
Efficiency Three Ways
Tested, Verified, and Formalised

by Martin Adam Thomas Handley

Supervised by
Professor Graham Hutton

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

December 2019

Abstract

Two fundamental goals in programming are correctness and efficiency: we want our

programs to produce the right results, and to do so using as few resources as possible.

One of the key benefits of the functional programming paradigm is the ability to reason

about programs as if they are pure mathematical functions. In particular, programs can

often be proved correct with respect to a specification by exploiting simple algebraic prop-

erties akin to secondary school mathematics. On the other hand, program efficiency is not

immediately amenable to such algebraic methods used to explore program correctness.

This insight manifests as a reasoning gap between program correctness and efficiency,

and is a foundational problem in computer science. Furthermore, it is especially pronounced

in lazy functional programming languages such as Haskell, where the on-demand nature of

evaluation makes reasoning about efficiency even more challenging.

To aid Haskell programmers in their reasoning about program efficiency, the work in

this thesis seeks to partially bridge the reasoning gap using three different approaches:

automated testing, semi-formal verification, and formal verification.

Acknowledgements

First and foremost I am thankful to my supervisor, Graham Hutton, who has been instru-

mental in my learning and research for over seven years, throughout both my Master’s and

PhD courses. As a first-year undergraduate, Graham introduced me to Haskell. Since then

he has taught me to think logically, write technically, and program functionally.

Thanks to my examiners, Professor John Hughes and Dr. Henrik Nilsson, for an ex-

tremely pleasant (online) viva, and for their useful comments and suggestions. Thanks also

to Dr. Milena Radenkovic for stepping in last minute to chair my viva.

Thanks to my collaborator, Niki Vazou, for sharing her knowledge and passion for Liquid

Haskell with me so that we could use the system for resource analysis. I was also fortunate

enough to spend a week visiting Niki at the IMDEA Software Institute, which was a very

rewarding experience. Thank you, Niki, for inviting me.

I am grateful to all members of the FP lab at the University of Nottingham, past

and present, for their support, insights, and feedback. In particular, the faculty members

Thorsten Altenkirch, Venanzio Capretta, and Henrik Nilsson; the postdoctoral students

Paolo Capriotti, Laurence E. Day, Jennifer Hackett, and Nicolai Kraus; and my peer Colm

Baston. Special thanks go to Ivan Perez for his ongoing guidance and inspiration. Special

thanks also go to my peer, good friend, and former housemate, Jonathan Thaler, who

provided endless entertainment in my last year of study.

This work was funded by EPSRC grant EP/P00587X/1, Mind the Gap: Unified Rea-

soning About Program Correctness and Efficiency.

i

I am indebted to the Starbucks coffee shop on UoN’s Jubilee Campus, which served as

my primary base for the duration of my PhD. Specifically, thank you to Jazz for serving

me endless cups of tea and for always asking about my research. I hope you are keeping

well in your new job role. This coffee shop will always be a place of fond memories.

I am thankful to my best friend and former housemate, Fred Etchells, for always looking

out for me and keeping me in check. Thanks also to my good friend and former housemate,

Jamie Johnson, for always getting that extra 20%, every day.

Last but by no means least, I am deeply grateful to my beloved family, for their uncon-

ditional love and support throughout all my life. My Grandma, Eva, to whom this thesis is

dedicated; my parents, Beryl and Adrian; my sisters, Clare and Nicola, and their spouses,

Damon and Glenn. Finally, to my nieces, Isobel, Robyn, and Heidi, and nephew, William,

thank you for always reminding me that life is for living.

ii

For Eva

Table of Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Organisation . 3

2 Background 6
2.1 Property-based testing . 7

2.1.1 Property-based testing with QuickCheck 8
2.2 Performance testing . 12

2.2.1 Benchmarking with Criterion . 15
2.3 Equational and inequational reasoning . 21

2.3.1 Equational reasoning . 21
2.3.2 Inequational reasoning . 26

2.4 Formal reasoning . 29
2.4.1 Formal reasoning in Liquid Haskell 31

3 AutoBench 44
3.1 Introduction . 44
3.2 AutoBench in practice . 46

3.2.1 Quickly reversing a list . 46
3.2.2 Robustly flattening a tree . 50
3.2.3 Quick versus robust results . 56

3.3 Architecture of AutoBench . 59
3.3.1 Data generation . 59
3.3.2 Generic data generation . 63
3.3.3 Benchmarking . 91
3.3.4 Statistical analysis . 101

3.4 Case studies . 107
3.4.1 Case study 1: QuickSpec . 107
3.4.2 Case study 2: Sorting . 112
3.4.3 Case study 3: The Sieve of Eratosthenes 116

3.5 Discussion . 122
3.5.1 Data generation . 122
3.5.2 Benchmarking . 126
3.5.3 Statistical analysis . 130

3.6 Conclusion . 134

4 Improving Haskell 135

iv

4.1 Introduction . 135
4.2 Improvement theory in practice . 138
4.3 The theory of improvement . 141

4.3.1 Syntax and semantics . 143
4.3.2 Operational improvement . 146
4.3.3 Inequational reasoning . 148
4.3.4 Tick algebra . 149

4.4 Architecture of Unie . 150
4.4.1 Overview . 151
4.4.2 Read-evaluate-print loop . 151
4.4.3 Inequational layer . 152
4.4.4 Primitive rewrites and congruence combinators 152
4.4.5 Cost-equivalent contexts . 153
4.4.6 Context manipulation . 153
4.4.7 Inequational reasoning . 156

4.5 The worker/wrapper transformation . 157
4.5.1 Formalising correctness . 157
4.5.2 Formalising improvement . 158
4.5.3 Improving naive reverse . 159

4.6 Mechanising improvement proofs . 161
4.7 Discussion . 166
4.8 Conclusion . 168

5 Liquidate Your Assets 170
5.1 Introduction . 170
5.2 Analysing resource usage . 173

5.2.1 Intrinsic cost analysis . 173
5.2.2 Extrinsic cost analysis . 176
5.2.3 Interpreting cost analysis . 180

5.3 Implementation . 182
5.3.1 Recording resource usage . 182
5.3.2 Modifying resource usage . 183
5.3.3 Proving extrinsic theorems . 184
5.3.4 Library assumptions . 193

5.4 Case studies . 194
5.4.1 Case study 1: Insertion sort . 194
5.4.2 Case study 2: Non-strict insertion sort 199
5.4.3 Case study 3: Map fusion . 202
5.4.4 Case study 4: Optimised-by-construction reverse 206
5.4.5 Summary of examples . 213

5.5 Correctness of static cost analysis . 218
5.5.1 Metatheory of Liquid Haskell . 218
5.5.2 Correctness of cost analysis . 220

5.6 Discussion . 222
5.7 Conclusion . 229

6 Conclusion 230
6.1 Summary . 230

v

6.2 Further work . 232

Bibliography 248

A Additional background 250
A.1 Program semantics . 250

A.1.1 Denotational semantics . 250
A.1.2 Operational semantics . 253

vi

Chapter 1

Introduction

Two fundamental goals in programming are correctness and efficiency: we want our pro-

grams to produce the right results, and to do so using as few resources as possible. While

these characteristics are often equally desirable, they are just as often in contention with

each other. Programs that are ‘clearly correct’ may rely on inefficient abstractions to aid

their comprehension, whereas programs that have enhanced performance may avoid such

abstractions in favour of specialised efficient operations. To strike a balance between these

two extremes, we must reason about both the correctness and the efficiency of our programs.

One of the key benefits of the functional programming paradigm is the ability to treat

programs as pure mathematical functions. This property helps to make aspects of functional

programming languages especially easy to reason about. In particular, such programs can

often be proved correct with respect to a specification, or even derived from a specification,

by exploiting simple algebraic properties akin to secondary-school mathematics.

Functional programs are suited to these activities due to the ease with which their ex-

tensional behaviour can be understood. On the other hand, intensional program behaviour,

that is, properties of how a program computes, not what it computes, is often made more

opaque by the high-level nature of the functional paradigm. More specifically, important

intensional properties such as efficiency are not immediately amenable to the algebraic

methods of reasoning used to readily explore extensional properties such as correctness.

This insight manifests as a reasoning gap (Harper 2014) between program correctness

and efficiency, and is a foundational problem in computer science. Furthermore, it is es-

1

pecially pronounced in lazy functional programming languages such as Haskell, where the

on-demand nature of evaluation makes reasoning about efficiency even more challenging.

To aid Haskell programmers in their reasoning about program efficiency, the work in

this thesis seeks to partially bridge the reasoning gap using three different approaches:

automated testing, semi-formal verification, and formal verification. For each approach, we

are inspired by previous work on reasoning about program correctness and aim to bring

about a comparable method for addressing questions of efficiency. To examine the practical

applicability of our work, we implement each method in a new Haskell system that builds

upon popular tools used for software testing and verification.

1.1 Contributions

This thesis makes the following contributions:

– We present the design and implementation of the AutoBench system (section 3.3),

which combines the Criterion benchmarking library and the QuickCheck testing li-

brary to provide a lightweight means to compare the time performance of Haskell

programs. Our system incorporates a custom method for approximating time com-

plexity (section 3.3.4), based on linear regression analysis.

– We show how the Kansas University Rewrite Engine, which forms the basis of the

semi-formal equational reasoning assistant Hermit, can be adapted to form the basis of

a semi-formal inequational reasoning assistant called Unie (section 4.4). Our system

aids in mechanically constructing improvement proofs by implementing Moran and

Sands’ tick algebra (section 4.3.4), an inequational theory allowing execution costs to

be moved around within programs while maintaining or improving efficiency.

– We present the design and implementation of the RTick library (section 5.3), which

enables Liquid Haskell to be used as a formal means to reason about the abstract re-

source usage of pure Haskell programs. Liquid Haskell can be viewed as an extension to

the type system of Haskell that supports formal reasoning about program correctness

by encoding logical properties as refinement types. Our system supports reasoning

2

about correctness and efficiency in a combined, uniform manner (section 5.3.3). Fi-

nally, we prove that our approach is correct with respect to an underlying model of

execution cost using the metatheory of Liquid Haskell (section 5.5).

– We demonstrate the practical applicability of all of our implementations. Regarding

the AutoBench system, we present a number of case studies taken from the Haskell

programming literature (section 3.4). Regarding the Unie system, we mechanically

verify all the improvement results in (Hackett and Hutton 2014), which is the ar-

ticle that renewed interest in improvement theory, and a number from the original

article (Moran and Sands 1999) (section 4.6). Finally, regarding the RTick library,

we provide a wide range of case studies, ranging from standard sorting algorithms

to sophisticated relational cost properties, including all examples from Aguirre et al.

(2017), Çiçek et al. (2017), and Radiček et al. (2018) (section 5.4).

Some of the work in this thesis has been published previously, in particular:

– The material in chapter 3, which presents the AutoBench system, is based on the

work previously published in (Handley and Hutton 2018a).

– The material in chapter 4, which presents the Unie system, is based on the work

previously published in (Handley and Hutton 2018b).

– The material in chapter 5, which presents the RTick library, is based on the work

previously published in (Handley, Vazou, and Hutton 2020).

The author of this thesis was the lead author of all three papers. Moreover, the author

developed the AutoBench system introduced in chapter 3, the Unie system introduced in

chapter 4, and was the lead developer of the RTick library introduced in chapter 5. Overall,

the work in this thesis resulted in approximately 40,000 lines of new Haskell code.

1.2 Organisation

The remainder of this thesis is organised as follows:

3

– Chapter 2 provides background material necessary for this thesis to be reasonably self-

contained. We introduce property-based testing, microbenchmarking, equational and

inequational reasoning, and the formalisation of such reasoning using refinement types.

A number of these discussions include an introduction to a system that implements

the respective topic in Haskell, for example, QuickCheck. In subsequent chapters, we

then build upon such systems to provide new implementations for efficiency analysis.

For completeness, we overview the topic of program semantics, specifically operational

and denotational semantics, in appendix A.

– Chapter 3 is concerned with testing. We introduce the AutoBench system: a light-

weight, fully automated tool for analysing and comparing the time performance of

pure Haskell programs. Furthermore, we describe AutoBench’s custom method for

approximating time complexity based on linear regression analysis. A number of

case studies are presented to demonstrate the system’s applicability, taken from the

existing Haskell programming literature. Finally, we note that some of the future

work discussed at the end of this chapter is partially complete.

– Chapter 4 is concerned with semi-formal reasoning. We introduce the Unie system: an

inequational reasoning assistant that provides mechanical support for proofs of pro-

gram improvement. We discuss how Unie implements Moran and Sands’ tick algebra

for improvement theory, which allows unit time costs to be moved around soundly

within terms. Furthermore, we explain how program contexts, a central aspect of

improvement theory, are automatically managed by the system, and show how this

simplifies reasoning steps in mechanised proofs. We demonstrate Unie’s practicality

by mechanically verifying a number of key results from the relevant literature.

– Chapter 5 is concerned with formal reasoning. We introduce the RTick library, used

to formally reason about abstract resource usage in Liquid Haskell. We show how

the library builds upon Liquid Haskell’s existing features in a lightweight manner,

and demonstrate how harnessing such features improves the precision of the library’s

cost analysis. In addition, we show how our approach supports reasoning about

correctness and efficiency properties in a combined, uniform manner. A large number

4

of case studies are provided to draw comparisons against related systems.

– Chapter 6 concludes with a summary and discussion on potential future work.

As chapters 3–5 have a specific focus, namely testing, semi-formal reasoning, and formal

reasoning, each ends with a discussion on related and further work, and with a short con-

clusion. The main points from each of these sections are then brought together in chapter 6.

Finally, this thesis is aimed at readers who are familiar with the basics of functional

programming in a language such as Haskell, but we don’t assume any specialised knowledge

on topics such as regression analysis, inequational reasoning, improvement theory, static cost

analysis, refinement types, QuickCheck, Criterion, or Liquid Haskell.

5

Chapter 2

Background

In this chapter, we present background material on a range of different topics that are

central to this thesis. The content is divided into three parts, according to how it relates

to automated testing, semi-formal reasoning, and formal reasoning. We note that standard

background material on program semantics is provided in appendix A.

Automated testing

The first part of this chapter discusses property-based testing (section 2.1) and perfor-

mance testing (section 2.2), specifically microbenchmarking. The former is used to check

correctness properties of programs. The latter is used to examine, among other things,

the resources required to execute programs and their sub-components. We introduce the

primary Haskell implementation for each testing methodology, highlighting intricacies in

their designs that ensure testing is both accurate and reliable.

Subsequently, in chapter 3, we build upon the methodologies of property-based test-

ing and microbenchmarking to provide a fully automated means to analyse and compare

the time performance of Haskell programs. In practice, we concretise our approach by

introducing a tool that combines the Haskell systems discussed in sections 2.1 and 2.2.

Semi-formal reasoning

The second part of this chapter discusses equational and inequational reasoning (sec-

tion 2.3). Equational reasoning (section 2.3.1), widely studied and practiced by the func-

6

tional programming community, is a simple yet powerful method for verifying correctness

properties of programs, and can also be used to derive programs from high-level specifica-

tions. Inequational reasoning (section 2.3.2), lesser-known, somewhat more involved, but

very similar to its equational counterpart in its overall approach, provides a similar proof

technique for verifying efficiency properties of programs.

Subsequently, in chapter 4, we introduce a system for mechanising semi-formal reasoning

about the time efficiency of Haskell programs. The theory underpinning the system is

operational in nature, building on the material presented in section A.1.2. In addition, the

style of reasoning supported by the system—prompted by the desire to improve runtime

performance—is necessarily inequational, just as in section 2.3.2.

Formal reasoning

The final part of this chapter discusses formal reasoning about programs (section 2.4),

specifically by way of refinement types. A popular system called Liquid Haskell, which

enables formal reasoning about Haskell programs, is introduced in section 2.4.1. In short,

Liquid Haskell can be seen as an extension to the type system of Haskell that allows for

expressing logical properties as refinement type specifications.

Subsequently, in chapter 5, we build upon Liquid Haskell’s existing features to develop

a library that can be used to formally reason about the abstract resource usage of pure

Haskell programs. A notable feature of the library is that it can be used to construct

unified proofs of program correctness and efficiency, which echo the style of proof presented

in section 2.3.1, but which are fully formal due to Liquid Haskell’s use of refinement types.

2.1 Property-based testing

Functionality testing (Bertolino 2007), usually referred to as just testing, aims to determine

if the intended and actual behaviours of a program differ, or to provide a high degree of

confidence that they do not. To achieve this, testing seeks to uncover observable differ-

ences between the behaviour of a program’s implementation in practice and the proposed

behaviour of the implementation as expressed by the program’s requirements.

7

Often it is not possible to execute a program on its entire input domain because it has

very large cardinality. Hence, the choice of inputs used to test a program has a notable

effect on the reliability of test results. Furthermore, software bugs may only (and frequently

do) manifest when multiple components of a system interoperate. Testing methodologies

that inspect sub-components of a system in isolation, for example, unit testing (Daka and

Fraser 2014), therefore, cannot rule out the presence of errors existing at a higher level of

granularity than their test coverages admit. Finally, when an error does occur, interpreting

the failure may require significant effort. Doing so frequently involves probing the program’s

execution trace to uncover the root cause of the error, thereby simplifying the failing case.

Overall, these insights can make thoroughly testing a code base an arduous task: test

inputs should be comparable to expected (user) inputs, but also be sufficiently diverse as

to reach the extremities of a program’s input domain; testing procedures must inspect

sub-components of a system working independently, but also cooperatively in a way that

reflects the system’s real-world use; and finally, failing test cases may often be hard to

comprehend and, therefore, require a notable degree of simplification. In 2000, Claessen and

Hughes outlined a testing methodology that addresses these three seemingly fundamental

limitations of software testing. This approach, known as property-based testing, is prompted

by the following tag line from Hughes (2016): don’t write test cases—generate them!

Claessen and Hughes concretised their approach to property-based testing in a system

called QuickCheck, which aids users in formulating and randomly testing correctness prop-

erties of Haskell programs. In the remainder of this section, we introduce the key concepts

of property-based testing by highlighting their applications in the QuickCheck system.

2.1.1 Property-based testing with QuickCheck

Specifying correctness properties

Distinguishing a desired (correct) program behaviour from an undesired (incorrect) be-

haviour is known as the oracle problem (Barr et al. 2014). Tools for automated testing must

provide a test oracle that can decide whether a particular program behaviour is desirable

or undesirable. In other words, they must provide a decision procedure for determining

8

whether a test case has passed or failed. In property-based testing, a formal specification

of program properties functions as such an oracle. In particular, specifications drive the

testing process by checking whether the respective program satisfies each given property.

QuickCheck (Claessen and Hughes 2000a) provides a simple domain-specific language

of testable specifications, which can be used to define correctness properties of programs.

For example, a specification of a naive list-reversing function, slowRev, is as follows

prop_rev_one x = slowRev [x] == [x]

prop_rev_app xs ys = slowRev (xs ++ ys) == slowRev ys ++ slowRev xs

prop_rev_rev xs = slowRev (slowRev xs) == xs

in which all inputs must be finite, that is, total and terminating.

Property-based testing assumes that this specification captures everything compelling

about slowRev because, in practice, testing only validates these properties. Nonetheless,

these properties afford a much more general specification of slowRev than standard auto-

mated test cases typically admit. For example, the first two properties are a characterisation

of slowRev. That is, instead of being properties emergent of a specific implementation of

slowRev, they define the elementary requirements of any finite list-reversing function.

The above properties of slowRev are assumed to hold for its entire input domain, rather

than for one or more specific examples. In particular, the first property, prop_rev_one,

states that for any finite value x, reversing a singleton list containing x is an identity

operation. Similarly, the last property, prop_rev_rev, states that reversing any finite list

twice is also an identity operation. For this reason, there is no need to define more than

one QuickCheck correctness property for each logical property being tested.

Similarly to the above, QuickCheck specifications can formalise medium-level expecta-

tions of interconnected system components and high-level expectations of complete systems.

For examples of medium- and high-level specifications, see (Hughes 2016). Thus, overall,

we see that property-based testing is highly applicable to software verification.

9

Checking correctness properties

In practice, a correctness property can be checked by merely evaluating it on a specific

input. As we have discussed, it is seldom possible to test a program on its entire input

domain: certainly, it is impossible for slowRev. Therefore, property-based testing with

QuickCheck also involves automatically generating suitable test data.

QuickCheck’s approach to data generation is fundamental to its testing methodology:

test inputs are generated randomly and so specifications are tested randomly. We previously

observed that an inability to test a program on all possible inputs emphasises the impor-

tance of suitably chosen test data. This observation resurfaces here, as random testing is

most effective when the distribution of test data reflects that of real-world data (Claessen

and Hughes 2000a). If we assume comparable distributions of test data and actual data,

then we can expect an increasing number of errors to be uncovered when properties are

repeatedly tested, simply because every re-test allows for new test cases to be generated.

This expectation has been demonstrated in practice (Hughes 2016).

QuickCheck cannot select test data distributions on behalf of users. This is because

(good coding practice dictates that) sub-system components are typically reused throughout

a codebase. As such, the distributions of the actual data in all subsequent reuses cannot be

determined a priori. In consequence, QuickCheck requires that users manually specify test

data distributions by way of a data generation domain-specific language. This language

provides generators for all standard Haskell types, together with a rich set of combinators

that can be used to define generators for user-defined datatypes.

For example, a generator for a list of integers can be defined as follows:

generateLists :: Gen [Int]

generateLists = frequency

[(1, pure [])

, (3, (:) <$> elements [1 . . 100] <∗> generateLists)]

In this definition, the frequency and elements combinators choose a random value from a

list. The frequency combinator does so according to the specified weights 1 and 3, and

so this generator produces an empty list 25% of the time, and 75% of the time places a

10

randomly chosen integer between 1 and 100 at the head of a recursively generated list.

Checking the previously defined properties of slowRev thus amounts to evaluating those

properties on random data generated in this manner. For example, we can execute the

following test to check that the slowRev function is an involution:

> quickCheck (forAll generateLists prop_rev_rev)

+++ OK, passed 100 tests.

In this instance, the QuickCheck system generates one hundred random lists of integers and

finds that the property is satisfied in all cases. As slowRev is a polymorphic function, we

might infer that this result is representative of all finite input lists.

QuickCheck provides two top-level functions for checking Testable correctness properties,

which can be intuitively thought of as predicates, as per the example above:

quickCheck :: Testable prop ⇒ prop → IO ()

quickCheckWith :: Testable prop ⇒ Args → prop → IO ()

The first uses a default set of arguments. The second allows users to specify custom ar-

guments, for example, to check more test cases than the default number of one hundred.

Often, these functions are used inside GHCi, which is the Glasgow Haskell Compiler’s in-

terpreter and debugger (GHC Team 2019). Further details regarding QuickCheck’s Args

are given on the system’s webpage (Claessen 2000).

Shrinking failed test cases

When we find a counterexample to a correctness property, the program in question must

be debugged. As previously mentioned, this can be a difficult task, depending on the size

of the counterexample. This is because the complexity of a program’s execution trace is

often proportional to the size of its input. Undoubtedly this affects how easily an error can

be spotted. This insight is particularly relevant to property-based testing, as random data

generation (and thus, random testing) often produces large counterexamples.

To address this, shrinking (Claessen and Hughes 2000a; Claessen 2012) is a useful tech-

nique in the context of property-based testing that frequently results in small counterex-

11

amples that greatly facilitate debugging. The basic idea behind shrinking is to ‘extract

the signal from the noise’ (Hughes 2016). In this manner, inputs to failing test cases are

reduced in size to find smaller instances that also violate the property: the end goal being

a counterexample in which every part is relevant to failure.

A notion of size for an input typically depends on its constituent datatypes. As such,

in QuickCheck, a user-defined shrinking function must be provided for each type. Given

an input, such a function produces a list of similar but smaller inputs. For example, a

shrinking function for a list of integers can be defined as follows:

shrinkList :: [Int] → [[Int]]

shrinkList [] = []

shrinkList (x : xs) = [xs] ++ [x : xs′ | xs′ ← shrinkList xs]

++ [x ′ : xs | x ′ ← shrinkInt x]

shrinkInt :: Int → [Int]

shrinkInt = . . .

Using the above function for shrinking lists of integers, QuickCheck automatically finds an

instance of the smallest possible counterexample to the following incorrect property

prop_rev_bad x = slowRev xs == xs

which is almost always [0, 1] and on occasion [1, 0].

Hughes’ 2016 experience report states that “Debugging a test that is 90% irrelevant is

a nightmare; presenting the developer with a test where every part is known to be relevant

to the failure, simplifies the debugging task enormously.” Our experience echoes this.

2.2 Performance testing

When confronted with the term testing, we should not be surprised to immediately think of

functionality testing. By far, the majority of software testing literature addresses this kind

of testing (Bertolino 2007), as we have just described in the previous section. However,

certifying functionality is rarely sufficient to guarantee total software reliability. In fact,

the major problems usually reported by large-scale projects after release are not incorrect

12

system responses or even system crashes, but rather system performance degradation and

difficulties handling required throughput (Weyuker and Vokolos 2000).

The impact of these ‘extra-functional’ properties, for example, end-to-end response time,

network delay, and the usage of system resources, on the reliability of software is character-

istic of each specific application domain. Hence, these properties are perhaps harder to cap-

ture in comparison to functional requirements, which often transcend such boundaries and

thus can be elicited by more comprehensive methods of requirements engineering (Weyuker

and Vokolos 2000). Nonetheless, performance requirements of this kind are clearly an im-

portant indicator of software reliability and scalability, and consequently they should be

held in similar regard to functional requirements.

To this end, performance testing is an umbrella term used to describe many approaches

for examining the effects of different performance properties on software quality. An im-

portant distinction is between small-scale performance tests at the source code level and

large-scale tests that target entire components or systems. In this thesis, we focus on the

former case, in particular, performance testing via microbenchmarking. Woodside, Franks,

and Petriu (2007) overview prominent approaches in the latter case.

Benchmarking

A traditional way of testing the performance of a system is to develop one or more

benchmarks for it (Dolan and Moré 2002). In short, a benchmark is an abstract workload

representing how a system is used in practice. In this manner, the system’s behaviour when

executed on a benchmark is considered to be indicative of its real-world behaviour.

The notion of a representative workload raises a number of questions that echo those

discussed when introducing property-based testing in section 2.1. Primarily, assuming a

workload involves executing a system on a sample of test data, how can we be sure that

the distribution of the test data reflects that of actual data? In our experience, the situ-

ation is much the same as with property-based testing: the emphasis is on the user of a

benchmarking test harness to ensure that test data is representative of real-world data.

Typical performance measurements used in benchmarking tests include execution time,

13

memory allocation, throughput, lock contention, and input/output operations. The work

in this thesis primarily focuses on execution time but also touches on allocation.

Microbenchmarking

In comparison to benchmarking a full system, microbenchmarking aims to examine the

performance of smaller code units, that is, a system’s sub-components. The primary dis-

tinction between both methods is, therefore, the level of granularity at which performance

testing is conducted. Given that entire systems and sub-system components are imple-

mented alike in the realms of functional programming languages, the line drawn between

benchmarking and microbenchmarking often blurs in practice.

Bershad, Draves, and Forin (1992) point out two implicit assumptions underlying the

use of microbenchmarks. Firstly, it is assumed that the time required for a microbenchmark

to traverse along a particular path of execution is the same as when that execution path

is traversed in real-world use. Secondly, there is an assumption that a microbenchmark is

representative of a system component that is either important in its own right, or which

has a measurable impact on overall system performance.

The details of the first assumption in (Bershad, Draves, and Forin 1992) are centred

around how cache hit ratio can affect performance testing: we do not address this concern.

Nonetheless, a related insight is of concern: whether or not the same execution path even

exists in real-world use. State-of-the-art compilers, such as GHC (GHC Team 2019), subject

source code to a sophisticated optimisation pipeline while translating it into machine code.

The transformations applied during this phase depend on many variables that are not

always self-evident. Thus, it is not necessarily the case that precisely the same machine

code is generated in test conditions as in real-world conditions.

This insight is related to the second assumption, which is also relevant. As microbench-

marks examine the performance of increasingly smaller code units, it is increasingly impor-

tant that those units of code have a measurable effect on the performance of the overall

system. This is perhaps obvious in theory. What is less apparent is when sub-components

of a system have a measurable effect on overall performance in practice. Specifically, op-

14

timising compilers may often be able to improve the performance of smaller code units in

the context of larger system components, but not in isolation; or vice-versa.

Overall, then, modern-day benchmarking libraries must be flexible, allowing for a myriad

of testing environments to determine the effects of compilation and optimisation in practice.

In addition, they must support (uniform) testing of code units at different levels of granu-

larity so as to examine how their performances scale in broader contexts. They must also

be statistically robust, and ideally user-friendly. A popular Haskell benchmarking library

called Criterion has been shown on many occasions to satisfy all of these requirements.

Next, we illustrate the key concepts of microbenchmarking by introducing Criterion.

2.2.1 Benchmarking with Criterion

Criterion (O’Sullivan 2014a) is a microbenchmarking library that is used to measure the

performance of Haskell code. It provides a framework for defining and executing bench-

marks as well as analysing their results. Its high-resolution analysis is able to measure the

performance of runtime events with duration in the order of picoseconds.

Two of Criterion’s key benefits are its use of regression analysis and cross-validation,

which allow it to eliminate measurement overhead and distinguish real data from noise

generated by external processes. In particular, the system is robust enough to filter out

noise coming from, for example, clock resolution, operating system scheduling, and garbage

collection. To achieve this, it measures many ‘runs’ of a benchmark in sequence and then

uses linear regression to estimate the time needed for a single run. In this manner, the

outliers become visible. Overall, measurements made by Criterion are far more accurate

and reliable than those made by operating system timing utilities.

Given that Haskell’s non-strict semantics mandates that an expression is only evaluated

when needed, Criterion provides mechanisms to ’force’ the results of benchmarks to different

normalisation forms, including weak head normal form and normal form. Initial versions

of the library only supported the analysis of pure Haskell code. More recently, however,

Criterion has been extended to analyse the performance of code with IO side effects.

