic?” The good news is that you do not need to learn object-oriented
programming. The "backbone Java class structure” of the model is automatically
generated by AnyLogic. In a typical model, Java code is present in small portions
written in various properties of the graphically-created model objects. This can be an
expression, a function call, or a couple of statements. Therefore you need to get
familiar with the fundamental data types, learn the basics of Java syntax, and
understand that to do something with a model object you need to call its function.
This chapter is by no means a complete description of Java language, or even an
introduction to Java suitable for programmers. This is a collection of information that
will allow you to manipulate data and model objects in AnyLogic models. It is
sufficient for a typical modeler. For those who plan to write sophisticated Java code,

© X] Technologies www.anylogic.com

The University of

Nottingham G54SIM

UNITED KINGDOM -« CHINA - MALAYSIA

10


http://www.xjtek.com/files/book/Java_for_AnyLogic_users.pdf

Java Basics for AnylLogic

e General remarks

— You do not have to learn full OO programming

You need to understand Java data types, expression, and statement syntax

— Please note:

) g

The University of

Nottingham

Java is case-sensitive: MyVar is different to myVar!

Spaces are not allowed in names: "My Var" is an illegal name!
Each statement has to be finished with ";": MyVar=150;

Each function has to have parenthesis: time(), add(a)

Mind integer division: 3/2=1, not 1.5

Boolean values are only true and false, you cannot use 1 and 0
Dot "." brings you "inside" the object: agent.event.restart()
Array elements have indexes from 0 to n-1

UNITED KINGDOM -« CHINA - MALAYSIA



Java Basics for AnylLogic

* Primitive Types
— double: Represents real numbers: 1.43, 3.6E18, -14.0
— int: Represents integer numbers: 12, 16384, -5000
— boolean: Represents Boolean (true/false) values

e Compound Types —Classes
— String: Represents textual strings, e.g. "MSFT", "Hi there!", etc.
— Arraylist; LinkedList: Represents collections of objects
— HyperArray: Represents multi-dimensional array
— ...many others. See AnylLogic and Java Class References

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

* Arithmetic operations
— Notation: +; —; *; /; % (remainder)
— In integer divisions, the fraction part is lost, e.g. 3/2=1, and 2/3=0
— Multiplication operators have priority over addition operators
— The "+" operator allows operands of type String

* Comparison operations

— Notation: >; >=; <; <=; ==; =

* Boolean operations
— Notation: && (AND); | | (OR); ! (NOT)

The University of

r Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

* Conditional operator

— Notation: condition ? value-if-true : value-if-false

e Assignments and shortcuts

— Notation: =; +=; -=; *=; /=; %=; ++; -- (a+=b is the same as a=a+b)

* Please note:
— Within most of operators, left-to-right precedence holds
— Parentheses may be used to alter the precedence of operations

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

e Method call

— To call a method, type its name followed by parenthesis; if necessary,
put parameters separated by commas within the parenthesis
* Examples:

— x=time(); moveTo(getX(),getY()+100); traceln("Population is increasing");

* Accessing object fields and methods

— To access a field or method of a model element (statechart, timer,
animation), use the model element name followed by dot "." followed
by the field/method name

* Examples:
— statechart.fireEvent("go"); sum=sum+agents.get(i).x;

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

* Replicated objects are stored in a collection
— Items are indexed from 0 to n-1
— Getting the current size of the collection:
* people.size()
— Obtaining i-th item of the collection:
* people.get(i)
— Adding a new object to the collection:
* add_people();
— Removing an object from the collection:
* remove_people(person);

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

e Built-in Functions

— System functions
* time(); getOwner(); pause(); isStateActive(...); etc.

— Mathematical functions
e Basic: sqrt; sin; cos; tan; exp; log; round; zidz; xidz; etc.
e Array: add; sub; mul; sum; avg; min; max; get; etc.

— Special functions
 Random numbers: uniform; exponential; bernoulli; beta; etc.
* Time related: delay; etc.

— And more...
* See AnylLogic Class Reference

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




Java Basics for AnylLogic

* Probability Distributions

— Uniform: Used to represent a random variable with constant
likelihood of being in any small interval between min and max. Its
density does not depend on the value of x.

— Exponential: Used to represent the time between random
occurrences. The unique property is history independence, i.e. it has
the same set of probabilities when shifted in time.

— Triangular: Used when no or little data is available to represent e.g. a
process duration.

uniform( min, max ) Rﬂennal( lambda ) triangL"ar( min, mOde, max )
lambda /\

min mode max

min max |

r Theuniyersitgof
# | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA




r

IIIIIIII

Tutorial: Object Oriented DES

Laptop model: Considering different power states

The Uniyersitg of
Nottingham G54SIM

NNNNN + CHINA - MALAYSIA

19



B | The University of
' | Nottingham

UNITED KINGDOM -« CHINA - MALAYSIA

Questions

G54SIM

20