Criterion can measure CPU time, CPU cycles, memory allocation, and garbage collec-

tion. It has also been adapted to measure energy consumption (Lima et al. 2016). The

15

work in this thesis predominantly focuses on benchmarking the time performance of pure

Haskell code. The remainder of this introduction, therefore, focuses on CPU time, but we

note that analysing other performance indicators using Criterion is much the same.

Specifying benchmarks

Recall that functional programming is a style of programming in which the primary

method of computation is the application of functions to arguments. As such, a Haskell

microbenchmarking library can directly support the analysis of differently sized code units

by simply allowing ‘any’ function and its corresponding arguments to be benchmarked.

This is the approach taken by Criterion, whose principal type is Benchmarkable. A value

of this type can be constructed using the following functions

nf :: NFData b ⇒ (a → b) → a → Benchmarkable

whnf :: (a → b) → a → Benchmarkable

each of which takes a function f ::a → b and an argument x ::a, and measures the time taken

to evaluate the computation f x :: b. In the former case, nf measures the time taken to

evaluate f x to normal form. In the latter case, whnf measures the time taken to evaluate

f x to weak head normal form, which is Haskell’s default degree of normalisation.

Unlike with the QuickCheck system, which automatically generates random inputs when

checking correctness properties (see section 2.1.1), arguments to functions must be manually

specified when measuring the runtimes of computations with Criterion. Despite this differ-

ence, it remains the responsibility of the user to ensure that test inputs are representative

of real-world use cases, just as with QuickCheck data generators.

As a concrete example, consider the following definition

nf slowRev [0 . . 200] :: Benchmarkable

which makes the application of Haskell’s naive list-reversing function

slowRev :: [a] → [a]

slowRev [] = []

slowRev (x : xs) = slowRev xs ++ [x]

16

to a list of integers Benchmarkable. In this instance, evaluation to normal form ensures

the runtime measurements reflect the cost of fully applying slowRev. The standard class

NFData comprises types that can be fully evaluated, and hence nf requires the result type

of its argument function—[Int] in this case—to be an instance of this class.

In some situations, using nf may force undesired evaluation, such as when measuring

the runtimes of programs whose outputs are, by design, produced lazily. The following

definition, therefore, measures the time taken to reach weak head normal form:

whnf slowRev [0 . . 200] :: Benchmarkable

According to the definition of slowRev, this is the point at which its result has the form

200 : ([199] ++ ([198] ++ ([197] ++ . . .))), and so we see that the vast majority of the

appends are not evaluated. Consequently, the runtimes measured by this Benchmarkable

are significantly faster than those of the above Benchmarkable constructed using nf .

In general, however, we should not assume that any Benchmarkable constructed using

whnf performs fewer steps of evaluation than its nf counterpart. For example, if measuring

the runtime of Haskell’s standard reverse function, which is implemented using foldl, then

both of the following Benchmarkables are essentially equivalent

nf reverse [0 . . 200] :: Benchmarkable

whnf reverse [0 . . 200] :: Benchmarkable

because foldl does not produce a result until its entire input has been completely traversed.

Remark. It may appear odd that a Benchmarkable cannot be constructed from a single

argument. That is, why not accept f x :: b directly, rather than requiring f :: a → b and

x ::a be separate arguments? This is due to lazy evaluation. As stated previously, Criterion

measures many runs of a benchmark in order to provide statistically robust results. In

turn, this means that each Benchmarkable must be evaluated multiple times. In Haskell, a

reducible expression (redex) is overwritten with its result after it has been evaluated once.

Repeatedly benchmarking with the same expression would thus mean that all subsequent

runs after the first would perform no evaluation. This is clearly problematic for performance

analysis, and so Criterion constructs and evaluates a new redex from f and x for each run.

17

Benchmarkables can also be used to measure the performance of impure code:

nfIO :: NFData a ⇒ IO a → Benchmarkable

whnfIO :: IO a → Benchmarkable

nfAppIO :: NFData b ⇒ (a → IO b) → a → Benchmarkable

whnfAppIO :: (a → IO b) → a → Benchmarkable

Note the first two functions perform their IO actions for each measured run and hence their

pure expressions of type a are not affected by the above issue concerning memoisation.

To uniquely identify measurements for purposes of analysis, Criterion does not execute

Benchmarkables directly. Instead, users must define Benchmarks. A Benchmark is simply a

Benchmarkable computation together with a suitable description, which can be constructed

using the bench function as in the following examples:

bench "slowRev, [0..200], nf" (nf slowRev [0 . . 200]) :: Benchmark

bench "reverse, [0..200], nf" (nf reverse [0 . . 200]) :: Benchmark

Executing benchmarks

Previously, we highlighted the importance of microbenchmarking libraries supporting

a wide range of testing environments. For example, it is often useful to analyse the per-

formance of code when subjected to different degrees of optimisation, as this can have a

notable effect on machine code generation, and, by extension, efficiency.

To support different testing environments, Criterion benchmarks are executed in the

main :: IO () functions of Haskell modules. Haskell modules are typically compiled using

the Glasgow Haskell Compiler, which offers a comprehensive set of compiler options. These

options affect both the compilation process and the runtime system (GHC Team 2019), and

so, in practice, benchmarks can be executed in a multitude of different ways.

Criterion’s top-level functions for executing benchmarks are as follows:

defaultMain :: [Benchmark] → IO ()

defaultMainWith :: Config → [Benchmark] → IO ()

18

Each takes a list of benchmarks and executes them in sequence. The first uses a standard

configuration. The second allows users to specify a custom configuration, for example, to

select which performance indicators to measure. Further details regarding Criterion’s Config

are given on the system’s webpage (O’Sullivan 2014a). Both functions parse command-line

options, which can, for example, be used to execute a subset of the given benchmarks and

produce numerous different reports. We discuss performance reports next.

Analysing performance measurements

The basic form of output from a Criterion benchmark is as follows:

benchmarking: slowRev, [0..200], nf

time 127.9 µs (127.3 µs .. 128.6 µs)

0.999 R2 (0.999 R2 .. 1.000 R2)

mean 128.3 µs (127.8 µs .. 129.3 µs)

std dev 2.247 µs (1.280 µs .. 3.558 µs)

variance introduced by outliers: 11% (moderately inflated)

This information is printed to the console when a Benchmark is executed by defaultMain.

It reveals that the mean time taken to evaluate the result of slowRev [0 . . 200] to normal

form across all measured runs is 128.3 microseconds. The time predicted by Criterion’s

linear regression is more accurate, but should in general be comparable to average time.

The accuracy of the regression model is measured by R2, which is a standard goodness-of-fit

indicator used in statistics whose value ideally lies between 0.99 and 1.00.

Standard deviation, std dev, and variance assess the quality of the measurements taken.

In simple terms, both statistics measure the dispersion of the raw data in relation to the

mean, with the latter value attributing it to the presence of outliers. In the context of

performance testing, high standard deviation and variance indicate a ‘noisy’ testing en-

vironment, which may negatively affect the reliability of the measurements. (From our

experience, if the variance is above 25%, then it is advisable to re-run the benchmark.)

Measurements such as those above can be automatically saved to different file formats,

including JSON and CSV, when benchmarks are executed. These reports are essentially

19

‘data dumps’ whose filepaths are given in Criterion’s Config datatype.

Visual feedback on performance measurements is provided by Criterion in the form of

interactive charts, which are saved as HTML webpages. For example:

The chart at the top is a kernel density estimate (KDE) of runtime measurements. In

general, a KDE graphs the probability of any given measurement occurring. In this instance,

a spike at a given value indicates a runtime measurement of that particular value was

recorded; its height indicates how often the measurement was repeated.

The chart at the bottom displays the raw data from which the kernel density estimate

20

was built. Recall that Criterion measures many runs of a benchmark. As such, the x-axis

of this chart indicates the number of runs, while the y-axis shows the runtime for a given

number of runs. The line of best fit predicts runtime using a basic linear regression model.

Ideally, all measurements should be on or very close to this line.

Both of the charts are interactive in that they detail individual measurements when a

user places their cursor at different points of each line. Finally, note that (as with reports)

charts are produced only when their filepaths are specified in Criterion’s Config datatype.

2.3 Equational and inequational reasoning

2.3.1 Equational reasoning

The equations that are used to define programs in pure functional programming languages

are both computational rules and a basis for simple, secondary-school algebraic reasoning

about the functions and data structures that they define. For example, a function that

doubles a given integer x can be defined by the following equation:

double :: Int → Int

double x = x + x

As well as specifying how to compute two times any integer, namely by substituting all

occurrences of x in x + x for a given argument, double also serves as a logical equation.

That is, for any integer x, the expression double x is equal to the expression x + x. Thus,

in the spirit of algebraic reasoning, either may be replaced by the other.

A key property of pure functional programming languages is referential transparency,

which states that a denotational semantics—mapping expressions to values in a semantic

domain—is concerned exclusively with each expression’s denotation (see section A.1.1 for

additional background material). In practice, given that pure expressions have no side

effects, this means that a subexpression can be freely replaced by any other subexpression

mapped to the same value without affecting the meaning of its surrounding context.

In the case of double, the following denotational equalities hold:

21

Jdouble (double x)K = J double (x + x) K
⇐= Jdouble x K = Jx + x K

Jdouble (double x)K = Jdouble x + double x K

However, reasoning about program definitions in this manner is somewhat indirect. In

particular, equating the values of expressions shifts our domain of discourse from the syn-

tactic level of a programming language to the semantic level of its respective denotations.

Given that the defining equations of programs in pure functional languages can be directly

interpreted as logical equalities, it is more convenient to remain in the former domain.

In fact, referential transparency allows us to do just that: in effect, it ‘lifts’ equality

at the semantic level to the syntactic level. A referentially transparent language in which

programs are defined can thus also be the language in which to express and reason about

properties of those programs. Consequently, we needn’t concern ourselves with a particular

semantic domain. Instead, we can adequately reason about pure functional programs by

directly transforming their defining expressions, for example, by substituting equals for

equals. To this end, we can omit the valuation function J · K and simply state that:

double (double x) = double (x + x)

double (double x) = double x + double x

Equational proofs

Proving correctness properties of programs often requires constructing equational proofs.

Such proofs equate the left-hand side of a given proof statement with the right-hand side

through a sequence, or chain, of proof steps. For example, recall from section 2.1.1 the

property stating that naively reversing a singleton list is an identity operation:

slowRev [x] = [x]

A proof of this property in Haskell notation is as follows:

slowRev [x]

= { syntactic sugar }

22

slowRev (x : [])

= { unfold the definition of slowRev }

slowRev [] ++ [x]

= { unfold the definition of slowRev }

[] ++ [x]

= { unfold the definition of (++) }

[x]

The example above is typical of an equational-style proof. In particular, steps of rea-

soning are aligned vertically and include a hint or justification in braces { · · · }. In this

instance, the first proof step involves desugaring Haskell’s list syntax and the remainder of

the steps involve rewriting subexpressions using the definitions of functions. Functions are

unfolded when their names and arguments are replaced by their definitions; applying the

inverse transformation is called folding. By the transitivity property of equality, we can

thus conclude that slowRev [x] is equal to [x] by definition.

Remark. As per the work of Farmer et al. (2012), we refer to an equational proof

as ‘semi-formal’ if it is constructed using pen-and-paper reasoning, or if it has not been

certified using a proof assistant such as Agda (Norell 2008).

Inductive reasoning

Unfolding and folding the definitions of functions is not sufficient to prove correctness

properties of programs in the general case. For example, two programs cannot be proved

existentially equal without (notionally) demonstrating a correspondence between the results

obtained from applying them to all possible inputs in their domains, which often have

infinite cardinality. We must, therefore, appeal to stronger mathematical proof techniques.

One such technique commonly used alongside equational reasoning is structural in-

duction, which is both useful and arises precisely because most interesting programs and

datatypes are defined recursively. A brief overview of induction is given below, along with

an example inductive proof. For a detailed review, we refer readers to one of the many clas-

23

sic texts (Burstall 1969). Nonetheless, we note that the essential property of pure functional

programs that enables the use of induction is, again, referential transparency.

Every recursively defined datatype gives rise to an induction principle. Informally, in

the case of lists, to prove a property P for all finite (total and terminating) lists xs using

induction, we must: (a) prove that P [] holds; (b) assuming P xs, prove that P (x : xs)

holds. For example, the second property of the slowRev function introduced in section 2.1.1

slowRev (xs ++ ys) = slowRev ys ++ slowRev xs

namely that slowRev contravariantly distributes over (++), is a propositional equality that

can be proved using induction on lists, as follows:

slowRev ([] ++ ys)

= { unfold the definition of (++) }

slowRev ys

= { right identity of (++) }

slowRev ys ++ []

= { fold the definition of slowRev }

slowRev ys ++ slowRev []

slowRev ((x : xs) ++ ys)

= { unfold the definition of (++) }

slowRev (x : (xs ++ ys))

= { unfold the definition of slowRev }

slowRev (xs ++ ys) ++ [x]

= { inductive hypothesis }

(slowRev ys ++ slowRev xs) ++ [x]

= { associativity of (++) }

slowRev ys ++ (slowRev xs ++ [x])

= { fold the definition of slowRev }

slowRev ys ++ slowRev (x : xs)

The proof inducts on the structure of append’s first argument, xs. On the left-hand side

is the base case, where xs is empty. Here the proof proceeds by unfolding and folding

definitions. It also requires the use of a lemma, which states that xs ++ [] = xs. This

property is known as append’s right identity law and is also typically proved using induction.

On the right-hand side is the inductive case, where xs is non-empty. Here the proof

begins by unfolding definitions and then appeals to the inductive hypothesis. Another

lemma is required to reassociate the two appends. It states that (xs ++ ys) ++ zs = xs ++

24

(ys ++ zs), which formalises that append is an associative operator. Again, this property

can be proved using induction. Folding the definition of slowRev completes the proof.

Fast and loose reasoning

We have seen how basic notions of equality between expressions can be used to construct

proofs of program equality, and how proof techniques from mathematics such as induction

can strengthen this approach to reasoning about correctness properties of programs. Indeed,

equational reasoning has formed the basis of a whole line of research in which programs are

transformed in order to improve their performance, proved correct in regard to high-level

specifications, and even derived from such specifications. Nonetheless, there is often an

underlying issue with such reasoning when it is performed in practice: in real-world lazy

programming languages, such as Haskell, these equational properties are seldom totally

correct. This is because they often do not hold in the presence of the undefined value, ⊥,

which represents non-termination and other error conditions.

For example, in order to formally show that slowRev (xs ++ ys) and slowRev ys ++

slowRev xs are existentially equal in Haskell, our inductive proof must include another base

case that, in general, demonstrates P ⊥ holds. However, it is not true that slowRev (⊥ ++

ys) = slowRev ys ++ slowRev ⊥. On the contrary, the latter expression is more defined

than the former, which can be seen by partially computing the results of both definitions:

slowRev (⊥ ++ ys)

= { (++) strict in its first argument }

slowRev ⊥

= { slowRev strict in its argument }

⊥

slowRev ys ++ slowRev ⊥

= { slowRev strict in its argument }

slowRev ys ++ ⊥

On the left-hand side, we see that slowRev (⊥ ++ ys) will never produce a result. In

contrast, on the right-hand side, we see that slowRev ys ++ slowRev ⊥ can produce an

output, which is at most the reversal of ys given that (++) is lazy in its second argument.

The fact that the above proof fails in the presence of⊥means that the property regarding

25

slowRev is not valid for infinite lists. Given that one of the primary advantages of Haskell’s

call-by-need semantics is that it affords being able to program with (potentially) infinite

data structures in a straightforward manner, such a failure appears problematic at face

value. However, despite proof failures in the presence of infinite values and non-termination,

functional programmers happily derive programs from specifications by rewriting according

to partially correct equalities of this kind. That is, they simply overlook ⊥ and are seemingly

confident that, at worst, they are only affecting the definedness of their programs in the

less common and more obscure cases, which often do not arise in practice.

For the most part, sacrificing a degree of mathematical rigour for pragmatism in this

manner is worthwhile. For example, Danielsson et al. (2006) show that if two closed expres-

sions have the same semantics for a total programming language, then they have related

semantics for a non-total (that is, conventional) programming language, and because of this

it is impossible to transform a terminating program into a nonterminating one by rewriting

expressions according to partially correct equational laws.

In summary, such fast and loose equational reasoning (Danielsson et al. 2006) can be

of great benefit to the entire functional programming community, from professional com-

piler writers to amateur theorem provers. Nonetheless, it is important to remember that

overlooking the existence of ⊥ when proving properties about programs written in lazy

functional languages sacrifices a degree of mathematical rigour, and hence, fundamentally

weakens a formal (totally correct) proof to a semi-formal one.

2.3.2 Inequational reasoning

We have seen a number of ways in which two expressions can be equal. For example, they

can be defined to be equal, or they can compute the same results. Both of these notions of

equality capture an extrinsic property of programs, namely what each program computes,

which is referred to as its meaning in the context of denotational semantics.

When reasoning about efficiency, we are not just concerned with the results of a program,

but also how a program computes its results. This can be seen as an intrinsic property,

which may quantify, for example, the number of steps taken during its evaluation. Such

properties are, therefore, typically captured by an operational semantics.

26

From an operational point of view, there are many ways in which (denotationally equal)

programs can be unequal. In the work of this thesis, we are primarily concerned with their

unequal utilisation of system resources. For example, on many occasions, we look to improve

the time performance of expressions by applying meaning-preserving transformations. In

chapter 5, we also touch on improving memory usage.

Notions of operational inequality, though expressed using different relations, are mostly

comparable to standard numerical inequalities, such as less than or equal 6 and greater than

or equal >, both in the properties that they satisfy and how they are used in practice. We

omit the details of any such inequality relation here, as they are commonly tied to a specific

operational semantics and thus require thorough treatment. Instead, we refer readers to

Sands’ (1997) overview of improvement theory, which provides a detailed introduction to

an inequational theory used to reason about efficiency in call-by-need languages such as

Haskell. In fact, our contributions presented in chapter 4 are based on this work.

Inequational proofs

As we have yet to introduce any notions of operational inequality, we highlight the basics

of inequational proofs involving standard numerical inequalities. Given that these inequali-

ties are comparable to many notions of operational inequality, this material is foundational

to understanding all inequational proofs presented in chapter 4 onwards.

In contrast to equational reasoning, which only utilises the equality relation, we must

take care when using different relations to prove inequalities. To provide some intuition,

consider the triangle inequality, which states that for any triangle, the sum of the lengths

of any two sides must be greater than or equal to the length of the remaining side. In

Euclidean geometry, the triangle inequality is usually stated as

‖x + y‖ 6 ‖x‖ + ‖y‖

and proved as follows, assuming that ‖x + y‖ > 0 and ‖x‖+ ‖y‖ > 0:

‖x + y‖2

27

= { ‖x‖ =
√
〈 x, x 〉 }

〈 x + y, x + y 〉

= { expansion, inner product is symmetric }

〈 x, x 〉 + 〈 y, y 〉 + 2〈 x, y 〉

= { ‖x‖ =
√
〈 x, x 〉 }

‖x‖2 + ‖y‖2 + 2〈 x, y 〉

6 { 〈 x, y 〉 6 | 〈 x, y 〉 | }

‖x‖2 + ‖y‖2 + 2 | 〈 x, y 〉 |

6 { Cauchy–Schwarz inequality }

‖x‖2 + ‖y‖2 + 2‖x‖‖y‖

= { factorisation }

(‖x‖ + ‖y‖)2

The details of the above proof are not particularly important here. However, the rela-

tionship between the less than or equal and equality relations is crucial to understanding

how to construct valid inequational proofs. In this case, we see that proving properties in-

volving 6 may include substituting equals for equals using =. This is because the equality

relation is a proper subset of the less than or equal relation: = ⊂ 6. In other words, x = y

implies that x 6 y. Consequently, steps of reasoning in the above proof involving = can be

replaced with the same steps using 6 and the proof still holds.

Similarly to equality, the less than relation < is also a proper subset of the less than

or equal relation: < ⊂ 6. Hence, substitutions can be made using the < operator when

reasoning about properties defined using 6 and such calculations remain valid. On the

other hand, the reverse implication does not hold in both cases. That is, x 6 y 6⇒ x = y

and x 6 y 6⇒ x < y. In other words, 6 is not a proper subset of either = or <. As

a result, it is not possible to make valid substitutions (or rewrites) using the 6 operator

when reasoning about properties defined in terms of = or <.

For familiar order relations, such as < and 6, the main points raised in the above

discussion might appear obvious. However, the order relations used to reason about the

28

efficiency of expressions in practice are usually somewhat more intricate. Typically, they

are defined contextually, according to an extended notion of observational equivalence (see

section A.1.2). As such, it is easy to misinterpret or even overlook the inclusion ordering

on such relations. Nonetheless, doing so can lead to incorrect calculations. This is one of

the key insights that led to the work presented in chapter 4, which, among other things,

aims to safeguard against this kind of operator misuse.

Inductive reasoning

Methods of induction can be used alongside inequational properties to reason about

program efficiency, just as with equational reasoning for program correctness. However, such

methods are typically more intricate than simple structural induction introduced previously

(and also highly specialised). For example, multiple induction premises may be required,

each defined at a contextual level. This reflects the fact that most notions of operational

inequality entail contextual definitions. We omit the details of such induction methods for

brevity but note that one particular method is introduced in chapter 4.

2.4 Formal reasoning

In the previous section, we exemplified fast and loose reasoning by overlooking Haskell’s

undefined value, ⊥, when partially proving that slowRev (xs ++ ys) = slowRev ys ++

slowRev xs. Despite Danielsson et al. (2006) showing that this style of equational reasoning

can be ‘morally correct’, there are many situations where ignoring undefined/infinite values

and other subtle semantic properties (either intentionally or unintentionally) is not accept-

able. Indeed, there is no shortage of publications describing how strictly formal methods

play a crucial role in the design and implementation of safety-critical systems (Bowen and

Stavridou 1993). In this setting, semi-formal proofs are an insufficient means of demon-

strating the accuracy, consistency, and correctness of such systems.

It can be challenging to describe formal reasoning as an activity that is distinct from

other kinds of (semi-formal) reasoning. Even a proof that most would agree is formal

and mathematically rigorous often does not fully detail the underlying knowledge and ex-

29

pertise that gives the argument a precise meaning, let alone allows it to be judged as

‘correct’ (Lapets 2010). Throughout this thesis, we view formal reasoning as any reasoning

activity that involves the manipulation of concepts according to a consistent set of rules. In

particular, these concepts are assumed to be those that are traditionally employed within

the fields of pure/discrete mathematics and theoretical computer science.

While this description of formal reasoning can be interpreted simply as the act of ‘writing

a proof in a formal language’, reformulating semi-formal equational reasoning (such as that

for slowRev) in a formal manner is often far from simple. Typically, there is a notable gap

between the more conventional languages used for everyday programming and those used

for formal proofs. As such, the conventional language must typically be modelled either

partially or wholly in the formal language, and the proof translated. Moreover, if the goal

of the reasoning is to transform a program (rather than just verifying a property), then the

resulting program must be translated back before it can be compiled and executed.

The choice of formal language in which to transliterate a semi-formal proof is key in

determining how its formal counterpart can be expressed, and, moreover, how it can be

proved. A popular choice among the relevant literature is Martin-Lof’s intuitionistic type

theory (1984), or Type Theory for short, which is a formal system that serves not only

as a foundation for constructive mathematics but also as a dependently typed program-

ming language. Type Theory is based on the Curry-Howard isomorphism, which relates

dependently typed programs with mathematical proofs. In particular, the introduction of

dependent types, which are types that depend on the values of other types, allows every

proof in predicate logic to be represented by a term of a suitably typed lambda calculus.

The expressiveness of dependent types not only enables programmers to define prop-

erties that cannot be captured by conventional type systems (such as Haskell’s), but their

connection to predicate logic allows such properties to be formally verified. This connec-

tion, known broadly as Propositions as Types (Curry 1934; Wadler 2015), has inspired the

ever-increasing list of dependently typed programming languages (McBride and McKinna

2004; Norell 2008; Bertot and Castéran 2013; Brady 2013), which support computer-aided

formal reasoning and allow users to write verified functional programs (Stump 2016).

As with most things, the expressiveness of dependent types also comes at a cost: type

30

checking dependent types is intricate, and, in the general case, undecidable. In short,

this is because dependent types remove the isolation between values and types that ex-

ists in simply-typed languages. Consequently, the general halting problem is lifted to the

level of the type checker. In practice, dependently typed programming languages such as

Agda (Norell 2008) provide expressive program annotations that can be used to guide the

type checker manually. For example, Agda is a total language (as all formal languages must

be) and so a user may have to show that their recursive program terminates.

With respect to equational reasoning, having to be explicit about all the details of a

proof formalised in a language like Agda may be seen as advantageous, especially in a

learning environment. However, more generally, having to show that even the simplest of

invariants hold, such as basic arithmetic equalities, can become tedious. This has led to

the development of restricted forms of dependent types that sacrifice some expressiveness

for the sake of decidable and, in some cases, low-complexity type checking. Such systems

are often called lightweight dependent types or refinement types.

Haskell’s type system has recently been extended with refinement types by a popular

framework called Liquid Haskell, which enables formal reasoning about Haskell programs

‘within the language itself’. In the remainder of this section, we introduce the key concepts

of refinement types by highlighting their applications in Liquid Haskell.

2.4.1 Formal reasoning in Liquid Haskell

We note that the first chapter of (Vazou 2016) inspired this background section. Readers

are also referred to this work for a more thorough introduction to Liquid Haskell.

Liquid Haskell can be seen as a formal verification system for (total) Haskell programs.

It takes as input Haskell source code, annotated with correctness specifications in the form of

refinement types, and checks whether the code satisfies the specifications. The annotations

provided are designed to be as expressive as possible while ensuring that type checking

remains decidable. This allows many properties to be proved automatically.

31

Liquid Types

In Liquid Haskell, a Liquid Type (Rondon, Kawaguci, and Jhala 2008) has the form

{ v : a | e } , where a is a standard Haskell type and e is a boolean expression that may

refer to the variable v and any free variables occurring in a program of that type. This

type represents the set of all values u of type a such that the expression e[u/v] evaluates

to true. For example, { v : Int | v > 0 } is the type of all integers greater than zero.

This is called a refinement type of the type Int, where the value variable v is assumed to

range over all possible values of the refinement type.

Liquid Types also support dependent function types, where a function’s result type can

depend on the values of its arguments. Furthermore, the type of an argument can also

depend on the values of any preceding arguments. For example, the following function get

takes as arguments a polymorphic array of type Array a and an index within the expected

range, and gets the array element v : a at that position:

get :: arr : Array a → { i : Int | 0 6 i < length arr } → { v : a | v = arr[i] }

Another example is max, which computes the maximum value of its two arguments:

max :: x : Int → y : Int → { v : Int | v > x ∧ v > y }

Liquid Type theory provides typing rules (Vazou et al. 2014) expressing the relationships

that must hold between the types to ensure that programs are well-typed. The most

important relationship is that of subtyping: intuitively, a Liquid Type a1 is a subtype of

another type a2, expressed as a1 � a2, if the set of values of a1 is a subset of the values

of a2. In logical terms, if a1 = { v : a | e1 } and a2 = { v : a | e2 } , then this is

equivalent to showing that the formula e1 ⇒ e2 is universally valid.

In order to verify a subtyping query of the above form, refinement type systems such

as Liquid Haskell generate verification conditions (VCs), which are logical formulae that

stipulate—under a number of assumptions involving the given typing environment Γ—the

refinement in the subtype implies the refinement in the super-type: JΓK ∧ e1 ⇒ e2.

Generally speaking, refinement type systems are engineered so that, unlike with full

dependent types, refinements only includes formulas from decidable logics. Liquid Haskell

32

uses the quantifier-free logic of linear arithmetic and uninterpreted functions (QF-EUFLIA).

Doing so allows verification conditions (and hence subtyping queries) to be efficiently and

automatically verified by an SMT solver (Moura and Bjørner 2008). In this manner, refine-

ment type systems set themselves apart from dependent type systems.

To generate the subtyping queries necessary to verify program properties, the type

signature of the function being checked is typically the only additional user-input required,

that is, the refinement types of the arguments and that of the result. In this signature, the

user must express any dependence between each argument and also how the result depends

on the arguments. This amounts to giving the function preconditions and postconditions,

which is known as a specification in program verification terminology.

Specifications

In Liquid Haskell, refinement type specifications are provided by users in their input files

(one or more Haskell module) as annotations of the form {−@ · · · @−}. Such annotations

are regarded as comments by GHC and are thus ignored. The output of Liquid Haskell

is simply SAFE in the case where every annotated function in the input file type checks.

Otherwise, type errors are reported at different source locations, indicating any (partially)

inferred types and the subtyping constraints that have been violated.

A range of Liquid Haskell specifications are exemplified below.

Refining values. The following code defines a Haskell integer x that equals one.

{−@ x :: { v : Int | v = 1 } @−}

x :: Int

x = 1

In turn, x’s refinement type specification states that its value is indeed one. Saving this

code to a file in the current directory called Example.hs and passing it to Liquid Haskell

> liquid ./Example.hs

gives the following result: SAFE . On the other hand, if we modify the contents of

Example.hs, setting x = 0, then Liquid Haskell returns the following error

33

3 | x = 0

ˆˆˆˆ

VV : { v : GHC .Types.Int | v = 0 }

not a subtype of Required type

VV : { VV : GHC .Types.Int | VV = 1 }

which essentially says that it cannot prove 0 = 1.

Type aliases. It is often convenient to define abbreviations for particular refinement pred-

icates. For example, we can define an alias for non-zero integers as follows:

{−@ type NonZero = { v : Int | v 6= 0 } @−}

It is then straightforward to use this alias as part of other specifications:

{−@ x, y, z :: NonZero @−}

x = 1 :: Int

y = 2 :: Int

z = 3 :: Int

Preconditions. Preconditions of functions are given by refining the types of their argu-

ments. For example, we can avoid runtime errors when dividing by zero

{−@ safeDiv :: Int → NonZero → Int @−}

x ‘safeDiv‘ y = x ‘div‘ y

or when taking the head of a list with no elements:

{−@ type NonEmpty a = { xs : [a] | length xs > 0 } @−}

{−@ safeHead :: NonEmpty a → a @−}

safeHead xs = head xs

In both cases, callers of safeDiv and safeHead must prove that the arguments they provide

to each function satisfy the corresponding specification.

Postconditions. Postconditions of functions are given by refining the type of their results.

For example, we can ensure that the absolute value of an integer is always positive

{−@ type Nat = { x : Int | x > 0 } @−}

34

{−@ abs :: Int → Nat @−}

that the length of a list is preserved when it is reversed

{−@ reverse :: xs : [a] → { zs : [a] | length zs = length xs } @−}

and that the length of two lists appended together is the sum of their individual lengths:

{−@ (++) :: xs : [a] → ys : [a] →

{ zs : [a] | length zs = length xs + length ys } @−}

Postconditions must be satisfied by the definitions of the corresponding functions. For

example, the following definition of abs returns only positive results:

abs n

| n > 0 = n

| otherwise = 0 − n

Liquid Haskell can analyse both guarded expressions to verify that this is true. Other, more

sophisticated postconditions (and indeed, preconditions) can be expressed using the system.

In chapter 5, we present a number of such examples, including ‘sortedness’ constraints on

lists. Alternatively, readers are referred to (Vazou 2016) for further examples.

Measures. To allow Haskell functions to appear in refinement types, they are reflected into

the system’s underlying logic of QF-EUFLIA. Liquid Haskell provides a simple mechanism

to support this for a particular class of functions called measures.

Measures are unary functions whose parameters must be algebraic datatypes. Their

definitions must contain a single equation for each applicable data constructor; and fur-

thermore, they can only be defined using arithmetic functions and/or other measures. For

this restricted class of functions, refinements can be checked automatically.

Previously, we used the length function to prevent runtime errors when taking the head

of an empty list. The length function is indeed a measure:

{−@ measure length @−}

{−@ length :: [a] → Int @−}

length [] = 0

length (: xs) = 1 + length xs

35

Totality

As we mentioned previously, any language used for formal reasoning must be total.

Without this characteristic, the underlying logic of the language becomes inconsistent,

which allows arbitrary statements (including those that are false) to be proved. To this

end, one of the main differences between conventional Haskell and Liquid Haskell is that

all functions defined in Liquid Haskell must be provably total.

In the relevant literature, total functional programming (Turner 2004) precludes the

use of partial functions, which are only defined on a subset of their domains. Partiality

arises quite naturally in programs that are defined using pattern matching by way of non-

exhaustive patterns. For example, the head function (as defined in the Haskell Prelude)

head :: [a] → a

head (x :) = x

does not provide a case alternative for when its input list is empty.

Any non-terminating Haskell function is by definition also partial, as its result, ⊥a for

any type a, is not a well-defined value of type a in the traditional mathematical sense.

To ensure that all pattern matches are exhaustive, Liquid Haskell extends GHC’s pattern

completion mechanism (Vazou 2016). In particular, pattern cases are checked in conjunction

with preconditions to verify full coverage of input domains. For example, the safeHead

function defined above only requires a case alternative for non-empty input lists due to its

refinement precondition. In turn, to ensure that all functions terminate, Liquid Haskell

uses structural or semantic termination checking.

Structural termination. Structural termination detects common recursion patterns in

which the argument to a recursive call is a direct or indirect subterm of the given function’s

argument. This was exemplified in the definition of the length function above. If a function

has multiple arguments, then at least one argument must get structurally smaller, and the

size of all arguments before it (lexicographically) must remain unchanged.

Semantic termination. When structural termination checking fails, Liquid Haskell at-

tempts to prove termination with a user-defined semantic argument: an expression that

36

calculates a natural number from the given function’s arguments, which must decrease in

each recursive call. For example, the recursive calls to the following merge function do not

satisfy the preconditions for structural termination:

merge :: [a] → [a] → [a]

merge (x : xs) (y : ys)

| x 6 y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys

In particular, the length of each argument list fails to decrease in both recursive calls.

However, the sum of the lengths of both lists always decreases:

{−@ merge :: xs : [a] → ys : [a] → [a] / [length xs + length ys] @−}

Semantic termination has two main benefits over structural termination. Firstly, not

every function is naturally structurally recursive: adding parameters to achieve this can

obscure a function’s definition. Secondly, termination is checked by an SMT solver, and so

semantic termination conditions can utilise refinement properties if necessary. Despite this,

structural termination checking is automated and works for most simple cases.

Equational reasoning

Up until this point, we have seen how Liquid Haskell uses refinement types to auto-

matically prove preconditions and postconditions. These properties can be expressed using

measures such as length and nonEmpty, which are Haskell functions that can be reflected

into the underlying logic of Liquid Haskell while retaining fully automatic reasoning.

Haskell functions that are not measures can also be reflected into the logic. However,

for technical reasons it is not possible to prove properties about arbitrary functions in

a fully automatic way using Liquid Haskell (Vazou et al. 2018). The system still allows

us to reason about such functions, but typically we must supply proofs of any desired

properties ourselves, which Liquid Haskell then verifies. Properties that cannot be proved

automatically by Liquid Haskell are called deep program properties. In turn, manual proofs

of deep properties involve, for example, unfolding and folding function definitions and the

use of mathematical induction. That is, they involve formal equational reasoning.

37

As a concrete example, consider the monoid laws for Haskell’s list-appending operator:

[] ++ ys = ys left identity

xs ++ [] = xs right identity

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) associativity

Append does not satisfy the requirements of a Liquid Haskell measure but can still be

reflected into the system’s underlying logic as an ‘uninterpreted function’:

{−@ reflect (++) @−}

{−@ (++) :: xs : [a] → ys : [a] →

{ zs : [a] | length zs = length xs + length ys } @−}

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

In contrast to a measure, which is fully translated into QF-EUFLIA, only the result of

append is translated when it is applied to given arguments xs and ys of type [a]. Enforcing

this restriction on all non-measures ensures that refinement type checking remains decidable.

To verify append’s monoid laws, we must specify each proof statement in a refinement

type specification and then manually define proof terms that inhabit each type. Such

theorems are expressed as refinements of the unit type. For example, the following type

{−@ appLeftId :: ys : [a] → { p : () | [] ++ ys = ys } @−}

can be seen as a mapping from any list ys to a proof that [] ++ ys = ys. Intuitively, this

corresponds to universally quantifying over ys in predicate logic: ∀ys. In fact, we may omit

the binding p : () to make the correspondence clearer:

{−@ appLeftId :: ys : [a] → { [] ++ ys = ys } @−}

It is easy to see that this property follows immediately from the definition of append:

appLeftId ys

= [] ++ ys

==. ys

∗∗∗ QED

38

Here, the body of the proof term appLeftId is reminiscent of the pen-and-paper proofs

exemplified in section 2.3. In general, equational reasoning formalised in Liquid Haskell is

highly reminiscent of semi-formal reasoning carried out with pen and paper. However, the

advantage of such formalised reasoning is precisely that: it is formally verified.

Append’s right identity law can be expressed similarly:

{−@ appRightId :: xs : [a] → { xs ++ [] = xs } @−}

However, this property does not follow immediately from the definition of append. Instead,

as append is recursively defined on xs, we can use induction to prove it. A simple inductive

proof in Liquid Haskell—requiring no auxiliary lemmas—can be fully automated using the

system’s Proof by Logical Evaluation (PLE) technique (Vazou et al. 2017). In short, PLE

unfolds functions for as many steps as is required to provide to the underlying logic all

equations necessary to prove a property. In this instance, the base case of appRightId is

fully automated by PLE, while in the inductive case we must make a recursive call to appeal

to the inductive hypothesis, but the rest is taken care of by PLE:

{−@ ple appRightId @−}

appRightId [] = ()

appRightId (: xs) = appRightId xs

The final monoid law for append captures the operator’s associativity property:

{−@ appAssoc :: xs : [a] → ys : [a] → zs : [a] →

{ xs ++ (ys ++ zs) = (xs ++ ys) ++ zs } @−}

Reassociating two append’s according to this property is a common trick used to improve

the performance of recursive programs that construct lists in their results. In fact, this

property appears on a number of occasions throughout this thesis. To prove it, we may also

induct over the structures of xs. We omit the details of this proof in favour of a more familiar

example, which we spell out in full: slowRev (xs ++ ys) = slowRev ys ++ slowRev xs.

{−@ reflect slowRev @−}

{−@ slowRev :: xs : [a] → { zs : [a] | length zs = length xs } @−}

slowRev [] = []

slowRev (x : xs) = slowRev xs ++ [x]

39

Recall the naive list-reversing function, which is defined above in Liquid Haskell. Notice

that the system automatically proves that the length of the input list xs is preserved, which

is specified as a refinement of the result zs (a postcondition). Previously, we used pen-

and-paper reasoning to show that slowRev contravariantly distributes over append, that is,

slowRev (xs ++ ys) = slowRev ys ++ slowRev xs. We now wish to formalise this proposition

in Liquid Haskell, by defining a proof term for the following refinement type:

{−@ slowRevDistr :: xs : [a] → ys : [a] →

{ slowRev (xs ++ ys) = slowRev ys ++ slowRev xs } @−}

Just as before, we use induction to prove this property, considering cases where xs is empty

and non-empty. In the base case, the proof term is defined as follows:

slowRevDistr [] ys

= slowRev ([] ++ ys)

==. slowRev ys

? appRightId (slowRev ys)

==. slowRev ys ++ []

==. slowRev ys ++ slowRev []

∗∗∗ QED

When unfolding and folding the definitions of (++) and slowRev above, we needn’t justify

each step of reasoning because Liquid Haskell automatically proves definitional equality. On

the other hand, when reasoning with the aid of an auxiliary theorem (utilising a different

notion of equality) such as append’s right identity law, xs ++ [] = xs, we must justify

such reasoning by appealing to the proof of this theorem using the (?) operator. In doing

so, we must instantiate the theorem’s proof term, appRightId, using arguments that relate

to its context of use: appRightId (slowRev ys) maps to a proof that slowRev ys ++ [] =

slowRev ys. Finally, note that equalities provide two rewrite rules: one in the left-to-right

direction and the other right-to-left. We may freely rewrite in either direction.

In the inductive case, where xs is non-empty, the proof begins by unfolding definitions:

slowRevDistr (x : xs) ys

40

= slowRev ((x : xs) ++ ys)

==. slowRev (x : (xs ++ ys))

==. slowRev (xs ++ ys) ++ [x]

At this point, the argument to slowRev is a subterm of the initial argument, and so the

inductive hypothesis can be used. Due to the intimate correspondence between induction

and recursion, justifying the use of the inductive hypothesis amounts to a recursive call:

? slowRevDistr xs ys

==. (slowRev ys ++ slowRev xs) ++ [x]

We now have two appends associated to the left. These can be reassociated using appAssoc:

? appAssoc (slowRev ys) (slowRev xs) [x]

==. slowRev ys ++ (slowRev xs ++ [x])

Finally, we fold the definition of slowRev

==. slowRev ys ++ slowRev (x : xs)

∗∗∗ QED

and use (∗∗∗ QED) to complete the proof (see figure 2.1).

Summary

In this subsection, we have introduced refinement types in Liquid Haskell as a means

of automatically proving preconditions and postconditions of programs. In addition, we

have demonstrated that properties of arbitrary (reflected) programs can be proved using

formalised equational reasoning. Like with pen-and-paper proofs, this reasoning is carried

out manually. Unlike such semi-formal proofs, however, equational reasoning in Liquid

Haskell is translated into the logic of QF-EUFLIA and formally verified by an SMT solver.

The proofs in this subsection, in particular, the proof of slowRev’s distributivity prop-

erty, aim to demonstrate the strong correspondence between semi-formal proofs carried out

using pen and paper, and the syntax of proof terms defined in Liquid Haskell. The paper

introducing Liquid Haskell as a formal equational reasoning assistant states that:

41

The correspondence is so close that we claim proving a property in Liquid Haskell

can be just as easy as proving it on paper by equational reasoning—but the proof

in Liquid Haskell is machine-checked! (Vazou et al. 2018)

Overall, our experience using Liquid Haskell for both equational and inequational reasoning

(discussed subsequently in chapter 5) echoes this statement.

To finalise this background section, we clarify a number of points regarding the imple-

mentation of Liquid Haskell. Firstly, the (==.) operator used to connect steps of equational

reasoning in proof terms is defined in figure 2.1, along with the (?) and (∗∗∗ QED) functions

and the relevant datatypes. In short, the type of (==.) is refined to ensure that both of

its arguments are equal; it returns its second argument to allow many steps to be chained

together. This corresponds to =’s transitivity property. At first glance, the (?) function

appears to be a constant function for a given argument x. In reality, the refinements of the

auxiliary p : Proof term are combined with those of the term invoking (?), which—as we’ve

seen—enables rewriting according to p’s theorem. The (∗∗∗ QED) function signals the end

of a proof by returning unit to ensure that the proof term is type-correct.

Our second clarification concerns the ‘distance’ between reasoning about conventional

Haskell programs with pen and paper and formalised reasoning about Liquid Haskell pro-

grams. One of the main advantages of Liquid Haskell is that it allows proofs regarding (a

subset of) Haskell code to be developed using (a subset of) the language itself. This effec-

tively takes referential transparency one step further than pen-and-paper proofs, allowing

formal proofs to be constructed using the syntax of Haskell. This is seemingly very useful

because, for the most part, it appears to avoid having to translate semi-formal proofs into

a different language in order to formalise them. However, strictly speaking, this is not true

because conventional Haskell allows for partiality, whereas Liquid Haskell does not.

Recall that any language used to formalise mathematical proofs must be total so that

its underlying logic is consistent. This is true of Liquid Haskell, which precludes non-

terminating functions. As such, the proof of slowRev (xs ++ ys) = slowRev ys ++ slowRev xs

above is indeed formally correct for Liquid Haskell, but, strictly speaking, it is only semi-

formally correct for conventional Haskell because—as we saw previously—it does not hold

42

Equality {−@ (==.) :: x : a → { y : a | y = x }
→ { z : a | z = x ∧ z = y } @−}

==. y = y

Theorem invocation (?) :: a → Proof → a
x ? = x

Proof finalisation (∗∗∗) :: a → QED → Proof
∗∗∗ QED = ()

Proof type type Proof = ()

QED definition data QED = QED

Figure 2.1: Liquid Haskell proof combinators introduced in (Vazou et al. 2018)

when xs = ⊥. Thus, replacing slowRev (xs ++ ys) with slowRev ys ++ slowRev xs, or

vice-versa, in Liquid Haskell does not change any results, but the same replacements in

conventional Haskell can change the results when xs is a non-terminating computation.

It is difficult to determine how big an issue overlooking Haskell’s bottom value is in

practice, and we have not addressed this question in the work of this thesis. Nonetheless, any

system that is used to formalise equational reasoning in a similar manner must also preclude

non-termination. Consequently, it appears that there must always be some distance between

formal proof systems that regard Haskell programs as pure and total mathematical functions

and their actual implementations in the language itself.

Partiality aside, the examples in this subsection aim to demonstrate the many advan-

tages of using Liquid Haskell to formalise equational reasoning, including automatic re-

flecting of programs into a formal logic, automation of proofs regarding preconditions and

postconditions of functions, automation of simple inductive proofs using PLE, machine-

checked steps of reasoning, compositionality of theorems, and strong correspondence with

the style of proofs-on-paper. We refer readers to (Vazou 2016) for further information

regarding the implementation of Liquid Haskell, as well as more example use cases.

43

Chapter 3

AutoBench
Comparing the Time Performance of Haskell Programs

Property-based testing tools such as QuickCheck provide a lightweight means to test the cor-

rectness of Haskell programs, but what about their efficiency? In this chapter, we show how

QuickCheck can be combined with the Criterion benchmarking library to give a lightweight

means to compare the time performance of Haskell programs. We present the design and

implementation of the AutoBench system, demonstrate its utility with a number of case

studies, and find that many correctness properties are also efficiency improvements.

3.1 Introduction

In recent years, property-based testing has become a popular method for checking correct-

ness, whereby conjectures about a program are expressed as executable specifications known

as properties. To give high assurance that properties hold in general, they are tested on a

large number of inputs that are generated automatically.

This approach was popularised by QuickCheck (Claessen and Hughes 2000a), a lightweight

tool that aids Haskell programmers in formulating and testing properties of their programs.

Since its introduction, QuickCheck has been re-implemented for a wide range of program-

ming languages (Hughes 2016), its original implementation has been extended to handle

impure functions (Claessen and Hughes 2002), and it has led to a growing body of re-

search (Runciman, Naylor, and Lindblad 2008; Bernardy, Jansson, and Claessen 2010;

44

Klein et al. 2012) and industrial interest (Arts et al. 2006; Hughes 2007; Hughes 2016).

These successes show that property-based testing is a useful method for checking program

correctness, but what about program efficiency?

The work in this chapter is founded on the simple observation that many of the correct-

ness properties tested using systems such as QuickCheck can also be interpreted as time

efficiency improvements. For example, consider the familiar monoid properties of Haskell’s

list-appending operator, (++), which can all be tested using QuickCheck:

[] ++ ys = ys

xs ++ [] = xs

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Intuitively, each of these correctness properties is also a time efficiency improvement in the

left-to-right direction, which we denote using the �∼ relation:

[] ++ ys �∼ ys

xs ++ [] �∼ xs

(xs ++ ys) ++ zs �∼ xs ++ (ys ++ zs)

For example, the associativity property of append is an efficiency improvement because

the left-hand side, (xs ++ ys) ++ zs, traverses xs twice, whereas the right-hand side, xs ++

(ys ++ zs), only traverses xs once. However, formally verifying such improvement properties

for lazy languages like Haskell is challenging, and usually requires the use of specialised

techniques such as improvement theory (Moran and Sands 1999).

In this chapter, we show how improvement properties can be put into the hands of

ordinary Haskell programmers, by combining the QuickCheck system with the Criterion

benchmarking library, to give a lightweight, fully automated means to compare the time

performance of Haskell programs, which we call AutoBench.

Surprisingly, this appears to be the first time that QuickCheck and Criterion have been

combined, despite this being a natural idea. The AutoBench system comprises approxi-

mately 7,500 lines of new Haskell code and is freely available on GitHub (Handley 2019).

45

3.2 AutoBench in practice

To begin, we illustrate the basic functionality of our system with two simple examples from

Hutton’s (2016) introductory textbook on Haskell.

3.2.1 Quickly reversing a list

Recall Haskell’s naive reverse function for lists of integers:

slowRev :: [Int] → [Int]

slowRev [] = []

slowRev (x : xs) = slowRev xs ++ [x]

Although this definition is straightforward, it suffers from a poor, quadratic runtime per-

formance due to its repeated use of the append operator, (++), which has linear runtime

in the length of its first argument. Nonetheless, it is easy to define a more efficient version

using an accumulating parameter (Burstall and Darlington 1977). Despite being somewhat

less clear, this new definition, which we call fastRev, has linear time performance:

fastRev :: [Int] → [Int]

fastRev xs = revCat xs []

where

revCat [] ys = ys

revCat (x : xs) ys = revCat xs (x : ys)

Before comparing the efficiency of slowRev with that of fastRev, it is good practice

to ensure that both functions give the same results. An easy way to test this is to use

QuickCheck. In particular, given a testable property, the quickCheck function will generate

one hundred random test cases and check that the property is satisfied in all cases. In this

instance, we can use a simple predicate that compares the results of both functions

revsEq :: [Int] → Bool

revsEq xs = slowRev xs == fastRev xs

and, as expected, the property satisfies all the tests:

46

> quickCheck revsEq

+++ OK, passed 100 tests.

From a correctness point of view, QuickCheck gives us confidence that slowRev and

fastRev give the same results, but what about their relative efficiencies?

An easy way to compare the time performance of slowRev with that of fastRev is to

use the AutoBench system. In particular, given two or more programs of the same type,

the quickBench function generates a number of random inputs that are increasing in size

and measures the runtimes of each program when executed on those inputs. The runtime

measurements are then automatically analysed to produce time performance results. In

this instance, quickBench is invoked by supplying it with the two functions to compare as

well as their names for display purposes, as follows:

> quickBench [slowRev, fastRev] ["slowRev", "fastRev"]

Two results are produced. The first is a graph of runtime measurements, which is saved to

the user’s working directory as a portable network graphics (PNG) file:

47

This graph compares the runtime measurements of slowRev and fastRev for each input

size. Both sets of measurements also have a line of best fit, which is calculated using linear

regression analysis and estimates the time complexity of each function. In this case, the

graph’s legend confirms that slowRev’s line of best fit is a quadratic equation and fastRev’s

line of best fit is linear. While in some cases one may be able to estimate such results ‘by

eye’, in general, this is unreliable. In particular, it is difficult to determine the exact degree

of a polynomial equation by merely looking at its graph.

The second result produced by the quickBench function is a table, which is output to

the user’s command line. The table displays the value of each runtime measurement and

the precise equations of the calculated lines of best fit displayed on the graph above:

Input size 0 5 10 15 20 . . .

slowRev (µs) 14.00 16.00 19.00 22.00 23.00 . . .

fastRev (µs) 14.00 16.00 18.00 19.00 21.00 . . .

slowRev y = 5.28e−9x2 + 2.28e−11x + 2.91e−5

fastRev y = 2.53e−7x + 1.65e−5

Optimisation slowRev Q fastRev (0.95)

Moreover, at the bottom of the table is an optimisation, written slowRev Q fastRev, which

is derived from the combination of AutoBench’s performance results, which show that for al-

most all test cases, fastRev is more time-efficient than slowRev, that is, slowRev �∼ fastRev;

and QuickCheck’s correctness results, which show that for all test cases, both functions give

the same results, that is, slowRev = fastRev. The decimal appearing in parentheses after

the optimisation indicates that the result is valid for 95% of test cases.

In conclusion, AutoBench suggests that replacing slowRev with fastRev will not change

any results, but will improve time performance. Furthermore, considering each function’s

derived time complexity, it suggests that the optimisation slowRev Q fastRev indeed gives

a quadratic to linear time speedup, as we expected. Overall, knowing that one program is

more (time) efficient than another, and by how much, is key to making an informed choice

between two denotationally equal implementations.

48

Quick results

The quickBench function is designed to analyse time performance using the Haskell in-

terpreter GHCi, in a similar manner to how QuickCheck is often used. Its primary goal

is to generate useful results quickly. Consequently, by default, its runtime measurements

are based on single executions of test programs on test inputs. For this example, testing

takes just a few seconds, with the primary cost being its benchmarking phase. Although

this approach sacrifices precision for speed—as demonstrated by the notable ‘noise’ in the

graph above—in practice, it is often sufficient for basic exploration and testing purposes.

For more thorough and robust performance analysis, the system provides an executable

called AutoBench. In contrast to quickBench, this tool makes extensive use of the Cri-

terion library (O’Sullivan 2014a) to accurately measure the runtimes of compiled Haskell

programs. Furthermore, its results are based on many, repeated executions of programs on

their inputs. In regard to this example, testing takes a few minutes. However, the results

better demonstrate the difference in time complexity and a reduction in ‘noise’:

49

The architecture of the AutoBench executable fully encapsulates that of quickBench, as

it is essentially a super-system thereof. As such, the remainder of this chapter focuses on

the design, implementation, and application of AutoBench.

3.2.2 Robustly flattening a tree

In the previous example, the key insight used to derive fastRev from slowRev is to ‘make

append vanish’ (Wadler 1987), which is the primary source of slowRev’s inefficiency. Making

append vanish, by replacing it with the (:) operator and an accumulating parameter, is a

common trick used to improve the time efficiency of recursive functions that construct lists

in their results. For example, this same technique can be used to derive an optimised

function for flattening binary trees with integers in their leaves:

data Tree = Leaf Int | Node Tree Tree

Similarly to slowRev, a simple but inefficient function that flattens the Tree datatype

to list form can be defined by repeatedly appending singleton lists:

slowFlatten :: Tree → [Int]

slowFlatten (Leaf n) = [n]

slowFlatten (Node l r) = slowFlatten l ++ slowFlatten r

In turn, just as with fastRev, a less obvious but more performant version of the above

function can be defined using an accumulating parameter:

fastFlatten :: Tree → [Int]

fastFlatten t = flatCat t []

where

flatCat (Leaf n) ns = n : ns

flatCat (Node l r) ns = flatCat l (flatCat r ns)

Specifying test inputs

It is straightforward to compare the time performance of slowFlatten with that of

fastFlatten using the AutoBench executable, which is invoked from the command line.

50

40 3

29

48 8

7

27

6

26 2

64 10

15

Figure 3.1: A randomly generated binary tree

To do so, both functions are placed in the same Haskell module, Flatten.hs, along with the

definition of the Tree datatype and two instance declarations.

The first instance declaration is required for the standard NFData type class, which

allows the Tree datatype to be evaluated to normal form:

instance NFData Tree where

rnf (Leaf n) = rnf n

rnf (Node l r) = rnf l ‘seq‘ rnf r

Random inputs to each function must be fully normalised before benchmarking commences

to ensure that the process of data generation does not distort any subsequent performance

measurements. This is discussed in more detail in section 3.3.3.

The second instance declaration is required for generating random, sized values in the

Tree datatype. We use the SizedArbitrary type class for this purpose, which can be seen as

a ‘sized variant’ of the Arbitrary type class that forms the basis of random data generation

in the QuickCheck system. The SizedArbitrary type class is introduced in section 3.3.1.

Hence, for the purposes of this example, we consider the task of generating random trees

of different sizes from a higher level. Unlike with the list datatype, whose notion of size is

51

> AutoBench ./Flatten.hs

� Processing Flatten.hs X

� Running defaultTestSuite:

• QuickChecking the test programs X

• Generating the benchmarking file X

• Compiling the benchmarking file X

• Executing the benchmarking file . . .

Figure 3.2: AutoBench execution: set-up phase

intuitively given by the total number of elements, a notion of size for a tree datatype is less

obvious. For example, we could define a tree’s size to be its height (or depth), the total

number of leaves, or the total number of nodes. All of these notions of size are reasonable

measures. In this instance, we opt for a tree’s total number of nodes:

instance SizedArbitrary Tree where

sizedArbitrary = . . .

For example, a randomly generated tree of size 25 is shown in figure 3.1. The generation

process for this tree is illustrated in section 3.3.2.

Invoking AutoBench

The AutoBench executable requires one parameter to run, which is the path to the

Haskell module that contains the programs to analyse (as well as any system settings,

datatype definitions, and instance declarations). For this example, the system is invoked

as follows when Flatten.hs is located in the working directory:

> AutoBench ./Flatten.hs

Processing Flatten.hs. When executed, the system first performs a number of safety

checks on the input file. In particular, it ensures the following:

(a) The two functions in the file, namely slowFlatten and fastFlatten, have the same types;

(b) The input and result types of the functions are members of the NFData type class;

(c) The input types of the functions are members of the SizedArbitrary type class.

52

We note that AutoBench provides default NFData instances for all standard Haskell types.

As we did not specify a custom test suite in the input file, the default option is selected

once the file has been processed, as illustrated by the execution trace in figure 3.2. Test

suites configure the functionality of AutoBench, controlling, for example, which programs

in the input file to test and the sizes of the random inputs to generate. In many cases, the

default test suite is an adequate choice, especially for beginner users. Further information

on specifying custom test suites is given in the system’s online user manual (Handley 2019).

QuickChecking the test programs. The first action performed by the default test suite is

to invoke QuickCheck, which tests whether both functions give the same results. QuickCheck

testing confirms that this is true for slowFlatten and fastFlatten, so the step is marked with

a X for success. Note that, unlike with all successive steps, failure at this point does mean

testing is aborted. By default, programs under test are checked to see if they give the same

results but performance analysis does not necessitate this. On the other hand, it is not

obvious as to why a user would wish to compare the performance of programs with (equal

types but) different functionalities, and so a warning is issued if this check fails.

Generating the benchmarking file. A new Haskell module is then generated by the

system, which is known as the benchmarking file. In short, this file contains a number of

Criterion benchmarks to analyse the performance of the two functions executed on random

inputs. In the default case, 20 benchmarks are generated for each function, with input sizes

ranging from 0 to 100 in steps of 5. Both functions are tested on the same inputs.

Compiling the benchmarking file. The benchmarking file is automatically compiled using

GHC. By default, optimisation is turned off via the -O0 compiler flag. This is the only

compilation option used by the default test suite, however, any number of compiler flags

can be specified as part of user-defined test suites.

Executing the benchmarking file. The last action performed during AutoBench’s set-up

phase is invoking the executable compiled from the benchmarking file.

53

benchmarking: input size 1/Flatten.fastFlatten

time 18.60 ns (18.51 ns .. 18.73 ns)

1.000 R2 (0.999 R2 .. 1.000 R2)

mean 18.66 ns (18,58 ns .. 18.84 ns)

std dev 392.1 ps (229.1 ps .. 737.3 ps)

variance introduced by outliers: 18% (moderately inflated)

benchmarking: input size 1/Flatten.slowFlatten

time 20.22 ns (20.11 ns .. 20.41 ns)

1.000 R2 (0.999 R2 .. 1.000 R2)

mean 20.21 ns (20.13 ns .. 20.35 ns)

std dev 358.7 ps (227.2 ps .. 535.5 ps)

variance introduced by outliers: 23% (moderately inflated)

Figure 3.3: AutoBench execution: benchmarking phase

Benchmarking with Criterion

Recall from background section 2.2.1 the default output written to the user’s console

when running Criterion benchmarks. Figure 3.3 shows an extract of such output for our

current example. Just as when using Criterion directly, this information can be suppressed

during AutoBench’s benchmarking phase via a user option.

The name of each benchmark in figure 3.3 includes the function being tested and the

size of the input on which it is being tested. Notice that the size of the first input for both

slowFlatten and fastFlatten is 1 and not 0. This is because the notion of size being used for

the Tree datatype is the total number of nodes: including internal Nodes and Leaf nodes.

Hence, it is not possible to generate a tree of size 0. The system has, therefore, opted for

the closest size to 0 that is valid, which happens to be 1.

Analysing the runtime measurements. AutoBench configures Criterion to write all

the measurements made during its benchmarking phase (those presented in figure 3.3) to

a JSON report file, which the system then parses and interprets. The analysis phase of

AutoBench’s execution, which is shown in figure 3.4, first confirms that benchmarking is

complete, and then notifies the user that these measurements will be analysed.

54

> AutoBench ./Flatten.hs

� Processing Flatten.hs X

� Running defaultTestSuite:

• …

• Executed the benchmarking file X

• Analysing the runtime measurements . . .

Figure 3.4: AutoBench execution: analysis phase

Once the measurements have been analysed, a number of performance statistics are

output to the console. These are illustrated in figure 3.5. Firstly, a number of key test

settings are summarised, including the names of the test programs; the type of the test data;

whether the QuickCheck test, which compared the results of both programs, succeeded;

and any specified compiler flags. Finally, recall from section 2.2.1 Criterion’s normalisation

setting, which dictates whether the results of test programs are evaluated to full normal

form (nf) or to weak head normal form only (whnf).

Underneath the test summary is the analysis section. A results table is displayed for

each program, ordered alphabetically by program name. Results tables (extending those of

the previous example 3.2.1) display each program’s measured runtime for every input size,

the standard deviation of all such measurements, and the average variance introduced by

outliers. These statistics give a basic assessment of the quality of the raw measurements

made by Criterion. This is a useful indicator of the reliability of AutoBench’s performance

results, as they extrapolate the raw data. See section 3.3.4 for more information.

As with the previous example, lines of best fit are calculated for each table of measure-

ments. In the case of slowFlatten, the line of best fit is an n log2 n equation, and in the

case of fastFlatten, a linear equation. Recall that each line of best fit is calculated using

linear regression analysis and approximates time complexity.

At the bottom of the analysis section in figure 3.5 is an optimisation result

slowFlatten Q fastFlatten (0.95)

indicating that fastFlatten performed better than slowFlatten in 95% of test cases.

A corresponding graph of results, which plots each set of raw measurements and their

55

lines of best fit, is presented in figure 3.6. Recall that AutoBench automatically generates

this graph and saves it to the working directory as a PNG file.

Overall, the graph and table of results suggest that fastFlatten is the more time-efficient

of the two programs by a log2 factor. In the average case, this is to be expected as

slowFlatten performs approximately linear operations at each of its recursive calls and the

height of a binary tree with n total nodes is on average log2 n. In comparison, fastFlatten

performs an in-order traversal of its input tree, which is linear in the total number of nodes.

Finally, we note that AutoBench’s analysis phase is also customisable by way of user-

defined test suites. See the system’s user guide for further information (Handley 2019).

3.2.3 Quick versus robust results

The first example, 3.2.1, of this section demonstrates the functionality of the quickBench

function when comparing the time performance of two programs that reverse lists of integers.

In turn, the second example, 3.2.2, showcases the full AutoBench system being used to

compare two programs that flatten trees of integers to list form.

While quickBench focuses on providing quick results that are sufficient for basic ex-

ploration purposes, those produced by the full system are notably more robust, and thus

suitable for thorough performance analysis. An important practical difference between such

quick and robust results is testing time, specifically, benchmarking time. In the former case,

benchmarking usually takes orders of seconds, and in the latter case, orders of minutes.

Even though benchmarking with the Criterion library is time-consuming, the example

presented in section 3.2.2 demonstrates that utilising the full AutoBench system requires

approximately the same user effort as when utilising quickBench. This is primarily because

the testing process is fully automated. Hence, it is simply the case that users must be

prepared to wait longer (and commit additional computing power) to obtain more reliable

performance results. We believe that this is a reasonable tradeoff.

56

Test summary

Programs fastFlatten, slowFlatten
Data random, size range: 1, 5, 9, ..., 99

Normalisation nf
QuickCheck X
GHC flags -O0

Analysis

fastFlatten
Input size 1 5 9 15 19 25 29 35

39 45 49 55 59 65 69 75
79 85 89 95 99

Time (µs) 0.020 0.045 0.069 0.106 0.130 0.167 0.192 0.229
0.263 0.300 0.325 0.354 0.379 0.421 0.453 0.484
0.529 0.548 0.582 0.639 0.658

Std dev (µs) 0.006

Average variance introduced by outliers: 22% (moderately inflated)

Fit y = 6.46e−9x + 7.50e−9

slowFlatten
Input size 1 5 9 15 19 25 29 35

39 45 49 55 59 65 69 75
79 85 89 95 99

Time (µs) 0.019 0.062 0.119 0.194 0.272 0.352 0.406 0.520
0.738 0.771 0.849 0.839 0.999 1.154 1.229 1.246
1.433 1.723 1.498 1.670 1.889

Std dev (µs) 0.011

Average variance introduced by outliers: 19% (moderately inflated)

Fit y = 2.74e−9xlog2x + 4.80e−8

Optimisation: slowFlatten Q fastFlatten (0.95)

Figure 3.5: AutoBench execution: time performance results (a)

57

Figure 3.6: AutoBench execution: time performance results (b)

58

Figure 3.7: AutoBench’s core architecture

3.3 Architecture of AutoBench

In this section, we introduce the core architecture of the AutoBench system. Figure 3.7

illustrates the system’s three major components: data generation, benchmarking, and sta-

tistical analysis, and how they are linked together. We discuss the details of each component

in a separate subsection, along with relevant user options.

3.3.1 Data generation

Given a number of programs to compare, the system must generate a suitable range of

inputs with which to test their time performance. To produce such inputs, AutoBench

exploits the random data generation facilities of QuickCheck. Recall from section 2.1.1

that QuickCheck provides default generators for all standard Haskell types, together with

a rich set of combinators that aid users in defining generators for custom datatypes.

First, we briefly review how random values can be generated using QuickCheck, and then

explain how our system builds on this approach to generate random values of a particular

size. Subsequently, in the next section—which is directly related to this one—we overview

AutoBench’s support for generic, random, sized data generation.

59

QuickCheck generators

QuickCheck’s notion of a random data generator is based on the following simple type class

class Arbitrary a where

arbitrary :: Gen a

which intuitively captures datatypes that support the generation of arbitrary values within

them. Gen a can thus be seen as a pseudo-random generator for values of type a.

For example, the following instance declaration (Claessen and Hughes 2000a), allows us

to generate an arbitrary integer using a primitive combinator choose :: (Int, Int)→ Gen Int

that randomly chooses an integer in a given interval:

instance Arbitrary Int where

arbitrary = choose (−100, 100)

Sampling this generator thus yields a number of random integers:

> sample′ (arbitrary :: Gen Int)

[0, 2,−4, 3,−3,−7, 10,−1, 2,−1, 15]

QuickCheck’s support for data generation goes far beyond integers. Random lists, n-

tuples, sets, maps, monoids, and even functions can be generated using default Arbitrary

instances defined in QuickCheck’s standard library (Claessen and Hughes 2000a). Moreover,

a rich set of combinators are provided that are useful for defining Arbitrary instances for

custom datatypes. Some example combinators are as follows:

oneof :: [Gen a] → Gen a one of the given generators

vectorOf :: Int → Gen a → Gen [a] a list of the given length

suchThat :: Gen a → (a → Bool) → Gen a a value that satisfies a predicate

resize :: Int → Gen a → Gen a a different sized value

AutoBench sized generators

Analysing the time performance of a program requires measuring its running time on differ-

ent sized inputs. In this context, the term efficiency is commonly understood as the increase

60

in the runtime of a program in relation to the sizes of its inputs. Any program being tested

by AutoBench thus requires not only a method for generating random inputs in its domain

(as provided by the Arbitrary type class) but a method for generating random inputs with

different sizes. AutoBench provides the SizedArbitrary type class for this purpose.

Arbitrary versus SizedArbitrary

Data generators provided by QuickCheck do in fact have access to an implicit size

parameter, which can be accessed using sized :: (Int → Gen a) → Gen a. This is because,

when checking correctness properties, QuickCheck begins by generating small test cases

and gradually increases the size as testing progresses. The original QuickCheck manual,

available online at (Claessen and Hughes 2000b), states the following about the size of test

data:

Different test data generators interpret the size parameter in different ways:

some ignore it, while the list generator, for example, interprets it as an upper

bound on the length of generated lists. You are free to use it as you wish to

control your own test data generators.

This extract is somewhat problematic for performance testing with AutoBench because

although it is quite reasonable for a datatype to fail to support a well-defined notion of size

(Bool for example), it is not appropriate for users to ‘freely’ control the size of test data

‘however they wish’. In particular, it is paramount that any notion of size realised by a

datatype’s definition is strictly monotonic. In other words, a value v :: D of size 100 must

be ‘bigger’ in some meaningful way than a value v′ :: D of size 20. If this monotonicity

property is not satisfied, then AutoBench’s interpretation of efficiency is invalidated, and,

in consequence, the system’s performance results become meaningless.

To emphasise the importance of size when generating random values of a particular

type, the SizedArbitrary class makes the size parameter explicit:

class SizedArbitrary a where

sizedArbitrary :: Int → Gen a

61

In other words, an AutoBench data generator for a given type is a function from a positive

integer to a QuickCheck generator of the same type. Thus, we see how SizedArbitrary natu-

rally builds upon Arbitrary. The correspondence between both type classes is strengthened

by sizedArbitrary’s default signature (GHC 7.2.1 onwards), which uses AutoBench’s explicit

size parameter to resize QuickCheck’s implicit one:

default sizedArbitrary :: Arbitrary a ⇒ Int → Gen a

sizedArbitrary n = resize n arbitrary

This default implementation is particularly useful when defining SizedArbitrary instances

for enumerations, whose sizes are mostly irrelevant. For example, if we wish to generate

random lists of booleans, how do we define the size of True and False? It is likely that this

detail is unimportant. In such cases, we can provide an empty instance declaration, which

utilises QuickCheck’s Arbitrary instance, as follows:

instance SizedArbitrary Bool

We could have opted to define a generator for lists of booleans directly in a similar manner,

by utilising flexible instances (GHC 6.8.1 onwards):

instance SizedArbitrary [Bool]

However, this particular instance declaration is invalid because it does not satisfy the

monotonicity property discussed above. The source of the problem is QuickCheck’s default

Arbitrary instance for lists, which is defined as follows:

instance Arbitrary a ⇒ Arbitrary [a] where

arbitrary = listOf arbitrary

listOf :: Gen a → Gen [a]

listOf gen = sized (λn → do

k ← choose (0, n)

vectorOf k gen)

According to this definition, a list of integers is generated by first generating a random

number k between 0 and the given size parameter n, and then generating a vector of

62

arbitrary values of size k. Hence, using this generator permits a random list of size n = 100

to be empty, while a list of size n = 50 can contain 20 elements. In light of this, we must

define a new generator for random, sized lists that is compatible with AutoBench. To do

so, we can use the vectorOf combinator to generate lists with precisely n elements:

instance SizedArbitrary a ⇒ SizedArbitrary [a] where

sizedArbitrary n = vectorOf n (sizedArbitrary n)

Notice that the size parameter n is forwarded to the Arbitrary instance for booleans. This

is not a problem, however, as the size parameter is simply ignored by this instance:

> generate (sizedArbitrary 5 :: Gen [Bool])

[False, False, False, True, False]

> generate (sizedArbitrary 10 :: Gen [Bool])

[True, True, True, True, False, False, True, False, True, True]

Overall, it should be clear that SizedArbitrary type class can be seen as a sized variant

of Arbitrary (without the shrinkage functionality). As such, careful use of the default

implementation for sizedArbitrary is convenient on many occasions.

User options

AutoBench generates random inputs in accordance with a given size range, which is specified

by a lower bound, step size, and upper bound. To ensure there are sufficient test results

to allow for meaningful statistical analysis, the given size range must contain at least 20

values with distinct sizes. As illustrated in both examples of section 3.2, the default size

range is 0 to 200 in steps of 5, but this can easily be modified by the user.

3.3.2 Generic data generation

In this subsection, we explain how datatype-generic programming can be applied when

defining data generators for use with the SizedArbitrary type class. Such generators can

be used on many occasions, rather than having to define separate ones for each specific

occasion: they are generic in precisely this sense.

63

A thorough introduction to generic programming in Haskell requires an equally thorough

introduction to type-level programming in Haskell. This subsection is not the place for either

introduction. Instead, we focus primarily on high-level intuition and thus simplify relevant

explanations where possible. To this end, we provide precise implementation details only

when attesting to the concrete contributions of this thesis.

Readers who are keen to delve deeper into applying type-level programming and generic

programming in Haskell are referred to relevant course notes by Andres Löh (Löh 2015).

The author of this thesis found them to be particularly useful.

Datatype-generic programming

To develop some intuition for datatype-generic programming (Gibbons 2006), we begin by

recalling the second example from section 3.2.

data Tree = Leaf Int | Node Tree Tree

The purpose of this example was to compare the time performance of two functions that

flatten the above Tree datatype to list form. Doing so required us to generate a number of

different sized trees, where the size of a tree was defined to be its total number of nodes.

In section 3.2.2, we overlooked the details of how such binary trees can be randomly

generated using the SizedArbitrary type class. We return to these details now as they serve

as fitting motivation for the use of datatype-generic programming. Throughout, we do not

consider the values in the leaves of generated trees to be important because the flattening

process is polymorphic in the type of this data.

First, we consider a naive generator for random, sized Trees:

instance SizedArbitrary Tree where

sizedArbitrary 1 = Leaf <$> choose (0, 100)

sizedArbitrary n

| n ‘mod‘ 2 == 0 = error "invalid size"

| otherwise = Node <$> sizedArbitrary ((n − 1) ‘div‘ 2)

<∗> sizedArbitrary ((n − 1) ‘div‘ 2)

In the base case of this generator, a Leaf node of size 1 is produced containing a random

64

integer between 0 and 100. In the recursive case, the size parameter n is first scrutinised. If

n is even, then it is not possible to produce a tree of this size, and so an error is thrown. If

n is odd, then an internal Node is produced using two recursively generated subtrees. Each

subtree is approximately half the size of its parent.

If we recall that the size parameter n is always positive, then, when it succeeds, this

generator produces a random tree of the correct size. Nonetheless, there is a problem with

the definition, which is that it can only produce binary trees that are perfect. For example,

both of the following Trees are valid but are not perfect:

91 4

60

5

2

69 42

A more satisfactory method for generating random binary Trees thus requires us to

account for nonperfection. As such, how can the above definition be modified to cater for

this? A solution by Jansson et al. (2006) is to randomly distribute remaining size n > 1

between the sizes of both subtrees, n0 and n1, respectively. To ensure that the size of each

subtree is valid, we simply pick values for n0 and n1 that are odd:

instance SizedArbitrary Tree where

sizedArbitrary 1 = Leaf <$> choose (0, 100)

sizedArbitrary n = do

n0 ← odd (1, n − 1)

Node <$> sizedArbitrary n0 <∗> sizedArbitrary (n − 1 − n0)

For any strictly positive, odd integer n this generator will thus produce a (perfect or non-

perfect) binary tree with n nodes that are randomly configured.

The definition of our generator for the Tree datatype is now adequate. However, it lacks

generality. For example, if we sought to amend the branching factor of the Tree datatype,

making it a full ternary tree instead of a full binary tree, then this data generator would

be incompatible with the new datatype. This is for two reasons: (a) it is not possible to

65

Figure 3.8: Full ternary trees of size 7, 10, and 13

construct a full ternary tree with, for example, 3, 5, 9, or 11 nodes in total, as can be

deduced from figure 3.8; (b) ternary trees require an inherently different definition than the

one used for binary trees to account for the additional branch.

To devise a generic approach for randomly generating tree-like data structures of a

particular size, we seek to overcome both of these issues. Overcoming (a) primarily requires

a method for randomly distributing remaining size among arbitrarily many subtrees. In

due course, we will see that this can be achieved by solving linear Diophantine equations.

However, a solution to (a) is not useful unless we can also overcome the differences in

implementation details highlighted by (b). Doing so requires adopting a more uniform view

on data, which is the essence of datatype-generic programming (Hinze and Jeuring 2003).

A uniform view on data

First, we seek to overcome the issue raised in point (b) of our previous discussion. Consider

the following tree-like data structures containing integers:

data List = Empty | Cons Int List

data Tree2 = Leaf2 Int | Node2 Tree2 Tree2

data Tree3 = Leaf3 Int | Node3 Tree3 Tree3 Tree3

data Tree* = Node* Int [Tree*]

The first datatype is that of singly-linked lists, which is the standard implementation of lists

in Haskell. The last datatype defines multiway branching trees, or rose trees, which are often

used to represent game trees, for example, in noughts and crosses and connect four, and

when applying basic AI algorithms such as minimax. Our generic approach to random data

66

generation will ideally account for all of these datatypes (and those of a similar structure)

as they frequently arise in practice. However, how can one method be used to generate

values for all of these types, given that their implementation-specific details are so distinct?

In particular, each type has a different name: List, Tree2, Tree*; and different names for its

data constructors: Empty, Leaf2, Node3. Moreover, the constructors have different arities:

Empty is nullary, Leaf2 is unary, Node* is binary; and different types: Leaf2 :: Int → Tree2,

Node3 :: Tree3 → Tree3 → Tree3 → Tree3, Node* :: Int → [Tree*]→ Tree*.

On the one hand, the differences between these datatype definitions are somewhat im-

material: names of constructors do not dictate how values are generated per se. On the

other hand, the names of data constructors identify distinct functions. Therefore, it is

not possible for a generation method that must be ‘universally polymorphic’ (Cardelli and

Wegner 1985) to apply such functions in an ad-hoc fashion. Hence, it should be clear that

random values for different datatypes cannot be uniformly generated directly.

To see how random values can be generated indirectly, we must adopt a more uniform

view on data. In particular, each datatype above offers a choice between different data

constructors, and the sequence of zero or more arguments used to produce the datatype

depends on the chosen constructor. In this manner, we can see that every Haskell datatype

has a similar structure, which can be expressed as a sum of products:

data Unit = Unit

data a :+: b = Inl a | Inr b

data a :∗: b = a :∗: b

For example, a more generic representation of the List datatype

type ListRep = Unit :+: Int :∗: List

is given by the binary sum (:+:) of the nullary product, Unit, and the binary product (:∗:)

of an integer and another list. Note that (:∗:) has higher precedence than (:+:). The other

tree-like datatypes can also be represented similarly:

type TreeRep2 = Int :+: Tree2 :∗: Tree2

type TreeRep3 = Int :+: Tree3 :∗: Tree3 :∗: Tree3

type TreeRep* = Int :∗: [Tree*]

67

Notice that these representation types are not recursive. In other words, the representation

of a type a only represents the top-level structure of a.

Viewing data this way allows the task of generating random values of different datatypes

to be recast as the task of constructing different configurations of sums of products. A

‘universal’ function of this kind is straightforward to define under the assumption that each

argument to (:+:) and (:∗:) can also be randomly generated. Such a function is said to be

structurally polymorphic (Ruehr 1992) or shape polymorphic (Jay and Cockett 1994).

Assuming the existence of such a generator, then all that is needed is a method to

convert back and forth between each representation type ListRep, TreeRep2 , TreeRep3 , TreeRep*

and each corresponding type List, Tree2, Tree3, Tree*, respectively. This is a task fit for

ad-hoc polymorphism, in other words, a Haskell type class: Generic.

A generic type class

The basic idea of a generic type class is to provide an interface between an original type a

and an isomorphic representation type Rep a:

class Generic a where

type Rep a

from :: a → Rep a

to :: Rep a → a

The above class is a type family, whereby Rep a is a class-associated type synonym. The

specific details of Haskell type families are not crucial for our discussion. Nonetheless, a

basic understanding is required: Rep a is a user-specified type that may be distinct in each

instance of Generic. However, Rep a may also be similar among multiple instances. The

latter case is of interest to us; we return to it below. The Generic type class also provides

two functions, from and to, that witness the isomorphism between a and Rep a.

Given a particular representation type, then, by defining a function that operates on

the type constructors of this type, we gain not only a function that operates on the original

type, but one that operates on any type representable in a similar manner. This insight is

a generalisation of our goal, which is to define a function on the datatypes Unit, (:+:), and

(:∗:) to randomly generate values of data structures with tree-like representations.

68

Hence, to achieve this goal using datatype-generic programming, the datatypes List,

Tree2, Tree3, and Tree* must be made members of the Generic type class, and moreover,

all of their instance declarations for Generic require associated Rep types.

A uniform representation of data

Implementation details of generic type classes in Haskell—of which there are many,

including a default provided by GHC—are somewhat involved. Introducing specifics is thus

not helpful to our high-level discussion and hence the following explanations are simplified.

We refer readers to (Löh 2015) for further information on the following concepts.

The generic data generators provided by AutoBench are defined using the Generics-Sop

library (Vries and Löh 2014) as we find it particularly easy to use. Generics-Sop represents

Generic types as n-ary sums of n-ary products, which can be seen as generalisations of

binary sums and products, (:+:) and (:∗:), respectively. In particular, an n-ary product can

be viewed as a sequence of zero or more arguments; and an n-ary sum indexes into a non-

empty sequence of arguments, selecting a single option from the one or more possibilities.

Using Generics-Sop, the representation types above can thus be defined more generally

using the n-ary sums of n-ary products view on data, as follows:

type ListRep = (NP ′[′[], ′[Int , List]])
I

type TreeRep2 = (NP ′[′[Int], ′[Tree2 , Tree2]])
I

type TreeRep3 = (NP ′[′[Int], ′[Tree3 , Tree3 , Tree3]])
I

type TreeRep* = (NP ′[′[Int, [Tree*]]])
I

In each of the definitions above, I indexes into the outer non-empty type-level list, which is

written ′[a0, a1, a2, . . .] for each ai a type. This represents a choice between the outer

list’s elements, each of which is also a (possibly empty) type-level list specifying a sequence

of zero or more argument types. Hence, it should be clear that the outer list forms an n-ary

product type, NP, while the index I applied to NP forms an n-ary sum type, NS . The

examples below should hopefully clarify these points.

The first choice, index 0, of the ListRep datatype corresponds to an empty list, which

can be defined using an empty n-ary product of arguments. In turn, the second choice,

69

index 1, of the ListRep datatype corresponds to a non-empty list. A singleton list can thus

be defined by an n-ary product of two arguments, where the second is the empty product:

empty :: ListRep

empty = Nil
0

singleton :: ListRep

singleton = (5 :∗ Empty :∗ Nil)
1

Note that (:∗) is ‘cons’ for n-ary products and Nil is the empty n-ary product.

Similar definitions can be given for the representation type of binary trees:

leaf :: TreeRep2

leaf = (5 :∗ Nil)
0

binary :: TreeRep2

binary = (Leaf2 5 :∗ Leaf2 10 :∗ Nil)
1

Given these definitions, it is easy to see that each type and its corresponding repre-

sentation type are isomorphic. For example, the isomorphism between List and ListRep is

witnessed by the following two conversion functions:

fromList :: List → ListRep

fromList Empty = Nil
0

fromList (Cons h t) = (h :∗ t :∗ Nil)
1

toList :: ListRep → List

toList Nil
0

= Empty

toList (h :∗ t :∗ Nil)
1

= Cons h t

In turn, the isomorphism between Tree2 and TreeRep2 is witnessed as follows:

fromTree2 :: Tree2 → TreeRep2

fromTree2 (Leaf2 n) = (n :∗ Nil)
0

fromTree2 (Node2 l r) = (l :∗ r :∗ Nil)
1

toTree2 :: TreeRep2 → Tree2

toTree2 (n :∗ Nil)
0

= Leaf2 n

toTree2 (l :∗ r :∗ Nil)
1

= Node2 l r

These functions can thus be used to make List and Tree2 instances of Generic:

instance Generic List where

type Rep List = ListRep

from = fromList

to = toList

instance Generic Tree2 where

type Rep Tree2 = TreeRep2

from = fromTree2

to = toTree2

The remaining tree data structures can be made members of the Generic type class in a

similar manner. In fact, the two examples above demonstrate that the conversion functions

70

from and to typically have simple definitions, which are determined by the shapes of each

datatype’s constructors. In consequence, this allows Generic instances for regular datatypes

to be automatically derived by GHC, as follows:

data Tree3

= Leaf3 Int

| Node3 Tree3 Tree3 Tree3

deriving Generic

data Tree*

= Node* Int [Tree*]

deriving Generic

This feature is available in GHC version 7.10.1 onwards.

Overall, then, the Generic instances for all our tree-like data structures have similar

representations. In particular, each type is built using precisely the same set of datatype

constructors, namely n-ary sums and n-ary products, as defined by the Generics-Sop library.

Furthermore, each instance declaration provides a method for converting back and forth

between each original type and its representation type.

Randomly generating different configurations of n-ary sums of n-ary now becomes our

goal. Doing so sidesteps the implementation-specific details that prevent us from generating

random values for each tree-like data structure in a direct manner. Nonetheless, as our aim

is to randomly generate values of particular sizes, we must first determine how size can

affect the generation process. We discuss this next.

Randomly generating sized trees

Point (a) raised at the end of subsection 3.3.2 highlighted that our generic approach to

randomly generating values of particular sizes requires a method for randomly distributing

remaining size among arbitrarily many subtrees. In this subsection, we outline an algorithm

to achieve this. At the heart of this algorithm are solutions to linear Diophantine equations.

Hence, we subsequently describe an efficient method for solving such equations.

Recall the notion of size we have decided upon for a tree is its total number of nodes.

The total number of nodes for a given tree, and hence its size, is dictated by its one or

more branching factors, which, for each non-leaf node, determines its number of children.

For example, our previous binary tree datatype

71

data Tree = Leaf Int | Node Tree Tree

has a branching factor of 2, given by its Node data constructor. Trees may have non-uniform

branching factors, for example, the following datatype

data Tree63 = Leaf63 Int | Node2 Tree63 Tree63 | Node3 Tree63 Tree63 Tree63

represents possibly non-full ternary trees with branching factors of 2 and 3, given by the

data constructors Node2 and Node3, respectively.

A generic method for generating a random tree-like data structure of a particular size

n can utilise the datatype’s branching factors to determine: (a) whether a tree of size n is

valid, that is, whether a tree containing n total nodes can be constructed; and (b) assuming

a tree of size n is valid, how to recursively generate a tree of that size in a random fashion.

In the remainder of this subsection, we informally develop such an approach.

To exemplify our generation algorithm, we describe how a tree of type Tree63 with 11

total nodes can be randomly generated. Figure 3.9 illustrates five stages of generation,

where the latter four stages correspond to recursive calls. For simplicity, at most one

recursive data constructor is selected at each step, with the remainder being leaves, but

this need not be the case (and typically isn’t). In the first stage of generation, the binary

constructor, Node2, is selected; in the second and third stages, the ternary constructor,

Node3, is selected; and in the fourth stage, the binary constructor is selected. In the final

stage of generation, the base case is reached and leaf nodes terminate the recursive process.

Each stage, with the last being an exception, constructs a partial tree definition containing

holes, marked �, to be filled recursively by the next stage.

When a hole is filled with a recursive data constructor (Node2 or Node3), the potential

size of the subtree filling that hole increases. In other words, each subtree has size > 1 as

the smallest possible tree is a Leaf63. However, any subtree constructed with Node2 has

size > 3: an increase of 2; and any with Node3, size > 4: an increase of 3. This holds

recursively, and thus the size n of any Tree63 is given by

n = 1 + 2b + 3t (3.1)

72

(1) (2) (3) (4) (5)

Figure 3.9: Stages of generation: non-full ternary tree of size 11

for b binary nodes of type Node2 and t ternary nodes of type Node3.

Solving equation (3.1) for a given size n not only determines whether a Tree63 of that size

can be constructed, but the solutions (should they exist) can be used to generate random

subtrees of appropriate sizes, such that the overall tree has size n. To see how this works,

consider two subtrees s0 and s1 of the following sizes:

|s0| = 1 + 2b0 + 3t0

|s1| = 1 + 2b1 + 3t1

Now suppose that we wish to combine these subtrees to form a larger tree. To do so, we

must use the binary data constructor, Node2. If we recall that the size of the new tree must

include the root node, then its overall size is calculated as follows:

|Node2 s0 s1| = 1 + 1 + 2b0 + 3t0

+ 1 + 2b1 + 3t1

= 1 + 2 + 2(b0 + b1) + 3(t0 + t1)

= 1 + 2(1 + b0 + b1) + 3(t0 + t1)

= 1 + 2b + 3t

Similarly, given three subtrees s0, s1, and s2 with sizes

|s0| = 1 + 2b0 + 3t0

|s1| = 1 + 2b1 + 3t1

|s2| = 1 + 2b2 + 3t2

73

then these must be combined using the ternary data constructor, Node3, and the size of the

new tree (including the root) is calculated as follows:

|Node3 s0 s1 s2| = 1 + 1 + 2b0 + 3t0

+ 1 + 2b1 + 3t1

+ 1 + 2b2 + 3t2

= 1 + 3 + 2(b0 + b1 + b2) + 3(t0 + t1 + t2)

= 1 + 2(b0 + b1 + b2) + 3(1 + t0 + t1 + t2)

= 1 + 2b + 3t

Calculating backwards, we see that solutions to (3.1) give sufficient information to gen-

erate subtrees of the required sizes. This is perhaps obvious, however, it is worth not-

ing as it has practical significance: random trees generated according to the solutions of

equation (3.1) are guaranteed to have size n by construction. Hence, there is no need to

implement safety checks in the corresponding generation function. As generators are often

implemented recursively, this improves efficiency, especially when producing large trees.

Continuing on with our example, we consider solutions to the following equation, which

corresponds to the first stage of generation in figure 3.9:

1 + 2b + 3t = 11
⇔

2b + 3t = 10

A polynomial equation of this form, whereby integer solutions are sought, is called Diophan-

tine. Shortly, we will introduce an efficient method for solving linear Diophantine equations,

which can be applied in this instance. For now, we just review the results of this method.

There are two solutions to the above equation whereby b and t are positive integers:

{ b = 2, t = 2 }

{ b = 5, t = 0 }

The first solution above states that a tree of size 11 can be generated using two binary

nodes and two ternary nodes, while the second solution states that using just five binary

74

nodes is also a possibility. Either solution is adequate: the first corresponds to our running

example and so we continue on with that. The solution { b = 2, t = 2 } tells us which

recursive nodes must be used, on the other hand, it does not dictate how such nodes should

be configured. Therefore, this is a choice that can be made randomly.

Figure 3.9 shows that a binary node is randomly chosen in the first generation stage of

our example. The remaining nodes are therefore { b = 1, t = 2 }. Recall that the size ni

of every subtree si of type Tree63 is calculated as follows:

ni = 1 + 2bi + 3ti

To calculate the size n0 of the left subtree and that n1 of the right we can, therefore,

randomly distribute the values b = 1 and t = 2 between the following equations:

n0 = 1 + 2b0 + 3t0

n1 = 1 + 2b1 + 3t1

Our running example illustrates a generation process whereby only one recursive con-

structor (of type Node2 or Node3) is chosen at each generation stage. This corresponds to

a completely one-sided distribution of the following form:

n0 = 1 + 2(b0 = 1) + 3(t0 = 2)

= 9

n1 = 1 + 2(b1 = 0) + 3(t1 = 0)

= 1

However, in practice, this needn’t be—and typically isn’t—the case.

In figure 3.9, the left and right subtrees in the second generation stage are produced

randomly according to these calculated sizes, respectively. In the latter case, a tree of size

1 must be a leaf node. In the former case, a random solution to the equation

1 + 2b + 3t = 9

is sought, and the process repeats. As stated previously, a positive integer solution to

2b + 3t = 8 is guaranteed to exist at this point. In general, however, a different solution

75

to the previous one, { b = 1, t = 2 }, might arise in practice, for example, { b = 4, t = 0 }.

Hence, the configurations of subtrees are not fixed until the base case (a leaf node) is reached.

This design choice does not affect randomness as each solution is chosen uniformly, but it

does allow for a more direct recursive implementation. Nonetheless, repeatedly solving

equations of the above form requires an efficient solver. We introduce this next.

Calculations relating to each generation stage of figure 3.9 are as follows:

Generation stage Equation Random solution Random size distribution

1 1 + 2b + 3t = 11 { b = 2, t = 2 } { n0 = 9, n1 = 1 }

2 1 + 2b + 3t = 9 { b = 1, t = 2 } { n0 = 1, n1 = 6, n2 = 1 }

3 1 + 2b + 3t = 6 { b = 1, t = 1 } { n0 = 1, n1 = 1, n2 = 3 }

4 1 + 2b + 3t = 3 { b = 1, t = 0 } { n0 = 1, n1 = 1 }

5 n/a n/a n/a

What is important to note is that each equation in the second column of this table is

effectively an instantiation of the more general equation

a0bf0 + a1bf1 + · · · + akbfk = n − 1

whose solutions for ai ∈ N can be used to randomly generate any regular tree-like data

structure with branching factors bf0, bf1, …, bfk for a given size n > 1. In this manner, the

steps of the algorithm outlined above generalise in the obvious way.

Solving Diophantine equations

A linear Diophantine equation in two variables is a polynomial equation

ax + by = c (3.2)

whereby solutions are sought with a, b, and c integers. Such equations can be solved com-

pletely and their solutions are closely tied to modular arithmetic. Non-linear Diophantine

equations do arise in practice. However, no general algorithm for solving them is possible.

Fortunately, we are only interested in the first-order variant.

76

Congruence methods provide a useful tool in determining the number of solutions to a

Diophantine equation. Applied to equation (3.2), these methods show that it either has no

solutions or infinitely many, according to whether the greatest common divisor (gcd) of a

and b is a factor of c: if not, there are no solutions; if so, there are infinitely many.

Assuming that gcd(a, b) is a factor of c, then the infinitely many solutions to equa-

tion (3.2) can be calculated from any one solution. A common method of finding a single

solution is to use the extended Euclidean algorithm. In addition to gcd(a, b), this algorithm

also computes the coefficients of Bézout’s identity, which are integers u and v such that:

au + bv = gcd(a, b) (3.3)

As we assumed that gcd(a, b) is a factor of c, then there exists an integer k such that

k ∗ gcd(a, b) = c. Multiplying equation (3.3) by k gives:

a(ku) + b(kv) = k ∗ gcd(a, b) = c

Hence, one solution to equation (3.2) is x0 = ku and y0 = kv.

Suppose there exists another solution to equation (3.2), that is:

ax̄ + bȳ = c (3.4)

Taking the difference between equations (3.2) and (3.4) gives:

a(x0 − x̄) + b(y0 − ȳ) = 0

Thus, we have that a(x0 − x̄) = b(ȳ − y0), which means that a divides b(ȳ − y0), and, in

consequence, that a
gcd(a,b) divides ȳ − y0. Therefore, we have ȳ = y0 + r a

gcd(a,b) for some

integer r. Substituting this into the equation a(x0 − x̄) = b(ȳ − y0) gives:

a(x0 − x̄) = rb a
gcd(a,b)

And rearranging the above equation gives:

77

x̄ = x0 − r b
gcd(a,b)

Thus, if {x0, y0} is a solution to (3.2), then all other solutions are of the form:

x̄ = x0 − r b
gcd(a,b) ȳ = y0 + r a

gcd(a,b)

Although we need only consider first-order Diophantine equations, we must generalise to

account for equations in n variables so that we can solve Diophantine equations derived from

multiple non-uniform branching factors, as exemplified previously. This can be achieved by

iterating the above method involving the extended Euclidean algorithm. To see how this

works, consider solving the following Diophantine equation in three variables:

ax + by + cz = d (3.5)

This is equivalent to solving the following equation in two variables

gcd(a, b)w + cz = d

as any solution to the latter yields a solution to the former, and vice-versa. This corre-

spondence is due to the fact that the set of possible values of ax + by is precisely the set

of all multiples of gcd(a, b). This explains why we can determine whether equation (3.2)

has integer solutions by simply checking if gcd(a, b) divides c. Moreover, it means that

equation (3.5) has solutions if and only if gcd(gcd(a, b), c) = gcd(a, b, c) divides d. Hence,

in the general case, a linear Diophantine equation of the form

a0x0 + a1x1 + a2x2 + · · · + akxk = d

with k > 1 has solutions if and only if gcd(a0, a1, . . . , ak) is a factor of d.

In summary, we see that Euclid’s extended algorithm provides an effective way of solving

linear Diophantine equations in two variables, and those in n variables can be solved by it-

eratively solving modified equations in two variables. As demonstrated previously, solutions

to linear Diophantine equations play an important role in our generic approach to random

data generation. As such, the AutoBench system implements an efficient solver for such

78

equations based on the method described above. In practice, we only seek positive integer

solutions given that they are used to generate values of strictly positive sizes. Hence, it is

not necessarily the case that either zero or infinitely many solutions exist for our purposes.

Further implementation details can be found online (Handley 2019).

A generic generator

Finally, we bring together our uniform view on data and our efficient solver for linear Dio-

phantine equations to implement a generic function capable of generating random values of

regular tree-like data structures for a given size. Unlike with our previous discussions, we

provide specific implementation details to concretise our approach. To make the specifics

more accessible, high-level explanations accompany each code segment. Some implementa-

tion details are omitted for brevity, nonetheless, full details can be found in the comments

of AutoBench’s source code, which is available online (Handley 2019).

Calculating branching factors

Recall the following equation from the end of section 3.3.2

a0bf0 + a1bf1 + · · · + akbfk = n − 1 (3.6)

used to determine whether a value of size n is valid for a tree-like data structure. Further-

more, recall that each bfi is a branching factor of such a datatype.

To transform the above equation into Diophantine form, we must instantiate each bfi.

For any type a that is both Generic and Typeable. This is achieved using recs:

recs :: forall a . (Generic a, Typeable a, . . .) ⇒ . . .

recs = unPOP (pure matchTy)

where

matchTy :: forall b . Typeable b ⇒ K Int b

matchTy = case eqT @a @b of

Just → K 1

Nothing → K 0

79

For each data constructor Ci of type a, recs essentially outputs a list of lists. Each inner

list xsi is a binary sequence whose values xsi,j represent whether or not the argument xj to

constructor Ci is recursive. For example, recall our previous datatype Tree63:

data Tree63

= Leaf63 Int
0

| Node2 Tree63
1

Tree63
1

| Node3 Tree63
1

Tree63
1

Tree63
1

The result of applying recs to this type is as follows:

> toList (recs @Tree63)

[[0], [1, 1], [1, 1, 1]]

Notice how each inner list [0], [1, 1], and [1, 1, 1] corresponds to each binary sequence

annotating the arguments to Tree63’s data constructors above, respectively. In particular,

a 0 occurs when an argument is not recursive, for example, Int; and a 1 occurs when an

argument is recursive, that is, when it is of type Tree63.

The implementation of recs requires a Typeable constraint because the type b of each

constructor’s argument must be compared—using matchTy—with the overall type a to

determine whether it is recursive. Typeable instances must be derived by GHC since version

7.8. To apply recs we must use visible type applications, which are written @a for some type

a, as in recs @Tree63. Visible type applications were first introduced in GHC version 8.0.

Summing up the values in each inner list returned by recs (and filtering) gives us the

branching factors of Tree63. Each branching factor bfi > 0 is then used to transform

equation (3.6) into the form of a linear Diophantine equation.

Validating the size parameter

Once equation (3.6) can be instantiated for a given datatype, it is straightforward to

check whether or not a particular size n is valid for that type. That is, whether a value of

the datatype with n total nodes can be constructed.

linearDiophantine+ :: [Int] → Int → [[Int]]

80

Given a list of branching factors bfs and a size n−1, linearDiophantine+ bfs (n−1) returns

at most 10 (randomly chosen) solutions to equation (3.6). The solutions are returned as

lists xsi where each xsi,j is a positive coefficient for each bfj , respectively.

isValidSize :: (. . .) ⇒ Int → Bool

isValidSize n = notNull (linearDiophantine+ (toList (bfs @a)) (n − 1))

In turn, given a type a, the function isValidSize returns the branching factors bfs of a and

then checks whether linearDiophantine+ bfs (n−1) returns any solutions. For example, we

know from our previous discussions that binary trees of type Tree2 are always valid for odd

sizes, and furthermore, are always invalid for even sizes:

> isValidSize @Tree2 5

True

> isValidSize @Tree2 10

False

Conversely, we know that ternary trees of type Tree3 have the opposite validity:

> isValidSize @Tree3 5

False

> isValidSize @Tree3 10

True

Finally, we know the following from our worked example in section 3.3.2:

> isValidSize @Tree63 11

True

Remark. In practice, isValidSize performs an extremely efficient check. This allows

AutoBench to (attempt to) correct invalid sizes by performing a binary search to find the

closest valid size in both a positive and negative direction. In fact, this was demonstrated

in the second example of section 3.2 when flattening trees to list form.

A generic, random, sized data generator

For any regular tree-like data structure that is both Generic and Typeable, and a size

n > 1, we can now define a function that will uniformly generate random values of the

appropriate type containing precisely n nodes in total. We note that the following im-

plementation does not perform any safety checking. This is because AutoBench tests the

validity of n using isValidSize before this function is called in practice.

81

Overall, our generation function is rather complex and so we isolate its separate compo-

nents to present its implementation in a bottom-up fashion. In addition, we demonstrate

the use of each component on the Tree63 datatype.

Firstly, given a datatype’s branching factors bfs and a size n > 2, we generate a random

set of possible branches: at most one for each branching factor.

branches :: Int → [Int] → Gen [(Int, [Int])]

branches n bfs = fmap filtPs (mapM (branch n bfs) bfs)

where

filtPs = filter (notNull ◦ snd)

branch = . . .

That is, we determine whether each recursive data constructor of the datatype is a viable

option for this stage of generation. If so, we randomly distribute the remaining size, n− 1,

among its child nodes. For example, applying branches to the Tree63 datatype, which has

branching factors 2 and 3, gives the following results:

> generate (branches [2, 3] 11)

[(2, [5, 5]), (3, [3, 6, 1])]

> generate (branches [2, 3] 11)

[(2, [7, 3]), (3, [4, 1, 5])]

As in section 3.3.2, we see that a Tree63 with 11 total nodes can be produced by first using

either the binary data constructor, Node2, or the ternary data constructor, Node3. On the

other hand, a tree with 3 nodes in total can only be produced using the binary constructor,

and a tree with precisely 2 nodes is invalid:

> generate (branches [2, 3] 3)

[(2, [1, 1])]

> generate (branches [2, 3] 2)

[]

For simplicity, we define the branches function in terms of branch:

branch :: Int → [Int] → Int → Gen (Int, [Int])

branch n bfs bf = fmap (bf ,) sizes

where

sols = linearDiophantine+ bfs (n − succ bf)

mults = fmap (succ ◦ sum) ◦ transpose ◦ zipWith (fmap ◦ (∗)) bfs

82

sizes

| bf > n = pure []

| null sols = pure []

| otherwise = do

sol ← elements sols

fmap mults (mapM (split 0 bf) sol)

Notice that branch solves a modified version of equation (3.6), where n− 1 is replaced with

n − succ bf . This is to ensure that n is sufficiently large to account for the size of the

recursive data constructor (= 1) and the minimum size of its children (= bf). It is easy

to see that any solution to this modified equation gives a solution to the original equation

(note that this was demonstrated previously in section 3.3.2).

Using a random solution from linearDiophantine+, branch returns a list of random,

strictly positive sizes n0, …, nbf−1 that sum to n− 1. Each ni may be used to subsequently

generate each subtree si of the data constructor with branching factor bf , hence it is cal-

culated using a sol to ensure validity. An empty list of sizes is returned by branch if the

data constructor is invalid. This occurs when either bf > n, as in branches [2, 3] 2 above,

or when sols is empty. In the latter case, this occurs for bf = 2 in the following example:

> generate (branches [2, 3] 4)

[(3, [1, 1, 1])]

To calculate each size ni, branch uses the split function:

split :: Int → Int → Int → Gen [Int]

split min p total = . . .

which randomly divides a positive integer total into p integer parts such that each part has

a minimum value min. In particular, split is used to divide each coefficient ai from the

randomly chosen solution in sols among each ni (as shown in section 3.3.2).

The next component of our generation function is sizeGens. It has three arguments:

a branching factor bf , an n-ary product bfSeq of integers, and an n-ary product sGens of

sized generators. Note that SizedGen will be introduced shortly.

83

sizeGens :: (. . .) ⇒ K Int a → NP (K Int) a → NP SizedGen a → NP Gen a

sizeGens (K bf) bfSeq sGens = . . .

Previously, we introduced the type NP of n-ary products as taking only one argument

(a type-level index list). In reality, the situation is more complex. The NP type constructor

actually takes two arguments, and is defined as follows:

data NP (f :: Type → Type) (xs :: [Type]) where

Nil :: NP f ′[]

(:∗) :: f x → NP f xs → NP f (x ′ : xs)

In simple terms, an n-ary product is a generalised heterogenous list, where each element is

given by applying a particular type constructor to one of the types in the index list. More

precisely, NP also abstracts over a type constructor f , with elements of type f x where

x is a member of the index list xs (Löh 2015). The isomorphism between n-ary products

and heterogenous lists can be seen by taking f as the identity type constructor, I . N-ary

products are also isomorphic to homogenous lists, which can be seen by taking f to be the

constant type constructor, K , applied to some type a.

newtype I a = I { unI :: a }

newtype K a b = K { unK :: a }

The main idea behind the sizeGens function is to instantiate the size parameters of gen-

erators used to produce arguments for a particular data constructor of a generic datatype.

In practice, the size parameter for each branching factor bf is calculated using branches.

Moreover, the n-ary product sGens of sized generators has the representation type of a par-

ticular data constructor with branching factor bf . To clarify this point, recall the previous

result from branches [2, 3] 11 for the Tree63 datatype:

> generate (branches [2, 3] 11)

[(2, [7, 3]), (3, [4, 1, 5])]

Then, the sizes 4, 1, and 5 would be passed to the elements of sGens with type

NP SizedGen ′[Tree63 , Tree63 , Tree63]

84

respectively. The type ′[Tree63, Tree63, Tree63] represents Tree63’s ternary data construc-

tor, Node3. Furthermore, each element of sGens has type SizedGen Tree63, where SizedGen

is simply a wrapper around the function making QuickCheck’s size parameter explicit:

newtype SizedGen a = SizedGen { unSizedGen :: Int → Gen a }

Recursive data constructors can also have arguments that are non-recursive. As such,

bfSeq is the corresponding sequence of bits calculated by recs. It determines when a size from

the result of branches should be passed to an element of sGens, that is, when the current

element of the sequence is 1. When the current element is 0, an alternative generation

method can be used. In this instance, we simply use a default size of 100:

sizeGens :: (. . .) ⇒ K Int a → NP (K Int) a → NP SizedGen a → NP Gen a

sizeGens Nil Nil = Nil

sizeGens (K bf) bfSeq sGens = go bfSeq sGens 0

where

sizes = fromJust (lookup bf (. . . branches . . .))

go :: (. . .) ⇒ NP (K Int) a → NP SizedGen a → Int → NP Gen a

go Nil Nil = Nil

go (K 0 :∗ xs1) (sGen :∗ xs2) idx =

unSizedGen sGen 100 :∗ go xs1 xs2 idx

go (K 1 :∗ xs1) (sGen :∗ xs2) idx =

unSizedGen sGen (sizes !! idx) :∗ go xs1 xs2 (idx + 1)

Parameterising each of sizeGens’s arguments by the same type a is particularly useful.

This is because it notionally allows all arguments to all data constructors of a generic

datatype to be generated easily, by means of a three-way zip:

allGens :: (. . .) ⇒ NP (NP Gen) (Rep a)

allGens = hzipWith3 sizeGens (bfs @a) (recs @a) sGens

where sGens = unPOP (pure (SizedGen sizedArbitrary))

In this manner, the allGens function applies sizeGens to n-ary products indexed by each list

of argument types in the representation type Rep a of the generic type a. As an example,

consider the simplified representation TreeRep63 of the Tree63 datatype:

85

type TreeRep63 = (NP ′[′[Int], ′[Tree63 , Tree63], ′[Tree63, Tree63, Tree63]])
I

In this case, sizeGens would be applied to n-ary products indexed by each inner list of

TreeRep63 : ′[Int], ′[Tree63, Tree63], ′[Tree63, Tree63, Tree63]. This may appear prob-

lematic because branches does not necessarily return a result for every recursive data con-

structor, as we have seen in previous examples. This issue does not arise in practice,

however, as the result of allGens is used lazily. In particular, only results for valid con-

structors are consumed from the output of allGens.

Remark. The definition of allGens above uses the sizedArbitrary function to generate

the random arguments for each data constructor. Consequently, every argument type of

every data constructor must be a member of the SizedArbitrary type class. This is an as-

sumption we previously discussed in section 3.3.2.

The result from allGens can be collapsed to a list of generation options:

opts :: (. . .) ⇒ [(Int, Gen a)]

opts = hcollapse (hzipWith aux (bfs′ @a) (injections ‘hap‘ allGens))

Each option is a tuple consisting of a branching factor bf and a QuickCheck generator that

will produce a value of type a using a data constructor with branching factor bf . One

option is produced for each constructor of the generic type a. As previously mentioned, a

number of these options may be erroneous. However, only valid options will be selected.

We use bfs′ for opts instead of bfs to account for leaf nodes (data constructors with

an effective branching factor of 0). In turn, hap corresponds to (<∗>) for n-ary products

and injections essentially converts allGens nested n-ary product structure into an n-ary

sum of n-ary products, which, as we noted previously, is the underlying structure of a’s

representation type, Rep a. Doing so allows the aux function

aux :: (. . .) ⇒ K Int b → K (NS (NP Gen) (Rep a)) b → K (Int, Gen a) b

aux (K bf) (K g) = K (bf , fmap to (hsequence (Rep g)))

to convert each data constructor’s n-ary product of generators into a single generator for

86

that constructor of type Gen a. We omit the details of aux for brevity but note its use of

the to function, which is one half of the isomorphism Rep a → a.

In the case of Tree63, the options list would consist of three elements:

opts :: (. . .) ⇒ [(Int, Gen Tree63)]

opts = [(0, genLeaf63), (2, genNode2), (3, genNode3)]

The generator for the Leaf63 data constructor, genLeaf63, will always be valid. However, the

generators for the Node2 and Node3 data constructors, genNode2 and genNode3, respectively,

may be erroneous, depending on the given size parameter n.

To ensure only valid options are used, the erroneous options are filtered:

fOpts :: (. . .) ⇒ Int → [(Int, Gen a)] → [(Int, Gen a)]

fOpts n

| n == 1 = filter ((== 0) ◦ fst)

| otherwise = filter ((∈ validBfs) ◦ fst)

where

validBfs :: [Int]

validBfs = fmap fst (. . . branches . . .)

In the base case, when the size parameter n is equal to 1, fOpts filters all non-leaf options

(those with branching factors > 0). In the recursive case, when n > 1, fOpts filters all

options with branching factors not returned by branches.

Finally, a generic generator uniformly picks from the filtered options:

gen :: (Generic a, Typeable a, . . .) ⇒ Int → Gen a

gen n = snd <$> oneof (fOpts n opts)

Assuming the generic datatype a has at least one leaf node and n > 1 is a valid size

parameter, then the filtered list of options is guaranteed to be non-empty and thus gen

will always produce a correctly sized value. We note that both assumptions are checked by

AutoBench before this generation function is called.

87

Generic SizedArbitrary instances

The generator above can easily be used to produce random values for all of our previous

tree-like data structures except Tree*, as follows:

instance SizedArbitrary Int

instance SizedArbitrary List where

sizedArbitrary = gen

instance SizedArbitrary Tree2 where

sizedArbitrary = gen

instance SizedArbitrary Tree3 where

sizedArbitrary = gen

instance SizedArbitrary Tree63 where

sizedArbitrary = gen

In the case of Tree*, the above approach fails on two accounts. Firstly, recall the matchTy

helper function from recs, which uses a notion of type equality to determine whether each

argument to a data constructor is recursive or non-recursive:

matchTy :: forall a b . Typeable b ⇒ K Int b

matchTy = case eqT @a @b of

Just → K 1

Nothing → K 0

This implementation is too restrictive for the Tree* datatype as its constructor Node* of type

[Tree*]→ Tree* is indeed recursive, but not in the type of Tree* itself. To account for Tree*,

matchTy must be generalised to determine whether the type of each data constructor’s

argument b is a ‘supertype’ of the overall generic datatype a. In practice, this can be

achieved by lexically analysing the type representations (TypeReps) of a and b.

Assuming a more general implementation of matchTy, then generating random values

for Tree* requires one further addition. This is a SizedArbitrary instance for sized lists of

sized elements. A prototype implementation for such a generator is provided by the most

recent (experimental) version of AutoBench (Handley 2019), which views such a list as

88

an internal tree-like node with an arbitrary branching factor. Further work is required to

devise a suitable theoretical basis for its implementation, however.

To finalise our running example, a tree of type Tree63 with 49 total nodes, generated

using the above SizedArbitrary instance, is given in figure 3.10.

89

9111

38

40469

7432

10

872523

172260

5214

10

663784

88

19

29

516

9

5542

Figure 3.10: A randomly generated tree of type Tree63 with 49 total nodes

90

3.3.3 Benchmarking

AutoBench measures the time performance of programs executed on random test data

using the Criterion benchmarking library (O’Sullivan 2014a). Recall from section 2.2.1 that

Criterion is popular for many reasons, including its ease of use and because its measurements

are notably more accurate than those made by, for example, OS timing utilities.

In this section, we describe how AutoBench automatically generates and executes bench-

marks defined using Criterion. The generation process is much the same as how QuickCheck

generates random test cases when checking correctness properties. Firstly, we briefly recap

how to define benchmarks using Criterion, and then describe the intricacies in benchmark-

ing using generated test data. Secondly, we discuss our system’s support for benchmarking

functions of any non-zero arity, which we call polyvariadic benchmarking. Finally, we explain

how randomly generated benchmarks are compiled and executed automatically.

Defining benchmarks

Criterion’s principal type is Benchmarkable, which is simply a computation that can be

benchmarked by the system. A value of this type can be constructed using, for example,

the nf function, which takes a function and an argument, and measures the time taken to

fully evaluate the result of applying the function to the argument:

nf slowRev [0 . . 200] :: Benchmarkable

Evaluation to normal form ensures that measured runtimes reflect the full potential cost

of applying a function, as due to Haskell’s laziness, computations are only evaluated (or

forced) as much as is required by their surrounding contexts. The standard type class

NFData comprises types that can be fully evaluated and, therefore, nf requires the result

type of its argument function to be an instance of this class:

nf :: NFData b ⇒ (a → b) → a → Benchmarkable

We also remind readers that Benchmarkables can be defined using the whnf function, which

evaluates results to weak head normal form only:

whnf :: (a → b) → a → Benchmarkable

91

A Benchmark is defined using a Benchmarkable along with a suitable description, used

to uniquely identify performance measurements for purposes of analysis:

bench "slowRev, [0..200], nf" (nf slowRev [0 . . 200]) :: Benchmark

Such a benchmark can then be passed to one of Criterion’s top-level functions, for example,

defaultMain, to be executed and have its runtime measured:

defaultMain :: [Benchmark] → IO ()

Benchmarking using generated test data

Each Benchmarkable computation defined using nf or whnf requires a function f :: a → b

and an argument x :: a. In regard to the AutoBench system, the function f will be a

program—whose time performance is to be analysed—specified by a user, and its argument

x will an input randomly generated using QuickCheck.

Given that Haskell uses a lazy evaluation strategy, in general, we cannot assume that

the argument x is in normal form when it is passed to either nf or whnf . This is problematic

for benchmarking because measurements taken by Criterion may then include time spent

evaluating (the computations that produce) x prior to applying f . Fortunately, Criterion

provides an alternative method for defining benchmarks that ensures x is fully evaluated

before f is applied. This alternative method is based on test environments:

env :: NFData env ⇒ IO env → (env → Benchmark) → Benchmark

A test environment is created just before its corresponding benchmark is executed. The IO

action that creates the environment is run and the newly created environment is evaluated

to normal form before being passed to the function that requires it. As such, env can be

used to safely benchmark functions on randomly generated inputs:

env (pure [0 . . 200]) (λdat → bench "slowRev, [0..200], nf" (nf slowRev dat)) :: Benchmark

Note that the use of env imposes a further constraint on programs being analysed by

AutoBench, which is that their input types must be members of the NFData type class.

92

Generating random benchmarks

When checking program correctness, the QuickCheck system tests random cases by

executing testable properties on randomly generated inputs. In much the same way, Au-

toBench’s approach to checking program efficiency is to test random cases by executing

benchmarks constructed using randomly generated inputs of particular sizes. The following

two functions can be used to generate such benchmarks:

genNf :: (SizedArbitrary a, NFData a, NFData b)

⇒ (a → b) → String → Int → Benchmark

genWhnf :: (SizedArbitrary a, NFData a)

⇒ (a → b) → String → Int → Benchmark

Given a function f :: a → b, an identifier s :: String, and a size n :: Int, the benchmark

genNf f s n uses a random, fully evaluated argument x :: a of size n to measure the time

taken to evaluate the computation f x :: b to normal form. The latter function, genWhnf ,

acts similarly. However, in this case, f x is evaluated to weak head normal form only.

For the purpose of generating random benchmarks to analyse the time performance of a

single program in isolation, the above two functions are adequate. However, to compare the

time performance of two or more programs in this manner, they are not. This is because a

fair comparison requires both programs to be tested on the same inputs, which cannot, in

general, be guaranteed by the above definitions. Again, Criterion provides an alternative

approach that can be used in this instance, in the form of benchmark groups:

bgroup :: String → [Benchmark] → Benchmark

A benchmark group is simply a list of associated benchmarks with a unique group identifier.

Using bgroup, the two previous functions can be redefined to accept a non-empty list of

program-and-identifier tuples for comparison, as follows:

genNf :: (SizedArbitrary a, NFData a, NFData b)

⇒ [(a → b, String)] → Int → Benchmark

genWhnf :: (SizedArbitrary a, NFData a)

⇒ [(a → b, String)] → Int → Benchmark

93

The result of each new implementation is thus a group of benchmarks, defined by bgroup,

which tests the runtime of the computation f x :: b for each function f :: a → b in the input

list using the same randomly generated input x :: a of given the size n.

Polyvariadic benchmarking

When we introduced Criterion previously (section 2.2.1), we explained that its Benchmarks

are constructed in such a way as to support repeated runs of measurements. Specifically,

we remarked that a Benchmarkable takes a function f ::a → b and an input x ::a as separate

arguments to avoid issues regarding memoisation. For the purposes of AutoBench, this is

very fitting as the function f :: a → b can be specified by the user, and the input x :: a

can be randomly generated using QuickCheck. However, what if users wish to compare the

performance of non-unary functions, that is, programs with multiple inputs?

Technically speaking, there are no functions of multiple arguments in Haskell, only func-

tions of one argument, some of which may return new functions of one argument. And so

when we write f :: a → b for type parameters a and b, then b may indeed be of the form

c → d for some types c and d. Currying is the process of transforming a function that

takes multiple arguments in a tuple into a function that takes a single argument—the first

from the tuple—and returns another function that accepts a single argument—the second

from the tuple—and so on. Hence, we see that all Haskell functions are curried functions.

Remark. The above explanation suggests that the type parameters in the signatures of

genNf and genWhnf allow benchmarks for non-unary functions to be generated already.

genNf :: (SizedArbitrary a, NFData a, NFData b)

⇒ [(a → b, String)] → Int → Benchmark

For example, it is perfectly valid for the type a → b in the signature above to be instantiated

to Int → (Bool → Char). This allows a binary function of this curried type to be passed as

an argument to genNf so long as: (a) Int is a member of SizedArbitrary and NFData; (b)

An NFData instance exists for function types, in this case, Bool → Char . The latter point

is most interesting and has been the topic of some contention. In short, there currently

94

exists a default NFData instance for function types, which evaluates a given function to

weak head normal form only. However, functions are already in weak head normal form and

so it is essentially a no-op. Benchmarks for non-unary functions generated by genNf and

genWhnf are, therefore, undesirable. Our goal is to rectify this by generating benchmarks

that fully saturate functions before they are executed.

Despite a Haskell function of two arguments being curried by default, it is possible to

uncurry it so that both arguments can be provided at once. More precisely, it is easy to

see that a function of type, for example, Int → Bool → Char is isomorphic to its uncurried

counterpart of type (Int, Bool)→ Char , as witnessed by the following two familiar functions:

curry :: ((a, b) → c) → (a → b → c)

uncurry :: (a → b → c) → ((a, b) → c)

Using the notion of uncurrying, we can define another pair of benchmark generators that

accept functions of (at least) two arguments, as follows:

genNf2 :: (SizedArbitrary a, SizedArbitrary b, NFData a, NFData b, NFData c)

⇒ [(a → b → c, String)] → Int → Benchmark

genWhnf2 :: (SizedArbitrary a, SizedArbitrary b, NFData a, NFData b)

⇒ [(a → b → c, String)] → Int → Benchmark

In practice, each function f ::a → b → c is uncurried to the form f ′ :: (a, b)→ c before being

passed to a Benchmarkable. This works just fine and only requires an additional instance

for NFData, which has a straightforward definition:

instance (NFData a, NFData b) ⇒ NFData (a, b) where . . .

This approach was implemented in the first version of the AutoBench system, which

allowed users to compare the time performance of unary and binary functions only. However,

in general, it is not satisfactory due its lack of scalability. This is because an additional pair

of generators is required for every non-zero arity, of which there are many. Furthermore,

each pair of generators requires its own version of uncurry:

uncurry3 :: (a → b → c → d) → (a, b, c) → d

95

uncurry4 :: (a → b → c → d → e) → (a, b, c, d) → e

uncurry5 :: (a → b → c → d → e → f) → (a, b, c, d, e) → f

Polyvariadic uncurrying

To address this scalability issue, the latest version of the system applies the notions of

currying and uncurrying uniformly at any non-zero arity. That is, as witnesses to the more

general isomorphism between a curried function of non-zero arity n and a unary function

that takes a non-empty heterogenous list of n arguments:

curry+ :: (HList ′[a1, a2, . . . , an] → r) → (a1 → a2 → · · · → an → r)

uncurry+ :: (a1 → a2 → · · · → an → r) → (HList ′[a1, a2, . . . , an] → r)

Recall from section 3.3.2 that HList is the type constructor for heterogenous lists, which

are required because arguments to functions need not be uniform in their types.

Defining these two functions in Haskell requires a number of language extensions pro-

vided by GHC, including type families and type operators (version 6.8.1 onwards). First,

we must express currying at the type level by defining a type family arguments →∗ results

to compute a curried function type, taking arguments as inputs and returning result:

type family (arguments :: [Type]) →∗ (result :: Type) where
′[] →∗ result = result

(a ′ : as) →∗ result = a → (as →∗ result)

We can see this type-level function in action using GHCi’s kind! command, as follows:

> :kind! ′[Int, Bool] →∗ Char

Int → Bool → Char

> :kind! ′[] →∗ Char

Char

Using the type operator (→∗), we can then specify signatures for our generalised curry and

uncurry functions in a type class, which we call Curry:

class Curry (arguments :: [Type]) where

curry∗ :: (HList arguments → result) → (arguments →∗ result)

uncurry∗ :: (arguments →∗ result) → (HList arguments → result)

96

Given that arguments is a type-level list, and furthermore, by unfolding the definition of

(→∗), we see that the types of curry∗ and uncurry∗ are comparable to curry+ and uncurry+,

respectively. Nonetheless the functionalities of curry∗ and uncurry∗ differ slightly from the

intended functionalities of curry+ and uncurry+. In particular, the former functions allow

their lists of arguments to be empty. Hence, we use the subscript ∗ to mean ‘zero or more’

arguments rather than +, which means ‘one or more’.

We require two instances of the Curry class, which are defined recursively. Firstly, in

the base case, when the list of arguments is empty, ′[]. And then for a non-empty list

(a ′ : as) assuming the existence of a Curry instance for as. We omit the implementation

details as they are not essential to our discussion.

instance Curry ′[] where . . .

instance Curry as ⇒ Curry (a ′ : as) where . . .

Polyvariadic benchmark generation

The uncurry∗ function allows us to uncurry a given function of any arity n, returning

a unary function that accepts a heterogenous list of n arguments. Using this function,

we seek to define two polyvariadic benchmark generators. That is, two functions that will

generate benchmarks for programs with any number of inputs > 0, whereby programs are

fully saturated with all of their required inputs before being executed. The first, genNf+,

will ensure results are evaluated to normal form using nf :: NFData b ⇒ (a → b) → a →

Benchmarkable, while the second, genWhnf+ will ensure results are evaluated to weak head

normal form using whnf :: (a → b) → a → Benchmarkable. In addition, all inputs will be

randomly generated using QuickCheck, via AutoBench’s SizedArbitrary type class.

Given a function f :: a1 → · · · → an → r of arity n, which constraints must be placed

on its type for our goal to be realised in practice? Firstly, nf requires f ’s result type to be

a member of the NFData type class, however, whnf does not. Secondly, recall that impar-

tially comparing the time performance of multiple programs requires the use of benchmark

environments, which, in turn, introduces an NFData constraint on every argument type of

f . Thirdly, as f is to be executed on random test data, each of its argument types must

97

be a member of SizedArbitrary. Finally, in order to use uncurry∗, the list of f ’s argument

types must be Curryable. Thus, for genNf+, we have the following type:

genNf+ :: (as ∼ Arguments (a → rest) , r ∼ Result (a → rest)

, All SizedArbitrary as , All NFData as , Curry as , NFData r)

⇒ [(a → rest, String)] → Int → Benchmark

Recall that a → rest is the type of a curried function of at least one argument, hence,

rest may indeed be of type b → c. Arguments and Result calculate the argument types

as and result type r of a → rest, respectively. The types as and r are then constrained

in accordance with the above requirements. To this end, All :: Constraint → [Type] →

Constraint maps a given constraint across a list of types, constraining each type.

Given a list of functions f :: a1 → · · · → an → r , genNf+ generates a random input

of each argument type ai of the given size, and inserts them into a heterogenous list xs ::

HList ′[a1, a2, . . . , an]. A Criterion test environment is then constructed using xs, which

is subsequently evaluated to normal form before being passed to each function’s uncurried

counterpart, f ′ :: HList ′[a1, a2, . . . , an] → r , in turn. This step requires the following

NFData instances for heterogenous lists, which are recursively defined:

instance NFData (HList ′[]) where . . .

instance (NFData a , NFData (HList as)) ⇒ NFData (HList (a ′ : as)) where . . .

Finally, the time taken to evaluate the results of each fully saturated function, that is, each

computation f ′ xs, to normal form is measured.

The definition and functionality of genWhnf+ is similar to genNf+. The only distinction

is that genWhnf+ does not require an NFData instance for the result type of a → rest as

its degree of evaluation is weak head normal form only:

genWhnf+ :: (as ∼ Arguments (a → rest) , All SizedArbitrary as

, All NFData as , Curry as)

⇒ [(a → rest, String)] → Int → Benchmark

The ideas underpinning the implementations of genNf+ and genWhnf+ form the basis of

polyvariadic benchmark generation in AutoBench. In practice, the generators used by the

system differ slightly to those described above, in that they allow users to independently

98

specify the size of each generated input, rather than constraining them to be of equal size.

This essentially requires users to specify a list of sizes for each Benchmark to be generated.

All of AutoBench’s code is open source and can be found on GitHub (Handley 2019).

For completeness, the definitions of Arguments and Result are as follows

type family Arguments (f :: Type) :: [Type] where

Arguments (a → rest) = a ′ : Arguments rest

Arguments = ′[]

type family Result (f :: Type) :: Type where

Result (→ rest) = Result rest

Result r = r

and, as before, their functionalities can be tested using GHCi’s kind! command:

> :kind! Arguments (Int → Bool → Char)
′[Int , Bool]

> :kind! Result (Int → Bool → Char)

Char

Finally, we note that polyvariadic currying is referred to as arity-polymorphic currying

by Foner, Zhang, and Lampropoulos (2018). This article provides the same implementations

of curry∗ and uncurry∗. Our ideas were developed independently, however, we chose the

name of the Curry type class in light of this work.

Compiling and executing benchmarks

When using QuickCheck, the only difference between checking correctness properties of

compiled Haskell code using GHC and checking correctness properties of interpreted code

using GHCi is convenience. This is because the denotational semantics of Haskell is the

same in both cases. Hence, it is preferable to use GHCi as it provides ‘instant’ feedback.

In contrast, it is preferable to use GHC rather than GHCi when executing benchmarks

because whereas the compiler generates optimised machine code, the interpreter executes

unoptimised bytecode. As such, programs executed in the interpreter are inherently less

time-efficient than their compiled counterparts. This was exemplified in the first example

99

of section 3.2.1. Furthermore, in background section 2.2, we highlighted the need to assess

the performance of programs, for example, subject to different runtime settings. This can

only be achieved if source code is compiled using GHC.

Consequently, recall that Criterion provides a number of top-level entry points to be

used in the main action of a Haskell module. For example, its defaultMainWith function

takes a list of benchmarks and executes them sequentially:

defaultMainWith :: Config → [Benchmark] → IO ()

In section 3.2.2, we explained that AutoBench automatically creates a benchmarking file,

which is a Haskell module containing benchmarks generated in the manner described above.

The top-level function of this module executes such benchmarks using defaultMainWith.

To ensure testing is fully automated, AutoBench must, therefore, generate benchmarking

files, compile them, and then invoke their resulting binary executables on behalf of users.

This is achieved using the Hint (Martì 2007) and the GHC API (GHC Team 2017) packages.

The former is used to validate user input files, and the latter is used to compile files generated

by the system that contain appropriate benchmarks. Benchmarking executables are invoked

using the Process (GHC Team 2007) package.

User options

Users can specify any number of command-line flags in order to configure how benchmarks

are compiled by GHC and executed by Haskell’s runtime environment. Users can also select

the degree to which the results of test programs are normalised. That is, whether they are

evaluated to normal form or to weak head normal form, which dictates whether benchmarks

are generated using genNf+ or genWhnf+, respectively.

Criterion requires a set of user options, which are passed to defaultMainWith when

executing benchmarks. AutoBench re-exports this configuration in its own user options,

allowing Criterion’s functionality to be customised as if using the system directly.

100

3.3.4 Statistical analysis

AutoBench configures the Criterion library to write all of its benchmarking measurements

to a JSON report file, which the system then parses. The raw runtimes of test programs

are analysed to give time performance results. In particular, high-level comparisons be-

tween programs are given in the form of time efficiency improvements. In addition, each

program’s time complexity is estimated using a custom algorithm. Finally, the runtimes

and complexity estimates are graphed to provide a visual performance comparison.

As the results produced by our system are based on random testing, we also collate a

number of statistics output by Criterion, such as standard deviation and variance introduced

by outliers, to give users a basic overview of the quality of the benchmarking data and, by

extension, the reliability of the performance results.

Efficiency improvements and optimisations

The system generates improvement results by comparing the runtimes of programs point-

wise. That is, for each set of input sizes, it compares the runtimes of two programs to

determine which program performed better for that test case. If one program performs

better than another for a certain percentage of cases, then the system concludes that it is

more efficient and generates a corresponding improvement result.

For example, when comparing the time performance of the functions slowRev and

fastRev in section 3.2, the system generated the following improvement result

slowRev �∼ fastRev (0.95)

which states that fastRev was more time efficient than slowRev in 95% of test cases. By

default, 90% of test cases must show one program to be more efficient than another for an

improvement result to be generated. This accounts for the possibility of efficient implemen-

tations performing poorly on smaller inputs due to start-up costs, and furthermore, allows

for minor anomalies in the raw benchmarking data.

A basic assumption of our system is that the programs being compared are denotation-

ally equal—as we discussed previously, we see no obvious reason as to why users would wish

101

to compare the performance of functions with the same types but different functionalities.

Nonetheless, a sanity check is performed by invoking QuickCheck to verify that the results

of test programs are indeed the same. If this check is passed, any improvement results are

‘upgraded’ to correctness-preserving optimisations. This was also exemplified in section 3.2,

as the results table included an optimisation rather than just an improvement:

slowRev Q fastRev (0.95)

In order for the QuickCheck test to be applicable, the result type of each program must

be a member of the Eq type class, the standard Haskell class for checking equality of types.

Default Eq instances are provided for all standard Haskell types. For custom datatypes,

users may provide Eq instances inside their input file alongside the programs to be tested.

If no Eq instance is given, the system will attempt to apply a generic instance, which is

implemented using the Generics-Sop library (Vries and Löh 2014). However, this may fail,

in which case the user is notified that the test could not be performed.

Approximating time complexity

In this subsection, we explain how AutoBench uses a set of runtime measurements and

input sizes to approximate the time complexity of the program from which the data was

derived. A current limitation of our method is that it is only applicable to two-dimensional

data. This means that a time complexity estimate for a program with multiple inputs (and

hence, multiple input sizes) is based only on the size of its first argument. The remainder

of this subsection, therefore, refers to just a single input size. In section 3.5, we discuss how

our approach could be extended as part of further work.

Runtime measurements are combined with size information to give sets of (x, y) data

points, where x is an input size and y is the runtime of a program executed on a random

input of size x. The system uses a data set of this kind to approximate the time complexity,

for example, linear, quadratic, logarithmic, of the corresponding program. Surprisingly,

there appears to be no standard means to achieve this. Moreover, the problem itself is

difficult to define precisely. Through experimentation, we have developed a technique based

on the idea of calculating a line (or curve) of best fit for a given set of data points, and

102

then using the equation of this line as an estimate of time complexity.

In the first example of section 3.2, the AutoBench system calculated the following curves

of best fit for slowRev and fastRev, respectively:

y = 5.28e−9x2 + 2.28e−11x + 2.91e−5

y = 2.53e−7x + 1.65e−5

Using these equations, it estimated the time complexities of slowRev and fastRev as quadratic

and linear, respectively. Thus we see that, in general, the system must determine which type

of function best fits a given data set. Even more surprisingly, there appears to be no stan-

dard means to achieve this either. Our method considers many different types of functions

and chooses the one with the smallest fitting error according to a suitable measure.

Ordinary least squares

We use a popular method for fitting a function of a particular type to a given data

set, which is called linear regression analysis (Fox 1997). Given a set of (x, y) data points

comprising input sizes and runtime measurements, a regression model in our setting is a

particular type of function that predicts runtimes using input sizes. For example, we might

consider a linear function of the form ŷ = mx + c, where ŷ is the runtime predicted by

the model for a given input size x. Based on this idea the ordinary least squares (OLS)

method (Hutcheson 2011) estimates the unknown parameters of the model, which are m

and c in the case of the linear model, such that the distance between each y-coordinate in

the data set and the corresponding predicted ŷ-value is minimised:

minimise
n∑

i = 0
(yi − ŷi)2

In this context, we refer to the (x, y) data points as the training data, and the expression

being minimised as the residual sum of squares (RSS).

103

Overfitting

When fitting regression models to data sets using the ordinary least squares method,

those of higher complexity will always better fit training data, resulting in lower RSS values.

Informally, this is because models with higher numbers of parameters are able to capture

increasingly complex behaviour. For example, a polynomial equation of degree n − 1 can

precisely fit any data set containing n unique points.

Higher complexity models can thus overfit training data, by responding to small de-

viations that are not truly representative of the data’s overall trend. As such, they may

accurately fit the training data but fail to reliably predict the behaviour of future observa-

tions. The size of the training set also affects the likelihood of overfitting, as, in general, it

is more difficult to separate reliable patterns from noise when training with small data sets.

Overall, the AutoBench system must be able to choose between regression models of

varying complexities because different programs can have different time complexities. More-

over, the benchmarking process can often be time consuming, and hence it is likely that,

in practice, the models will be fitted to comparatively small data sets. The possibility of

overfitting must, therefore, be addressed so that comparisons made between models do not

naively favour those that overfit training data.

Ridge regression

A regression model that pays a great deal of attention to its training data and, in doing

so, does not generalise on data that it hasn’t seen before is said to have high variance. One

way to reduce the variance of models and thus prevent overfitting is to introduce bias. This is

known as bias-variance tradeoff. Bias can be introduced by penalising the magnitude of the

coefficients of model parameters when minimising RSS. This is a form of regularisation. To

achieve this, we use ridge regression (Hoerl and Kennard 1970), which places a bound on the

square of the magnitude of coefficients. That is, for a model ŷ = a0+a1x1+a2x2+· · ·+apxp,

104

ridge regression has the following objective function

minimise
n∑

i = 0
(yi − ŷi)2 subject to

p∑
j = 1

a2
j 6 t

where t > 0 is a tuning parameter that is inversely proportional to the degree of coefficient

‘shrinkage’: when t =∞ the model parameters are the same as those calculated using OLS;

and when t = 0 all the coefficients are eliminated.

Constraining the magnitude of coefficients in this manner causes models to place more

emphasis on their more influential parameters. In other words, the coefficients of model

parameters that have little effect on minimising RSS values are reduced, preventing over-

fitting. As a concrete example, we can compare the fitting errors of increasingly complex

polynomial models when trained on the runtime measurements of slowRev given in the

first example section 3.2. Using the OLS and ridge regression methods gives the following

results, in which the smallest error in each case is highlighted bold:

Fitting error:

Model Ordinary least squares Ridge regression

Quartic 6.52e−13 3.88e−10

Cubic 1.12e−12 1.70e−10

Quadratic 8.40e−12 7.21e−11

The results in this table demonstrate the susceptibility of the OLS method to overfitting, as

it favours a quartic time complexity for slowRev. In contrast, the results calculated using

ridge regression indicate a quadratic time complexity, which is what we would ‘expect’ given

the overall trend in slowRev’s runtime measurements.

Model selection

Selecting a model from a number of candidates is known as model selection (Claeskens

and Hjort 2008). This typically involves assessing the accuracy of each model under con-

sideration by calculating a fitting error, and then choosing the model with the least error.

105

Recall that our overall aim is to use a set of runtime measurements and input sizes

to approximate a program’s time complexity. As such, it is good practice to assess each

model’s predictive performance on unseen data, that is, data not present in the training

set. This way, time complexity estimates have a higher likelihood of being representative of

inputs that are outside of the size range of the test data. To achieve this on relatively small

data sets, the system uses Monte Carlo cross-validation (Xu and Liang 2001) alongside

ridge regression when assessing model accuracy.

Cross-validation evaluates a model by repeatedly partitioning the initial data set into a

training set Tk to train the model and a validation set Vk for evaluation. For each iteration

k of cross-validation, a fitting error is calculated by comparing the y-values of data points

in the evaluation set Vk with the corresponding ŷ-values predicted by the model trained on

set Tk. Errors from each iteration are then combined to give a cumulative fitting error.

When all the models have been cross-validated, by default, AutoBench compares them

using predicted mean square error (PMSE), which is a cumulative error used frequently in

model selection involving cross-validation (Claeskens and Hjort 2008). The model with the

lowest PMSE is then used to approximate time complexity.

In the first example in section 3.2, the runtime measurements of slowRev and fastRev

were split randomly into 70% training data and 30% validation data in every iteration of

cross-validation, and a total of 200 iterations were performed. The following results were

obtained in which models are ranked by decreasing PMSE value:

slowRev: fastRev:

Rank Model PMSE Model PMSE

1 Quadratic 7.21e−11 Linear 1.59e−11

2 Cubic 1.70e−10 n log2 n 1.06e−10

3 Quartic 3.88e−10 log2
2 n 2.17e−10

The equations of the top ranked model (in bold) were then used to approximate the time

complexities of slowRev and fastRev as quadratic and linear, respectively.

106

User options

Users of the system are able to specify which types of functions should be considered when

approximating time complexity, and how to compare them. AutoBench currently supports

the following types of functions: constant, linear, polynomial, logarithmic, polylogarithmic,

and exponential. For each type of function, a range of parameters is considered, such as

degrees between 2 and 10 for polynomials and bases 2 or 10 for logarithms. By default, all

types of functions and parameters are considered.

Regression models can be compared using a number of fitting statistics besides PMSE,

including R2, adjusted R2, predicted R2, and predicted square error.

3.4 Case studies

In this section, we further demonstrate the use of AutoBench with four case studies. In

each case study, the programs being tested are added to a file along with appropriate

SizedArbitrary generators to produce necessary inputs, NFData instance declarations to

ensure test cases can be fully evaluated, and user options. Unless otherwise stated, the user

options specify the size range of the test data and configure the results of test cases to be

evaluated to normal form. Test files are then passed to AutoBench, as demonstrated in

example two of section 3.2, and the time performance of the programs compared.

3.4.1 Case study 1: QuickSpec

Research on property-based testing has also introduced the notion of property generation.

Given a number of functions and variables, QuickSpec (Claessen, Smallbone, and Hughes

2010) will generate a set of correctness properties that appear to hold for the functions

based upon QuickCheck testing. Such equations can be used to help better understand the

program, or as lemmas to help prove the program correct.

Given the append function (++), the empty list [], and variables xs, ys, and zs, Quick-

Spec will generate the following identity and associativity properties:

107

[] ++ ys == ys

xs ++ [] == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

In previous work by Moran and Sands (1999), these equational laws have been formally

shown to be time efficiency improvements, �∼, as follows:

[] ++ ys �∼ ys

xs ++ [] �∼ xs

(xs ++ ys) ++ zs �∼ xs ++ (ys ++ zs)

With this in mind, a fitting first case study for our system is to test the equational properties

presented in the QuickSpec paper (Claessen, Smallbone, and Hughes 2010) to see which

give improvement results. For example, our system indicates that all three of the above

properties are correctness-preserving optimisations:

[] ++ ys Q ys

xs ++ [] Q xs

(xs ++ ys) ++ zs Q xs ++ (ys ++ zs)

If the inputs from above are extended to include Haskell’s standard list reverse and

sort functions (from the Prelude and Data.List, respectively), then a number of additional

properties are generated by the QuickSpec system, including:

reverse (reverse xs) == xs

reverse xs ++ reverse ys == reverse (ys ++ xs)

sort (reverse xs) == sort xs

sort (sort xs) == sort xs

For each equation above, the AutoBench system can be used to compare the time perfor-

mance of its left-hand side against that of its right-hand side on lists of random integers

using two corresponding test programs. For example, the second reverse property can be

tested by comparing appRev and revApp, defined as follows:

108

appRev :: [Int] → [Int] → [Int]

appRev xs ys = reverse xs ++ reverse ys

revApp :: [Int] → [Int] → [Int]

revApp xs ys = reverse (ys ++ xs)

The graphs of runtime measurements produced by our system for each of the reverse

and sort examples are depicted in figure 3.11. Just as before, performance results indicate

that all of the properties are correctness-preserving optimisations:

reverse (reverse xs) Q xs

reverse xs ++ reverse ys Q reverse (ys ++ xs)

sort (reverse xs) Q sort xs

sort (sort xs) Q sort xs

Baseline measurements

Consider the graphs in figure 3.12 for append’s identity laws. The first graph indicates

that xs ++ [] �∼ xs is a linear time improvement because xs must be traversed to evaluate

xs ++ [] to normal form. In comparison, we may expect the second graph to indicate that

[] ++ xs �∼ xs is a constant time improvement because [] ++ xs is the base case of the

append’s recursive definition. However, both graphs show a linear time complexity for the

functions, as, for each test case, the resulting list must be traversed in order to ensure each

computation is fully evaluated, which takes linear time in the length of the list.

Although AutoBench can evaluate test cases to weak head normal form, the true cost

of applying append would not be reflected in the runtime measurements of xs ++ [] if this

option was selected. This option is, however, appropriate when testing [] ++ xs. How then

can users best compare the time performance of xs ++ [] and [] ++ xs directly?

To aid users in these kinds of situations, AutoBench provides a baseline option to mea-

sure the cost of fully evaluating the results of test cases. When this option is selected, the

system applies one of the test programs to each input before benchmarking, and then bench-

marks an identity operation on the results of these applications. Baseline measurements

are plotted as a black, dashed line of best fit, as in figure 3.12.

109

Figure 3.11: AutoBench time performance results: QuickSpec examples

110

(a) Left identity

(b) Right identity

Figure 3.12: AutoBench time performance results: append’s identity laws

111

If we compare the runtimes of xs ++ [] against the baseline measurements, the line

of best fit’s gradient suggests additional linear time operations are being performed dur-

ing evaluation. In contrast, the runtimes of [] ++ xs approximately match the baseline

measurements. Thus, interpreting these results with respect to the baseline measurements

suggests that xs ++ [] is linear while [] ++ xs is constant.

AutoBench’s GitHub repository (Handley 2019) includes many more examples from the

original QuickSpec paper (Claessen, Smallbone, and Hughes 2010), each of which gives an

improvement or cost-equivalence result, where the latter indicates that two programs have

equal runtimes within a user-configurable margin of error.

3.4.2 Case study 2: Sorting

In 2002, the sorting function in Haskell’s Data.List module was changed from a quicksort

algorithm to a merge sort algorithm. Comments in the source file (GHC Team 2001)

suggest that the change occurred because the worst-case time complexity of quicksort is

O(n2), while that of merge sort is O(n log n). Included in the comments is a summary

of performance tests, which indicate that the new merge sort implementation does indeed

perform significantly better than the previous quicksort implementation in the worst case.

The performance tests carried out at that time predate the development of systems

such as Criterion and AutoBench. As such, runtime measurements were taken using an

OS-specific timing utility and testing was coordinated using a shell script. Our second

case study is, therefore, to rework the performance tests using our system. Doing so has a

number of advantages over the previous approach. First of all, AutoBench uses Criterion

to measure runtimes, which, as stated previously, is much more accurate and robust than

an OS timing utility. Secondly, testing is fully automated, so there is no need to develop

a custom script. And finally, our system uses linear regression analysis to estimate time

complexities, which were not included in the results of the prior analysis.

When sorting lists that are strictly increasing or sorted in reverse order, quicksort suffers

from its worst-case time complexity of O(n2). In contrast, merge sort’s time complexity is

always O(n log n). To put this theory to the test, we can compare the time performance

of the previous quicksort implementation with that of the new merge sort implementation

112

from Data.List when executed on strictly increasing and reverse sorted lists of integers.

A graph of runtime measurements comparing both implementations sorting random

input lists that are strictly increasing is given in figure 3.13a. It shows a significant difference

between the runtimes of quicksort and merge sort. Furthermore, for both types of list, our

system estimates the time complexity of merge sort as n log n and quicksort as n2, and

outputs a corresponding optimisation:

ghcQSortStrictlyIncreasing Q ghcMSortStrictlyIncreasing (0.95)

ghcQSortReverseSorted Q ghcMSortReverseSorted (0.95)

Hence, the results from AutoBench concur with the previous tests, indicating that merge

sort performs significantly better than quicksort in the worst case. We note that all test

files are available on our system’s GitHub page (Handley 2019).

Different list configurations

Overall, it is unfair to draw general conclusions about the relative performance of two

implementations based exclusively on their worst-case behaviours. As such, we may incor-

porate further tests to assess the time performance of each implementation when run on

sorted, nearly sorted, constant, and random lists of integers.

A key advantage of our system’s automated testing is that supplementary tests of this

kind can be added easily, by simply defining new generators that produce the necessary

inputs. For example, a generator for random lists is as follows:

instance SizedArbitrary RandomIntList where

sizedArbitrary n = RandomIntList <$> vectorOf n arbitrary

One line test programs can then accept values of this type and forward the underlying list

to the quicksort and merge sort functions already present in the file:

ghcQSortRandom :: RandomIntList → [Int]

ghcQSortRandom (RandomIntList xs) = ghcQSort xs

Graphs comparing the runtime measurements of both implementations when sorting

random and nearly sorted lists are depicted in figures 3.13b and 3.13c, respectively. In all

113

tests, except that of random lists, we can see that the merge sort implementation had the

better time performance, while for random lists, the time complexity of each implemen-

tation was estimated to be polylogarithmic. Thus, overall, the performance results from

AutoBench suggest that the decision to change Haskell’s standard sorting implementation

from a quicksort algorithm to a merge sort algorithm was an all-round good one.

Smooth merge sort

The current implementation of sort in Haskell’s Data.List module is a more efficient

implementation of merge sort than the one that replaced quicksort in 2002. By exploiting

order in the argument list, this smooth algorithm (O’Keefe 1982) captures increasing and

strictly decreasing sequences of elements as base cases for its recursive merge step:

> sequences [0, 1, 2, 3]

[[0, 1, 2, 3] , []]

> sequences [0, 1, 2, 3, 2, 1, 0]

[[0, 1, 2, 3] , [0, 1, 2] , []]

In particular, by taking sequences such as [0, 1, 2, 3] as base cases rather than singleton lists

such as [0], [1], [2], and [3], the smooth merge sort algorithm runs in linear time when the

initial list is already sorted or in strictly decreasing order. To determine whether this holds

in practice, we can analyse the time performance of sort on sorted and strictly decreasing

lists. At this point, the test file includes all external definitions required to test sort, so all

that is left to do is import Data.List and define a one line test program:

sortSorted :: SortedIntList → [Int]

sortSorted (SortedIntList xs) = sort xs

Results in figure 3.13d estimate the time complexity of sort when executed on sorted

lists to be linear. Similar linear time estimates are also given when testing its performance

on strictly decreasing and nearly sorted input lists.

114

(a) Strictly increasing lists (b) Random lists

(c) Nearly sorted lists (d) Sorted lists

Figure 3.13: AutoBench time performance results: merge sort and quicksort

115

Sorting random lists

While exploring different tests for this case study, we came across an interesting result:

merge sort appears to have worse time performance than quicksort when sorting random

lists of integers (for example, see figure 3.13b). Given this, we were curious to see how the

sort function compares to different implementations of quicksort when sorting random lists.

Here, we focus on quicksort’s naive implementation (Hutton 2016):

naiveQSort :: [Int] → [Int]

naiveQSort [] = []

naiveQSort (x : xs) = naiveQSort smaller ++ [x] ++ naiveQSort larger

where

smaller = [a | a ← xs , a 6 x]

larger = [b | b ← xs , b > x]

Two graphs of runtime measurements are displayed in figures 3.14a and 3.14b, which

show that, under different degrees of optimisation, the library function performs notably

worse than the naive function. Given that, in real-life settings, lists to be sorted are typically

nearly sorted (Estivill-Castro and Wood 1992), this result may only have minor practical

significance. Nevertheless, this outcome surprised us—especially given the source of each

implementation—and hence we believe it underlines the importance of efficiency testing.

3.4.3 Case study 3: The Sieve of Eratosthenes

The Sieve of Eratosthenes is a classic example of the power of lazy functional programming,

and is often defined by the following simple recursive program:

primes :: [Int]

primes = sieve [2 . .]

where sieve (p : xs) = p : sieve [x | x ← xs , x ‘mod‘ p > 0]

However, while this definition does produce the infinite list of primes, O’Neill (2009) demon-

strated that it is not the Sieve of Eratosthenes. In particular, it uses a technique known as

trial division to determine whether each candidate is prime, whereas Eratosthenes’ original

116

(a) Random lists with no optimisation

(b) Random lists with -O3 optimisation

Figure 3.14: AutoBench time performance results: Data.List.sort and naive quicksort

117

algorithm does not require the use of division. Consequently, the above algorithm performs

many more operations than the true version.

In keeping with a list-based approach, the following program by Richard Bird, appearing

in the epilogue of (O’Neill 2009), implements the true sieve:

truePrimes :: [Int]

truePrimes = 2 : ([3 . .] ‘minus‘ composites)

where

composites = union [multiples p | p ← truePrimes]

multiples n = map (n ∗) [n . .]

(x : xs) ‘minus‘ (y : ys)

| x < y = x : (xs ‘minus‘ (y : ys))

| x == y = xs ‘minus‘ ys

| x > y = (x : xs) ‘minus‘ ys

union = foldr merge []

where

merge (x : xs) ys = x : merge′ xs ys

merge′ (x : xs) (y : ys)

| x < y = x : merge′ xs (y : ys)

| x == y = x : merge′ xs ys

| x > y = y : merge′ (x : xs) ys

This definition, though far from being a ‘one-liner’ as in the case of the so-called un-

faithful sieve, is elegant in its own right: the composites are defined to be the union of

an infinite list of infinite lists. Moreover, and perhaps more importantly, this approach

crosses off multiples of already found primes in the way Eratosthenes had intended, and is

optimised to begin crossing off at p2 for every prime p.

Given that the unfaithful sieve performs many more operations than the true sieve, it is

natural to ask how primes and truePrimes perform in practice. For the purposes of this case

study we are, therefore, interested in comparing their time performance. O’Neill’s (2009)

article gives a detailed theoretical treatment of both implementations. To find all primes

less than n the unfaithful sieve, primes, is shown to have Θ(n2/log2 n) time complexity,

118

and the true list-based implementation, truePrimes, Θ(n
√

n log log n/log2 n). Thus, from

a theoretical point of view, primes is asymptotically worse than truePrimes.

In addition to the theory, O’Neill’s article includes a number of performance tests where

various implementations of the Sieve are compared according to the number of reductions

performed while being executed by the Hugs Haskell interpreter (Jones 2003). In contrast,

we wish to use the AutoBench system to compare time performance of the programs when

compiled using GHC. To achieve this, we start by defining the following two test programs

to extract the first n prime numbers from each list

unfaithfulPrimes :: Int → [Int]

unfaithfulPrimes n = take n primes

truePrimesList :: Int → [Int]

truePrimesList n = take n truePrimes

and then execute AutoBench on the corresponding test file.

Test results in figure 3.15a demonstrate a clear distinction between the runtimes of the

unfaithful sieve and that of the true list-based sieve. Although AutoBench does not cur-

rently support time complexities as advanced as Θ(n2/log2 n) and Θ(n
√

n log log n/log2 n),

its prediction of quadratic and linear runtimes for primes and truePrimes are reasonable ap-

proximations. Moreover, when truePrimes is tested on larger input sizes (see figure 3.15b),

the system approximates its time complexity as n log2 n, which is closer to the theory.

Nonetheless, the results in figure 3.15a do clearly indicate that truePrimes has the

better time performance. In turn, this suggests that the time complexity of primes is

indeed asymptotically worse than truePrimes:

unfaithfulPrimes Q truePrimesList (1.00)

Thus, overall, our test results agree with the theory and also with the corresponding per-

formance measurements presented in O’Neill’s article.

119

(a) Unfaithful and true list-based sieves

(b) True list- and priority-queue-based sieves

Figure 3.15: AutoBench time performance results: sieve implementations

120

An alternative data structure

A priority queue implementation of the Sieve of Eratosthenes is also presented in (O’Neill

2009), which is shown to have a better theoretical time complexity than Richard Bird’s

list-based solution. As a final test, we are interested to see whether using a more complex

data structure in this instance is worthwhile. To this end, we can compare the list and

priority queue implementations by using them to generate one million prime numbers.

The graph of runtime measurements for this test is given in figure 3.15b and shows that

both implementations perform comparably. Here, our results differ from O’Neill’s, who

stated that the priority queue implementation was more time-efficient for all primes beyond

the 275, 000th prime. To further validate our results, we tested both implementations up to

the 10 millionth prime: the list implementation performed marginally better.

The Haskell community is sometimes criticised for overusing the built-in list type in

preference to more efficient data structures. Though the performance results above are

very specific, they illustrate that, when used with care, lists can give efficient solutions.

Nonetheless, these results also show that the unfaithful sieve’s list-based implementation is

not efficient, and that both true implementations have significantly better time performance.

Operational errors

It is true that the Unfaithful Sieve of Eratosthenes, primes, produces correct results. Yet it

does not correctly implement Eratosthenes’ algorithm, despite this claim being made on a

number of occasions, for example, in (Meertens 2004). As such, technically speaking, primes

contains a notable implementation error. Property-based testing tools such as QuickCheck

cannot detect such errors, however, because they are operational in nature, not denotational.

On the other hand, AutoBench estimated the unfaithful sieve’s time complexity as n2,

which is significantly different from the true sieve’s known complexity Θ(n log log n).

This difference arguably highlights the implementation error, and thus demonstrates how

AutoBench could be used to uncover operational errors.

121

3.5 Discussion

Given the nature of the AutoBench system, there are many avenues for further work that

relate to each of the system’s three main components individually: data generation, bench-

marking, and statistical analysis. Similarly, related work is best organised in this manner.

In this section, we thus discusses related and further work accordingly.

3.5.1 Data generation

The main difficulty in generating random data using type-driven generators provided by

property-based testing tools is ensuring the data has a suitable distribution. This is es-

pecially true if it must also enforce one or more invariants. The reason for this is that

such generators conflate a number of concerns that ideally should be kept separate: (a) the

data’s desired structure; (b) the properties it should obey; and (c) its intended distribution.

A number of different solutions to this problem have been proposed. Pałka et al. (2011)

show that, with much care and attention, it is possible to manually define an adequate

generator for well-typed lambda terms used to test a compiler. This is a particularly

difficult problem because type correctness is a global property that must be achieved by a

sequence of local choices (as generators are defined on a per-type basis). Claessen, Duregård,

and Pałka (2015) introduce a method for automatically deriving generators with uniform

distributions from the structure of test data and one or more predicates it must satisfy.

Luck (Lampropoulos et al. 2017) is a domain-specific language for manually writing

QuickCheck properties and generators simultaneously, so as to finely control the distribu-

tion of test data. This technique employs needed narrowing (Antoy, Echahed, and Hanus

2000) and constraint solving to ensure generated data satisfies one or more given proper-

ties. Fetscher et al. (2015) present a generic method for generating random, well-formed

expressions from typing judgements. This is used in place of the simple ‘generate and test’

approach that is largely ineffective for problem domains incorporating even basic types.

Many of the articles cited above address different notions of size for generated test data.

For example, Claessen, Duregård, and Pałka (2015) provide a method for generating random

values of datatypes that contain specific numbers of constructors, which corresponds to the

122

notion of size we adopted for our tree-like data structures in section 3.3.2. It achieves

this by uniformly sampling values of a particular type and size from a so-called space.

Spaces allow sampled values to be generated lazily so that all possible values do not need

to be constructed upfront. However, in order to generate a single value, the space must be

searched in a depth-first manner. Our approach to generating sized data differs in that we

don’t sample values but instead solutions to Diophantine equations, which are then used

to define values that are correctly sized by construction. Thus, our generation method is

often more efficient. However, values can be removed from spaces if they fail to satisfy a

given predicate, which allows for efficient generation of constrained test data. Our work on

generic data generation has yet to address this, but we look to the Haskell implementation

in (Claessen, Duregård, and Pałka 2015) for guidance.

Various Haskell libraries have been developed to automatically derive generators for user-

defined datatypes, including Derive (Mitchell 2007), Feat (Duregård, Jansson, and Wang

2013), and MegaDeth (Grieco et al. 2017). As per our general approach, these libraries

focus on providing random test data for scenarios whereby developers do not necessarily

know the properties that the data should satisfy. Consequently, these libraries only address

points (a) and (c) above. If developers also wish to address point (b) from above, then it is

preferable to manually write specialised generators using, for example, Luck.

The most basic library is Derive, which is implemented using Template Haskell. Sim-

ilarly to our work presented in section 3.3.2, the library provides generators for regular

recursive datatypes. However, such generators permit recursive data constructors to be

selected at every recursive generation step, which can lead to infinite loops.

MegaDeth avoids non-termination by placing a maximum bound on the number of times

generation functions can recurse. As per our approach, this works by selecting only terminal

data constructors when the ‘generation size’ becomes zero. In contrast, MegaDeth reduces

its generation size by a fixed factor at each recursive step, for example, n
2 , and so can only

generate a subset of all possible values for a given datatype. This leads to a non-uniform

distribution of test data, which appears to be excessively biased in practice: see figure 3

in (Mista, Russo, and Hughes 2018). Despite the fact that AutoBench’s generators must

incorporate a notion of size that is monotonically increasing, we believe our underlying

123

generation method based on solving Diophantine equations serves as a better starting point

for generating (uniform) distributions of ‘maximally-sized’ data.

Feat determines the distribution of generated values similarly to the method described

in (Claessen, Duregård, and Pałka 2015). That is, by exhaustively enumerating all possible

values of a given datatype up to a particular size, and then uniformly picking between

those values. In fact, the former approach (indexing into spaces) was inspired by Feat’s

implementation. Nonetheless, the particular generation method discussed in (Duregård,

Jansson, and Wang 2013) also leads to a non-uniform distribution of test data that appears

extremely biased in practice: see figure 3 in (Mista, Russo, and Hughes 2018).

Fundamentally, the Derive, Feat, and MegaDeth libraries support the generation of

random test data of size upto a given limit (which is infinite in the case of Derive). Hence,

even if they we able to generate uniformly distributed test data, their approaches would

not be compatible with the needs of AutoBench. As such, none of these libraries can be

used in place of our generic approach presented in section 3.3.2.

The same is true for a recent Haskell tool chain called Dragen (Mista, Russo, and Hughes

2018), which is able to accurately predict the behaviour of QuickCheck generators using a

stochastic model based on branching processes (Watson and Galton 1875). Doing so allows

the system to automatically derive generators with various distributions. Despite the fact

that Dragen produces maximally-sized test data, it does so for non-regular datatypes. We

are interested in extending our approach from section 3.3.2 in this respect, as well as to

support different distributions of test data, and so look to Dragen’s design for guidance.

SmallCheck (Runciman, Naylor, and Lindblad 2008) implements another popular ap-

proach to property-based testing. In comparison to QuickCheck’s random testing method-

ology, SmallCheck tests properties for all possible inputs up to a certain ‘depth’, which is

a size parameter constraining an exhaustive depth-limited search. It is indeed possible for

AutoBench to use SmallCheck to generate test data (we have conducted preliminary exper-

iments). However, a single Criterion benchmark can often take in excess of one minute to

run. Hence, measuring the runtimes of programs executed on all possible inputs is seldom

practical.

In the wider literature, EasyCheck (Christiansen and Fischer 2008) is a property-based

124

testing library written in the functional logic programming language Curry. It takes a

similar approach to data generation as SmallCheck, making use of narrowing to constrain

generated data to values satisfying a given predicate.

Real-world test data

As an alternative option to generating random test data using QuickCheck, AutoBench

allows users to manually specify ‘real-world’ test data. This is particularly useful for

three reasons: (a) when testing a program whose domain is intricate, and thus a suitable

SizedArbitrary instance is not easily definable; (b) when testing a program that is partic-

ularly sensitive to the values of its inputs, and so testing its performance using randomly

generated inputs is not appropriate; (c) to allow performance testing using pre-recorded

input traces, for example, as part of game development.

Recall from section 3.3.3 that AutoBench defines benchmarks using test environments

env :: NFData env ⇒ IO env → (env → Benchmark) → Benchmark

where an IO env is taken to be an IO action that produces test data. As such, when

testing a program of type a → b, users must provide a list of suitable inputs of type IO a.

In addition, the system cannot deduce size information as yet, and so the size of each input

must be given alongside it. As a concrete example, the following test data can be used to

analyse the performance of slowRev and fastRev from section 3.2.1:

tData :: [(Int, IO [Int])]

tData = [(0, pure [])

, (5, pure [1 . . 5])

, (10, pure [1 . . 10])

, (15, pure [1 . . 15])

. . .]

As in section 3.2.1, the size of each input list is given by its number of elements.

Manual test data must be included in test files along with the programs to be tested. In

turn, user-defined test suites can be configured to utilise real-world inputs by referencing

such data. Further information is given in the system’s user manual (Handley 2019).

125

With respect to real-world test data, there are two avenues for further work that we are

particularly interested in. Firstly, it would be useful for the system to automatically deduce

size information. Secondly, we wish to support a module for fuzzing inputs, allowing users

to determine the value-sensitivity of a test program. In both cases, there is a wealth of

relevant literature; for brevity, we give only a brief overview.

Sized types (Hughes, Pareto, and Sabry 1996; Vasconcelos 2008), which index types with

natural numbers to denote the sizes of their values, appear a promising line of future research

for our first goal. In particular, their indices could replace user-specified size information.

As we have seen in section 3.3.2, generic representations (Hinze and Jeuring 2003) of

datatypes provide a simple way of prescribing size information, via the notion of ‘number of

constructors’. Indeed, it is straightforward to define a function of type Generic a ⇒ a → Int

to calculate size in this manner using the Generics-Sop library (Vries and Löh 2014).

The idea of fuzzing (Godefroid, Levin, and Molnar 2012), which originated as part of

security testing, is to randomly mutate well-formed inputs and then test programs using

those modified inputs. The degree to which a program is value-sensitive is determined by

the relative change in its ‘cost’ (in our case, time performance) with respect to changes in

the values of its inputs. AutoBench could thus use fuzzing and repeated benchmarking to

automatically determine a test program’s value-sensitivity. Among other things, this can

be used to determine whether it is ‘safe’ to analyse the performance of a program executed

on random inputs (as per point (b) at the start of this discussion).

There are many articles on fuzzing, for example, (Sutton, Greene, and Amini 2007;

Godefroid, Kiezun, and Levin 2008), as well as libraries for applying fuzzing in Haskell, for

example, (Grieco, Ceresa, and Buiras 2016; Grieco et al. 2017).

3.5.2 Benchmarking

The system most closely related to ours is Auburn (Moss 2000), which is designed to bench-

mark purely functional data structures and algorithms (Okasaki 1999) in Haskell. Similarly

to our system, it can generate inputs on behalf of users in the form of data type usage

graphs (DUGs), which combine test inputs with suitable operations on them. Each DUG’s

performance is measured by its execution time.

126

Auburn analyses sequences of operations performed on datatypes, allowing it to give in-

sights into the amortised cost of individual operations (as per Okasaki’s work). In contrast,

our system’s performance analysis is more coarse-grained, comparing the runtimes of com-

plete Haskell programs. Auburn does not compare or extrapolate the time measurements

it takes, instead they are simply output to the user in a tabular format.

Other performance indicators

As discussed in background section 2.2, typical performance measurements used in

benchmarking tests include execution time, memory allocation, throughput, lock contention,

and IO operations. It would, therefore, be useful for AutoBench to compare Haskell pro-

grams according to additional performance measurements, beyond just execution time. In

particular, we are interested in memory usage as this is often difficult to diagnose in Haskell

due to its call-by-need semantics. Moreover, we would like to provide runtime and allocation

comparisons for both pure and impure Haskell code (that is, to include IO operations).

In the former case, there are two options for extending AutoBench to account for a

program’s memory allocation. Firstly, the Criterion library—which the system already de-

pends on—can be configured to measure space usage. Hence, the ‘front end’ of AutoBench

need not be amended, and the ‘back end’ need only be extended to analyse different per-

formance measurements. The second option is to depend on another library specifically

designed to measure space usage in Haskell. Among those available, Weigh (Done 2016) is

the most popular. Seemingly inspired by Criterion, Weigh provides functions to construct

its own benchmarks of type Weigh () in much the same way:

func :: NFData b ⇒ String → (a → b) → a → Weigh ()

wgroup :: String → Weigh () → Weigh ()

This is particularly convenient for AutoBench’s existing implementation, as it need only

be extended laterally to interface with this new library. Weigh can measure total bytes

allocated, total number of garbage collections, total amount of live data on the heap, and

maximum residency memory in use. In comparison, Criterion can only measure total bytes

allocated and total number of garbage collections.

127

Both Criterion and Weigh provide means to benchmark impure Haskell code, and so

can also be used to address the second extension to AutoBench discussed above. Recall

from section 2.2.1 that Criterion provides the following functions, for example:

nfIO :: NFData a ⇒ IO a → Benchmarkable

nfAppIO :: NFData b ⇒ (a → IO b) → a → Benchmarkable

In turn, Weigh has a number of comparable functions:

value :: NFData a ⇒ String → IO a → Weigh ()

io :: NFData b ⇒ String → (a → IO b) → a → Weigh ()

In order to generate polyvariadic benchmarks (see section 3.3.3) using these functions,

AutoBench must provide additional generators. For example

genNfIO+ :: (as ∼ Arguments (a → rest) , IO r ∼ Result (a → rest)

, All SizedArbitrary as , All NFData as , Curry as , NFData r)

⇒ [(a → rest, String)] → Int → Benchmark

can be used to generate benchmarks using nfAppIO. The only difference between the type

signature of this generator and that of genNf+ from section 3.3.3 is the constraint IO r ∼

Result (a → rest), which ensures the result type of the user-specified test program’s of type

a → rest is an IO action. As such, the implementation of this function is highly comparable

to genNf+: differing only in the use of nfAppIO in place of nf . Extending AutoBench to

compare impure Haskell code, therefore, requires front end modifications only. In particular,

the system must determine whether the tests programs are pure or impure. This can be

achieved by simply analysing their type, a → rest, which is straightforward.

GHC Cost Centres (GHC Team 2019) are used to measure time and space usage at

particular locations inside functions. When code is compiled with profiling enabled, infor-

mation regarding resource usage at each location is generated. In contrast with our system,

which benchmarks programs for comparative purposes, profiling is more fine-grained, and

aims to reveal specific locations of maximum resource usage. GHC cost centres could thus

be used in conjunction with our system as part of a subsequent optimisation phase.

128

Comparing benchmarks

Earlier versions of Criterion included a function to compare benchmarks, called bcompare.

However, it turned out that this complicated many of the system’s internals. As a result,

it was removed and has yet to be replaced (O’Sullivan 2014a).

Progression (Brown 2010) is a popular Haskell library that builds upon Criterion. It

stores the results of Criterion benchmarks in order to graph the runtime performance of

different program versions against each other. Users assign each benchmark a unique label,

and then select which labelled data to compare graphically.

As Progression is a wrapper around Criterion, test inputs and benchmarks must be spec-

ified manually by users of the system. Users are also responsible for compiling and executing

their test files. Our system differs in this respect, as test inputs are generated automatically

and the benchmarking is fully automated. Progression uses Gnuplot to produce its graphs,

which it invokes via a system call. We preferred to use the Chart package (Docker 2006),

similarly to Criterion, in order to keep our implementation entirely Haskell-based.

Taking inspiration from Progression, AutoBench’s results could be labelled and saved

to file. This would then allow users to compare data from different tests without having to

re-run the benchmarks, which, as we have previously mentioned, can be time consuming. It

is straightforward to encode and decode structured data efficiently in Haskell. For example,

the Aeson library (O’Sullivan 2014b) is optimised for JSON report files.

This idea could be taken one step further, by extending AutoBench to compare programs

from different sources. One seemingly useful source of comparison is between different

commits to a version control system, for example, GitHub. The continuous integration

service known as Travis (2019) enables new repository commits to be subjected to a number

of QuickCheck-style correctness tests. Such tests ensure updated implementations do not

introduce bugs, by requiring that all tests are passed before allowing commits to be merged.

In essence, this approach compares the correctness of one program version with that of

another. To achieve a similar goal for efficiency, AutoBench requires a method for specifying

‘testable efficiency properties’, for which we can look to QuickCheck for inspiration.

129

3.5.3 Statistical analysis

The field of study aimed at classifying the behaviour of programs, for example, their time

complexity, using empirical methods is known as empirical algorithmics.

Profiling tools are the primary method of empirical analysis, which assign one or more

performance metrics to individual locations inside a single program in order to collect run-

time information in specific instances. Unlike the AutoBench system, which benchmarks a

program’s time efficiency on different sized inputs, traditional profiling tools do not typically

characterise performance as a function of input size.

Although some articles, for example, (Coppa, Demetrescu, and Finocchi 2012; Coppa

et al. 2014) aim to develop profiling tools that specify runtime as a function of input size,

they focus primarily on automatically calculating the sizes of inputs, rather than describing

in details their methods for model fitting and selection. Nonetheless, as we discussed in the

previous subsection, input size inference could be useful for our system.

Model fitting and selection is discussed in the work of Goldsmith, Aiken, and Wilkerson

(2007), where the authors introduce a tool for describing the asymptotic behaviour of pro-

grams by measuring their ‘empirical computational complexity’. In practice, this amounts

to measuring program runtimes for different sized inputs and then performing regression

analysis on the results to approximate asymptotic time complexity. This approach is similar

to that of our work, however, their system only supports polynomial models. Moreover,

their choice of regression method is OLS and their model selection process is user-directed

and centred on the R2 fitting statistic. Both of these approaches favour models that overfit

training data but overfitting is not discussed in the article. In contrast, we use ridge regres-

sion and cross-validation to counteract overfitting, and provide a range of unbiased fitting

statistics to compare regression models (see section 3.3.4).

The idea of inferring asymptotic bounds from runtime measurements is one we are keen

to explore, but there appears to be no generally accepted solution to this problem (Coppa,

Demetrescu, and Finocchi 2012). However, some researchers have proposed heuristics for

the ‘empirical curve bounding’ problem, showing their effectiveness on a number of occa-

sions (McGeoch et al. 2002). Some commercial software packages do advertise ‘curve fitting’

130

features (Systat Software 2019; OriginLab 2019; Hyams 2019), but as they don’t publicise

their underlying technologies, we are not able to compare them with our system.

LASSO regression analysis

The method we have developed for approximating time complexity uses regularisation

to prevent higher complexity models from overfitting training data. In particular, we make

use of ridge regression, which constrains the square magnitude of the coefficients of model

parameters. Initially, however, we had intended to use the LASSO (least absolute shrinkage

and selection operator) regression method (Hans 2009). This differs from ridge regression

in that it constrains the absolute magnitude of coefficients. The advantage of LASSO over

ridge regression is that it can shrink the coefficients of non-influential model parameters to

zero. Thus, as well as preventing overfitting, LASSO performs feature selection.

To demonstrate feature selection in practice, the following table shows the models chosen

by the ridge and LASSO regression methods when applied to the runtime measurements of

slowRev taken from the first example of section 3.2:

Ridge regression y = 5.28e−9x2 + 2.28e−11x + 2.91e−5

LASSO regression y = 5.52e−9x2 + 3.67e−5

In both cases, a quadratic model is chosen. However, the LASSO method has eliminated

the linear parameter (2.28e−11x) present in the equation output by ridge regression. In

doing so, the LASSO method gives a clearer indication that slowRev is quadratic.

From this example (and many more alike), it becomes clear that the LASSO method

is more fitting for our purposes than ridge regression. Unfortunately, however, solving

instances of the LASSO algorithm in Haskell is too computationally expensive. In short,

this is because LASSO has no closed-form solution. (In comparison, ridge regression’s

algorithm does have a closed-form solution.) The technical details are somewhat involved

but essentially the LASSO method requires solving quadratic optimisation problems. To

the best of our knowledge, there are currently no quadratic programming (QP) solvers

implemented in Haskell. There are, however, Haskell bindings to QP solvers developed in

131

other languages (such as Python and R). Nonetheless, a key initial design choice was to

keep AutoBench entirely Haskell-based. Hence, the system currently uses ridge regression.

A Haskell library that we hoped would be suitable for AutoBench is HVX (Copeland

2017), designed to solve a more general class of convex programming problems, of which the

LASSO algorithm is a particular instance. HVX optimises convex models using iterative

methods. In practice, this makes calculating model parameters an iterative process. In

addition to using an iterative cross-validation technique, this approach makes the analysis

phase of AutoBench’s execution too time consuming, and hence impractical.

In the future, we hope that an efficient quadratic programming library is developed

natively in Haskell. This would allow us to solve instances of the LASSO algorithm more

directly, with the aim of improving AutoBench’s (time) complexity approximations. An-

other option is to relax our initial design decision and allow the system to invoke QP

solvers developed in other languages. In this case, we have performed some preliminary

experiments with HaskellR (Boespflug et al. 2014), which enables Haskell and R code to

be used in the same source file using quasiquotation. Overall, our experiments—available

online (Handley 2019)—indicate that it is reasonably straightforward to invoke R’s stan-

dard implementation of the LASSO algorithm from impure Haskell code. Furthermore, it

appears to be extremely efficient. Further investigations are part of our future work.

Multiple linear regression

Despite the fact that AutoBench can generate benchmarks for functions of any non-zero

arity via polyvariadic benchmarking (see section 3.3.3), its complexity analysis currently

only supports two-dimensional data. In practice, this means that a time complexity estimate

for a program with multiple inputs is based on the size of its first argument only.

However, the system’s existing method of regression analysis, ridge regression, can be

used to determine the relationships between two or more independent variables xi and

a dependent variable ŷ. More specifically, ridge regression can calculate the unknown

parameters ai in equations of the following form for any p:

ŷ = a0 + a1x1 + a2x2 + · · · + apxp

132

An example whereby p = 2 (that is, for two independent variables) is the time complexity

estimate given for slowRev in section 3.2.1, which is calculated to be y = 5.28e−9x2 +

2.28e−11x+2.91e−5. In this instance, the independent variables x1 and x2 are instantiated

to x2 and x, respectively, for the same size parameter x. However, this need not be the

case. Indeed, x1, x2, …, xp can freely refer to any available size parameters.

With this in mind, we can imagine that extending AutoBench’s complexity approxi-

mations to account for multiple input sizes is a viable option. However, it is not clear

that extending regression models to include all such size parameters is desirable. A simple

counterexample to this approach is Haskell’s append operator:

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x : xs) ++ ys = x : xs ++ ys

It is often said that (++) has linear runtime in the length of its first argument, and, according

to AutoBench testing, it does. On the other hand, it should be clear that no matter how

large its second argument is, (++) will always terminate when its first argument has been

traversed. As such, it is constant in the length of its second argument. Append’s runtime

is, therefore, best predicted by the following regression model

ŷ = a0 + a1x1 + 0.0x2

in which the coefficient of the second independent variable, x2, relating to the size of

append’s second argument, is zero. This model is equivalent to

ŷ = a0 + a1x1

where x2 has been removed altogether, meaning that append’s runtime is best predicted by

the size of its first argument only. This observation can be confirmed by simple strictness

analysis, which shows that append is lazy in its second argument (Wadler 1988).

Nonetheless, not all binary functions are lazy in their second arguments. Furthermore,

it is easy to imagine that the runtimes of programs that are strict in all of their arguments

are affected by all such input sizes. To account for this for an arbitrary binary function,

three separate regression models must be considered: (a) running time depending on the

133

first input size only; (b) depending on the second input size only; (c) depending on both

input sizes. It is easy to see that the number of combinations increases exponentially in the

number of input sizes and hence this approach is not practical.

A method for extending AutoBench’s current complexity analysis (based on ridge re-

gression) to account for multiple input sizes is thus not immediately obvious. Nonetheless,

an alternative method based on LASSO regression may be more straightforward. In par-

ticular, recall that LASSO performs feature selection on independent variables. A single

regression model for each type of function (linear, quadratic, cubic, and so on) could thus

be used, which incorporates all input sizes, in the hope that the algorithm shrinks the

coefficients of all non-influential model parameters (that is, input sizes) to zero. We have

yet to perform any rigorous tests, but note that this approach does work in the simple case

of append. An in-depth investigation is part of our future work.

3.6 Conclusion

In this chapter, we have taken ideas from property-based testing, microbenchmarking, and

statistical analysis, and used them to develop a straightforward approach for comparing the

time performance of Haskell programs. In doing so, we have combined two well-established

systems, namely QuickCheck and Criterion, to give a lightweight, fully automated tool that

can be used by ordinary programmers. In addition, we have devised a simple but effective

algorithm for approximating time complexity, based on linear regression analysis.

134

Chapter 4

Improving Haskell
The University of Nottingham Improvement Engine

Lazy evaluation is a key feature of Haskell, but can make it difficult to reason about the

efficiency of programs. Moran and Sands’ improvement theory addresses this problem by

providing a foundation for proofs of program improvement in a call-by-need setting, and

has recently been the subject of renewed interest. However, proofs of improvement are

intricate and require an inequational style of reasoning that is unfamiliar to many Haskell

programmers. In this chapter, we present the design and implementation of an inequational

reasoning assistant called Unie, which provides mechanical support for improvement proofs,

and demonstrate its utility by verifying a range of results from the existing literature.

4.1 Introduction

In the previous chapter, we introduced the AutoBench system, which provides a simple

means to automatically compare the time performance of Haskell programs based on bench-

mark testing. Although benchmarking libraries such as Criterion (O’Sullivan 2014a) enable

programs to be analysed within a wide range of test environments, in general they cannot

determine whether one program will outperform another in all program contexts.

In order to achieve such guarantees, we must instead reason more directly about the

operational nature of expressions (and their subexpressions) defined in Haskell. However,

such reasoning about efficiency is notoriously difficult and counterintuitive. The source

135

of the problem is Haskell’s use of lazy evaluation, or more precisely, the language’s call-

by-need semantics, which allows computations to be performed with terms that are not

fully normalised. In practice, this means that the operational efficiency of a term does not

necessarily follow from the number of steps it takes to evaluate to normal form, in contrast

to a call-by-value setting where reasoning about efficiency is much simpler.

Moran and Sands’ improvement theory (1999) offers the following solution to this prob-

lem: rather than counting the number of steps required to normalise a term in isolation,

we compare the number of steps required in all program contexts. This idea gives rise to

a compositional approach to reasoning about efficiency in call-by-need languages such as

Haskell, which is known as operational improvement or just improvement.

Improvement theory was originally developed in the 1990s, but has recently been the

subject of renewed interest, with a number of general-purpose program optimisations being

formally shown to be improvements (Hackett and Hutton 2014; Schmidt-Schauß and Sabel

2015; Hackett and Hutton 2018). In an effort to bridge the so-called correctness/efficiency

‘reasoning gap’ (Harper 2014), these articles show that it is indeed possible to formally

reason about the performance aspects of optimisation techniques in a call-by-need setting.

While improvement theory provides a suitable basis for reasoning about efficiency in

Haskell, the resulting proofs are often intricate, and therefore constructing them by hand is

challenging. In particular, comparing the cost of evaluating terms in all program contexts

requires a somewhat elaborate reasoning process, whose resulting inequational style of cal-

culation is inherently more demanding than the equational style that is familiar to most

Haskell programmers (see background section 2.3 for an overview).

To support interactive equational reasoning about Haskell programs, the Hermit toolkit

was developed by Farmer et al. Its utility has been demonstrated in a series of case stud-

ies (Farmer et al. 2012; Sculthorpe, Farmer, and Gill 2013; Adams, Farmer, and Magalhães

2014; Farmer, Siederdissen, and Gill 2014; Adams, Farmer, and Magalhães 2015; Farmer,

Sculthorpe, and Gill 2015; Farmer 2015). Despite the fact that inequational reasoning is

more involved than its equational counterpart, both approaches share the same calcula-

tional style. In addition, the Hermit system and improvement theory are both based on the

same underlying setting: the Core language of the Glasgow Haskell Compiler. As such, a

136

= λxs.λys.3(case xs of
[] → ys
(z : zs) → ((f zs) ++ [z]) ++ ys)

[18]> append -assoc -lr-i
�∼ λxs.λys.3(case xs of

[] → ys
(z : zs) → (f zs) ++ ([z] ++ ys))

[19]> right
= λxs.λys.3(case xs of

[] → ys
(z : zs) → (f zs) ++ ([z] ++ ys))

[20]> eval-i
�∼ λxs.λys.3(case xs of

[] → ys
(z : zs) → (f zs) ++ (z : ys))

Figure 4.1: An extract from an improvement proof in the Unie system

system developed in a similar manner to Hermit could prove to be effective in supporting

inequational reasoning for proofs of program improvement, just as Hermit has proved to be

effective in supporting equational reasoning for proofs of program correctness.

To the best of our knowledge, no such inequational reasoning system existed when

our contributions were first published in (Handley and Hutton 2018b). To fill this gap,

we developed the University of Nottingham Improvement Engine (Unie): an interactive,

mechanised assistant for call-by-need improvement. Our improvement assistant comprises

approximately 13,000 lines of new Haskell code, and is freely available on GitHub (Handley

2018). The work in this chapter introduces the system and its underlying theory, and

demonstrates its applicability on a number of improvement results taken from the literature.

By way of example, an extract from an improvement proof in our system concerning

the familiar slowRev function is given in figure 4.1. In each step, the term highlighted

in orange is being transformed. In the first step, the append operator (++) is reassoci-

ated to the right, which is an improvement: denoted by �∼. We then move to the right

and evaluate (++), which is also an improvement. The ‘tick’ operator (X) in the proof rep-

resents a unit time cost. We will revisit this example in more detail throughout the chapter.

Remark. We note that some of the transformations applied during improvement proofs

137

(such as that above) can impact the cost of garbage collection. However, garbage collection

is not addressed in our work. Related work on space-safe improvement transformations can

be found in (Gustavsson and Sands 1999; Hackett and Hutton 2019).

4.2 Improvement theory in practice

To provide some intuition for improvement theory and demonstrate how its technicalities

can benefit from mechanical support, we begin with an example that underpins the proof

extract in figure 4.1. Recall the following property, which formalises that Haskell’s list-

appending operator, (++), is associative for finite lists:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) (4.1)

As highlighted in the previous chapter, a common informal argument about this equation

is that its left-hand side is less time-efficient than its right-hand side, because the former

traverses the list xs twice whereas the latter only traverses xs once. In fact, the examples

presented in section 3.2 indirectly demonstrate how this property can be exploited when

optimising functions defined in terms of append (Wadler 1987). Optimisations of this kind

often establish the correctness of (4.1), which can be verified by a simple inductive proof,

but fail to make precise any efficiency claims about the equation. Can we do better?

Using improvement theory, we can formally show which side of equation (4.1) is more

efficient by comparing the evaluation costs of each term in all program contexts. That is,

we can show that one side is ‘improved by’ the other, written:

(xs ++ ys) ++ zs �∼ xs ++ (ys ++ zs) (4.2)

Remark. Readers may notice that the ‘improved by’ relation above uses the same no-

tation, namely �∼, as introduced in the previous chapter when discussing the AutoBench

system’s optimisation results (see section 3.3.4). This is intentional, as the latter work aims

at approximating this relation by way of empirical analysis. Nonetheless, it is important to

138

note that this new relation is used to formally compare the efficiency of Haskell expressions.

Hence, inequations such as (4.2) must be proved.

Before sketching how the above inequation can be proved, we first introduce some nec-

essary background material on improvement theory. As the focus here is on illustrating the

basic ideas of program improvement by means of an example, we simplify the theory where

possible and will return to the precise details in the next section.

Program contexts and improvement

In the usual manner, program contexts are ‘terms with holes’, denoted by [−], which

can be substituted with other terms. Informally, a term M is improved by a term N , written

M �∼ N , if, in all program contexts, the evaluation of N requires no more function calls

than that of M . If the evaluations require the same number of function calls in all contexts,

then they are said to be cost equivalent, which is written as M ��∼ N .

Recording cost

While reasoning about improvement, it is necessary to keep track of evaluation cost

explicitly within the syntax of the source language. This is achieved by means of a tick

annotation (X) that represents a unit time cost, that is, one function call. Denotationally,

ticks have no effect on terms. Operationally, however, a tick represents a function call.

Hence, a term M evaluates with n function calls if and only if XM evaluates with n + 1

function calls. Moreover, for any function definition f x = M , we have the cost equivalence

f x ��∼ XM (4.3)

because unfolding the definition eliminates the function call. Removing a tick improves a

term, XM �∼ M , but the reverse M �∼ XM is not valid.

139

Improvement induction

A difficulty with the definition of improvement is that it quantifies over all program

contexts. Hence, proving (4.2) notionally requires considering all possible contexts. This

often leads to cumbersome proofs: a well-known problem with contextual definitions. As an

alternative proof strategy, we will look at improvement induction. Improvement induction

allows us to only consider a single program context, which leads to much simpler proofs.

We use improvement induction for this purpose, presented here in a simplified form.

For any context C, the following is true:

M �∼ XC[M] XC[N] ��∼ N

M �∼ N

Intuitively, this rule (Moran and Sands 1999) allows us to prove M �∼ N by finding a single

context C for which we can ‘unfold’ M to XC[M] and ‘fold’ XC[N] to N . For example,

applying improvement induction to inequation (4.2) reduces the problem to finding a single

context C that satisfies the following two properties:

(xs ++ ys) ++ zs �∼ XC[(xs ++ ys) ++ zs] (4.4)

XC[xs ++ (ys ++ zs)] ��∼ xs ++ (ys ++ zs) (4.5)

Proof of improvement property 4.2

For the purposes of this example, we can assume that the source language of improve-

ment theory’s operational model is simply Haskell, with one small caveat: arguments to

functions must be variables. Improvement theory requires this assumption and it is easy to

achieve by introducing let bindings. For example, the term (xs ++ ys) ++ zs can be viewed

as syntactic sugar for let ws = xs ++ ys in ws ++ zs.

Using improvement induction, we can prove (4.2) by finding a context C for which

properties (4.4) and (4.5) hold. We prove the first of these properties in figure 4.2; the

second proceeds similarly. As we have not yet presented the laws of improvement theory,

140

which permit evaluation costs to be propagated within terms while maintaining or improving

efficiency, the reader is encouraged to focus on the overall structure of the reasoning in

figure 4.2 rather than the technicalities of each individual step.

Reflection

We chose the associativity of append for our first example because it is a simple property

that is widely used to improve the performance of programs operating on lists, for example,

in (Wadler 1987; Hackett and Hutton 2014). However, what should be evident from this

calculation—and particularly from each step’s justification—is that proofs of improvement

are non-trivial, even for simple examples. Nonetheless, despite the complexities in dealing

with ticks, contexts, and different improvement relations, a general recipe for improvement

emerges from studying calculations such as that in figure 4.2:

(a) Unfold function definitions to expose the underlying computations and provide op-

portunities for optimisation, for example, unfolding (++);

(b) Simplify expressions by applying basic laws about the language primitives, for exam-

ple, rearranging let bindings and case statements;

(c) Fold function definitions to compound the effect of previous steps across recursive

calls, for example, inlining let bindings and folding (++).

In our experience, this recipe can be utilised on many occasions when reasoning about im-

provement. Thus, given that Unie provides mechanical support for handling ticks, contexts,

and improvement relations, it allows users to focus on general recipes and thereby reason

about improvement at a higher level of abstraction than afforded by the formalities of the

underlying theory. In this manner, users can concentrate on the essential aspects of their

reasoning and leave the technicalities of individual steps to the system.

4.3 The theory of improvement

In this section, we return to the formalities of Moran and Sands’ call-by-need improvement

theory. While explaining the theory, we describe how the Unie system supports, and in

141

(xs ++ ys) ++ zs

= { syntactic sugar }
let ws = xs ++ ys in ws ++ zs

��∼ { unfold (++) }
let ws = Xcase xs of

[] → ys
(u : us) → u : (us ++ ys)

in ws ++ zs
��∼ { unfold (++) }

let ws = Xcase xs of
[] → ys
(u : us) → u : (us ++ ys)

in Xcase ws of
[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { move the tick inside D’s hole, where
D = case [−] of

[] → ys
(u : us) → u : (us ++ ys) }

let ws = case Xxs of
[] → ys
(u : us) → u : (us ++ ys)

in Xcase ws of
[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { move D inside case, where
D = let ws = [−] in Xcase ws of

[] → zs
(v : vs) → v : (vs ++ zs) }

case Xxs of
[] → let ws = ys in Xcase ws of

[] → zs
(v : vs) → v : (vs ++ zs)

(u : us) → let ws = u : (us ++ ys)
in Xcase ws of

[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { move the tick outside D’s hole, where
D = case [−] of

[] → ...
(u : us) → ... }

Xcase xs of
[] → let ws = ys in Xcase ws of

[] → zs
(v : vs) → v : (vs ++ zs)

(u : us) → let ws = u : (us ++ ys)
in Xcase ws of

[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { fold (++) }
Xcase xs of

[] → let ws = ys in ws ++ zs
(u : us) → let ws = u : (us ++ ys)

in Xcase ws of
[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { inline ws and remove the unused binding }
Xcase xs of

[] → Xys ++ zs
(u : us) → let ws = u : (us ++ ys)

in Xcase ws of
[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { move the tick outside D’s hole, where
D = [−] ++ zs }

Xcase xs of
[] → X(ys ++ zs)
(u : us) → let ws = u : (us ++ ys)

in Xcase ws of
[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { inline ws and remove unused binding }
Xcase xs of

[] → X(ys ++ zs)
(u : us) → Xcase X(u : (us ++ ys)) of

[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { move the tick outside D’s hole, where
D = case [−] of

[] → zs
(v : vs) → v : (vs ++ zs) }

Xcase xs of
[] → X(ys ++ zs)
(u : us) → XXcase u : (us ++ ys) of

[] → zs
(v : vs) → v : (vs ++ zs)

��∼ { case of known constructor }
Xcase xs of

[] → X(ys ++ zs)
(u : us) → XX(u : ((us ++ ys) ++ zs))

�∼ { remove the ticks }
Xcase xs of

[] → X(ys ++ zs)
(u : us) → u : ((us ++ ys) ++ zs)

= { renaming }
Xcase xs of

[] → X(ys ++ zs)
(x : xs) → x : ((xs ++ ys) ++ zs)

= { define C, where
C = case xs of

[] → X(ys ++ zs)
(x : xs) → x : [−] }

XC[(xs ++ ys) ++ zs]

Figure 4.2: Proof of improvement property 4.4

142

many cases simplifies, its resulting technicalities.

4.3.1 Syntax and semantics

The operational model that forms the basis of call-by-need improvement theory is an un-

typed, higher-order language with mutually recursive let bindings. The call-by-need se-

mantics is originally due to Sestoft (1997) and reflects Haskell’s use of lazy evaluation.

Furthermore, the language is comparable to (a normalised version of) the Core language of

the Glasgow Haskell Compiler (GHC Team 2019). We use these similarities to apply results

from this theory directly to pure Haskell programs.

Terms of the language are defined by the following grammar, which also comprises the

abstract syntax manipulated by the Unie system:

M, N ::= x

| λx.M

| M x

| let { ~x = ~M } in N

| c ~x

| case M of { ci ~xi → Ni }

We use the symbols x, y, and z for variables, c for constructors, and write ~x = ~M for a

sequence of bindings of the form x = M . Similarly, we write ci ~xi → Ni for a sequence

of case alternatives of the form c ~x → N . Literals are represented by constructors of zero

arity, and all constructors are assumed to be fully applied. A term is a value, denoted V , if

it is of the form λx.M or c ~x, which corresponds to the notion of weak head normal form.

The abstract machine for evaluating terms maintains a state 〈Γ, M, S〉 consisting of a

heap, Γ, given by a set of bindings from variables to terms; the term M currently being

evaluated; and the evaluation stack, S, given by a list of tokens used by the abstract

machine. The machine operates by evaluating the current term to a value, and then decides

how to continue based on the top token of the stack. Bindings generated by lets are added

to the heap and only taken off when performing a Lookup operation. A Lookup executes

143

〈 Γ{ x = M }, x, S 〉 −→ 〈 Γ, M,#x : S 〉 Lookup
〈 Γ, V,#x : S 〉 −→ 〈 Γ{ x = V }, V, S 〉 Update
〈 Γ, M x, S 〉 −→ 〈 Γ, M, x : S 〉 Unwind
〈 Γ, λx.M, y : S 〉 −→ 〈 Γ, M [y / x], S 〉 Subst
〈 Γ, case M of alts, S 〉 −→ 〈 Γ, M, alts : S 〉 Case
〈 Γ, cj ~y, {ci ~xi → Ni} : S 〉 −→ 〈 Γ, Nj [~y / ~xj], S 〉 Branch
〈 Γ, let { ~x = ~M } in N , S 〉 −→ 〈 Γ{ ~x = ~M }, N, S 〉 ~x dom(Γ, S) Letrec

Figure 4.3: Semantics of Sestoft’s call-by-need abstract machine

by adding a token on top of the stack, representing where the term was looked up, and

then evaluating that term to a value before replacing it on the heap. This ensures that

each binding is evaluated at most once: a key aspect of call-by-need semantics. Restricting

function arguments to be variables means that all non-atomic arguments must be introduced

via let statements and thus can be evaluated at most once.

The transition semantics of the abstract machine are given in figure 4.3. The Letrec

transition assumes that ~x is disjoint from the domain of Γ and S, denoted using . This

can always be achieved by alpha-renaming.

Program contexts

Program contexts are meta-terms representing a family of terms containing holes, de-

noted [−]. In turn, if C is a context, then C[M] represents C with the term M substituted

for each hole. Contexts are defined by the following grammar:

C, D ::= [−]

| x

| λx.C

| C x

| let { ~x = ~C } in D

| c ~x

| case C of { ci ~xi → Di }

Note that let and case statements admit contexts with multiple holes.

144

A value context, denoted V, is a context that is in weak head normal form. There are also

two other forms of contexts, which can contain at most one hole that must appear as the

target of evaluation, meaning that evaluation cannot proceed until the hole is substituted.

These forms of contexts are known as applicative contexts and evaluation contexts, and are

defined by the following two grammars, respectively:

A ::= [−]

| A x

| case A of { ci ~xi → ~Mi }

E ::= A

| let { ~x = ~M } in A

| let { ~y = ~M ;

x0 = A0[x1];

x1 = A0[x2];

…

xn = An } in A[x0]

Given that improvement is a contextual definition, the transformation rules we apply

when reasoning about improvement intuitively must also be defined contextually. In general,

however, it is not necessarily the case that a given transformation rule is valid for all forms

of contexts. For example, a tick can be freely moved in and out of an evaluation context

using the following rule, but this transformation is not valid for all other forms of contexts:

E[XM] ��∼ XE[M] (X-E)

Similarly, under certain conditions regarding free (FV) and bound variables (BV), an

evaluation context can be moved in and out of a case statement using the rule

E[case M of { pati → Ni }]

��∼ FV(M) BV(E) FV(E) pati (case-E)

case M of { pati → E[Ni] }

but again, this is not true for all other forms of contexts.

Consequently, when applying a transformation rule to a given term, we must often

145

ensure that the term is syntactically compatible with a context of a particular form, as

stipulated by the chosen rule. When conducted manually, the process of deconstructing a

term M into an appropriate context C and substitution N such that M = C[N] becomes

tedious, time consuming, and highly prone to error.

To address this problem, the Unie system handles all aspects of context manipulation

automatically on behalf of users. In particular, each time a rule is applied, the system

analyses the syntactic form of the respective term, ensuring it is compatible with the chosen

rule’s specification. If this is not the case, the system prevents the rule from being applied

and reports a suitable error message. The same is also true if a rule’s side conditions are not

satisfied, such as those regarding free and bound variables for (case-E). Thus, in regard to

contexts, not only does Unie make a correct transformation much easier to apply, it makes

an incorrect transformation impossible to apply.

4.3.2 Operational improvement

Moran and Sands (1999) showed that the total number of steps taken to evaluate any

term M is bounded by a function that is linear in the number of Lookup operations (see

figure 4.3) required during M ’s evaluation. Therefore, the evaluation cost of each term can

be measured asymptotically by just counting uses of Lookup. This is the notion of cost used

in their work, and so we adopt it for the purposes of our system.

Formally, we write M↓n if the abstract machine of figure 4.3 proceeds from the initial

state 〈∅, M, ε〉 to a final state 〈Γ, V, ε〉 with n uses of Lookup. Similarly, we write M↓6n to

mean that M↓m for some m such that m 6 n. Using this cost model, we can now formalise

the notion of improvement in our setting. A term M is improved by a term N , written

M �∼ N , if the following holds for all contexts C:

C[M]↓n =⇒ C[N]↓6n

That is, one term is improved by another if the latter takes no more Lookup operations to

evaluate than the former in all program contexts. In turn, we say that two terms M and

N are cost equivalent, written M ��∼ N , if for all contexts C:

146

C[M]↓n ⇐⇒ C[N]↓n

Standard notions of operational equality (see section A.1.2 for a general overview) state

that two terms M and N are observationally equivalent if they have the same termination

behaviour in all program contexts, which is typically written as:

C[M]⇓ ⇐⇒ C[N]⇓

Furthermore, observational approximation, written as

C[M]⇓ =⇒ C[N]⇓

states that N terminates in at least as many program contexts as M . In this instance, M⇓

can be interpreted as the abstract machine of figure 4.3 proceeding from the initial state

〈∅, M, ε〉 to some final state 〈Γ, V, ε〉 in a finite number of steps.

Improvement theory can thus be viewed as a refinement of the standard theories of

observational approximation/equivalence in which the basic observation made about a pro-

gram’s execution (that is, whether or not it terminates) includes intensional information

about its computational cost (Sands 1997). In consequence, the definition of improvement

entails that N is both more efficient and terminates more often than M . In turn, cost

equivalence entails that M and N have the same cost and termination behaviour.

Just as before, we must keep track of evaluation costs explicitly when reasoning about

improvement. Our informal introduction viewed the tick operator, (X), as a syntactic

construct that represents a unit time cost. Here, we follow the work of Hackett and Hutton

(2014) and define (X) as a derived operation:

XM = let { x = M } in x (x fresh)

This definition takes precisely two steps to evaluate to M : one to add the binding to the

heap and the other to look it up. As one of these steps is a Lookup operation, the cost of

evaluating M is increased by exactly one, as required. The following tick elimination rule

147

still holds, but, as before, the reverse is not valid:

XM �∼ M (X-elim)

The �∼ relation formalises when one term is at least as efficient as another in all contexts,

but this is a strong requirement. We use the notion of weak improvement (Hackett and

Hutton 2014) when one term is at least as efficient as another within a constant factor.

Formally, M is weakly improved by N , written M �∼∼ N , if there exists a function f(x) =

kx + c for k, c > 0 such that for all contexts C:

C[M]↓n =⇒ C[N]↓6f(n)

This can be interpreted as “replacing M with N may make programs worse, but it will not

make them asymptotically worse” (Hackett and Hutton 2014). Analogous to cost equiva-

lence, we also have weak cost equivalence, written M ��∼∼ N , which is defined in the obvious

manner. As weak improvement ignores constant factors, we can introduce and eliminate

ticks while preserving weak cost equivalence:

M ��∼∼ XM (X-intro)

4.3.3 Inequational reasoning

When constructing an improvement proof, we must pay close attention to the relations used

in our calculation. This is because the transformations we apply as part of our reasoning

are defined using different notions of improvement: �∼, �∼∼, ��∼ , ��∼∼ , some of which may

not entail the relation of the given proof statement, in which case their use would lead

to an incorrect calculation. For example, as �∼ ⊆ �∼∼, any transformation defined using �∼

automatically entails �∼∼, but the converse is not true. Similarly, removing a tick (X-elim) is

an improvement, whereas unfolding a function’s definition (4.3) is not.

The Unie system simplifies such inequational reasoning by ensuring that each transfor-

mation rule applied by a user entails a particular improvement relation established prior to

the start of the reasoning process. If a user attempts to apply a rule that does not entail

148

this relation, the system will reject it and display an appropriate error message. Similarly

to the intricacies in dealing with different forms of contexts discussed previously, Unie’s

safety mechanisms in this instance make incorrect transformations impossible to apply.

4.3.4 Tick algebra

We conclude this section by discussing Moran and Sands’ (1999) tick algebra, which is

a collection of equational and inequational laws for propagating evaluation costs within

terms while preserving or increasing efficiency. These laws make up a large proportion of

the transformation rules provided by our system, and are a rich inequational theory that

subsumes all the axioms of the call-by-need calculus of Ariola et al. (1995).

We refer the reader to (Moran and Sands 1999) for the full tick algebra, but present

two example laws below to illustrate their nature and complexity:

let { ~x = ~L } in let { ~y = ~M } in N

��∼ ~x ~y ~y FV (~L) (let-flatten)

let { ~x = ~L, ~y = ~M } in N

Xlet { x = z, ~y = ~M [z/w] } in N [z/w]

�∼ (var-expand)

let { x = z, ~y = ~M [x/w] } in N [x/w]

The (let-flatten) rule is a cost equivalence that allows us to merge the binders of two let

statements, modulo binder collisions and variable capture. In turn, (var-expand) is an

improvement that allows us to replace a binding with its binder provided there is a tick

in front of the let to pay for this expansion. Also included in the tick algebra are the

(X-E) and (case-E) rules introduced previously in section 4.3.1.

These laws are only a small fragment of the tick algebra. However, it should be evident

from these examples that applying such rules manually can be a difficult task. In particular,

the use of different improvement relations, different forms of contexts, and each rule having

149

Figure 4.4: Unie’s core architecture

a unique syntactic form makes it challenging to know when a rule can be applied correctly.

Furthermore, many laws have side conditions, often concerning free and bound variables as

with (case-E) and (let-flatten), which must be checked every time they are applied.

A primary strength of the Unie system is that it provides mechanical support for all

of the above tasks, which are integral to the advanced style of inequational reasoning used

in improvement proofs. Moreover, the system automatically performs, for example, alpha-

renaming to enable rules such as (let-flatten) and (case-E) to be applied correctly.

4.4 Architecture of Unie

In this section, we introduce the key features of the Unie system developed to support

inequational reasoning for improvement theory. We begin by overviewing the system’s

core architecture. We then discuss how Unie supports interactive program transformation,

automatically matches against and generates program contexts, and how it (semi-formally)

validates inequational steps of reasoning. Finally, we discuss how the system’s support for

cost-equivalent contexts simplifies proofs of improvement.

150

4.4.1 Overview

The main components of the Unie system and the interactions between each component are

illustrated in figure 4.4. A summary of the figure is as follows:

– The read-evaluate-print loop handles interactions with the user.

– The history records successfully executed commands and the resultant proof state

of each command. In turn, the library maintains a collection of term, context, and

cost-equivalent context definitions for use during transformations, together with a

collection of user-defined command scripts.

– The inequational layer ensures that transformation rules invoked by the user are safe

to apply in the current proof state.

– Primitive rewrites and congruence combinators are basic building blocks for defining

program transformations in a modular fashion.

– The context manipulation component supports the automatic generation, matching,

and checking of different forms of contexts.

Other notable features of the system include:

– A pretty-printer for abstract syntax and a parser for source syntax.

– An abstract machine for evaluating terms using the semantics of figure 4.3.

– A help system in the style of the Unix man command.

– Informative error messages, which explain why an invalid transformation rule cannot

be applied in a particular proof state.

4.4.2 Read-evaluate-print loop

A key aspect of developing improvement proofs interactively is applying rewrite rules to

sub-terms. We prioritise this requirement by maintaining a focus into the term being

transformed and providing navigation commands for changing the focus. Transformations

are then applied to the sub-term currently in focus. By default, only the focused sub-term

151

is displayed on screen, and updated each time a navigation command is executed. For

situations where it may be beneficial to always display the whole term, the system provides

an option to highlight the current focus. This feature is demonstrated in figure 4.1.

4.4.3 Inequational layer

Each time a transformation rule is invoked by the user, the system ensures it is safe to

apply in the current proof state. An important part of this verification step is to check

whether the rule’s operator, for example, �∼ or ��∼ , entails the improvement relation of the

initial proof statement (see section 4.6 for an example of this). If this is not the case, the

transformation rule is rejected and a suitable error message displayed. Another important

check determines whether the side conditions of the chosen rule are satisfied.

Not only are these checks essential to ensuring calculations produced by the system are

well-formed, they also permit beginner users to safely experiment with improvement rules.

4.4.4 Primitive rewrites and congruence combinators

Similarly to the equational reasoning assistant Hermit (Farmer 2015), our system utilises the

Kansas University Rewrite Engine (Kure) (Sculthorpe, Frisby, and Gill 2014) for specifying

and applying transformations to the abstract syntax of its operational model.

In brief, Kure is a strategic programming language (Lämmel, Visser, and Visser 2003)

that provides a principled method for traversing and transforming datatypes. The funda-

mental idea behind Kure is to separate the implementations of traversals and the implemen-

tations of transformations. Traversal strategies and transformation rules can thus be reused

and combined independently. For our system, this allows a sophisticated library of transfor-

mation rules, tailored to the needs of improvement theory, to be constructed by composing

a small number of basic operations using a selection of Kure’s primitive combinators.

In addition, Kure’s use of datatype-generic programming (Gibbons 2006) means that

traversals can navigate to particular locations in order to apply type-specific transforma-

tions, giving fine control over when and where transformations are applied within a data

type. This is vital for our implementation, as each reasoning step in an improvement proof

typically transforms only a single subpart of an overall term.

152

In summary, our approach to implementing rewrite rules, using so-called primitive

rewrites and congruence combinators, was heavily inspired by the Hermit system and builds

on the work in (Farmer et al. 2012; Farmer 2015). We refer readers to the following ar-

ticles (Sculthorpe, Frisby, and Gill 2014; Farmer 2015) for a detailed discussion on the

relevant concepts, including an introduction to the Kure library.

4.4.5 Cost-equivalent contexts

The Unie system maintains a library of cost-equivalent contexts, which syntactically do not

satisfy the requirements for a particular form of context (for example, value or evaluation)

but are nonetheless cost equivalent to a context of such a form, and hence admit the same

inequational laws. Cost-equivalent contexts occur frequently in improvement proofs, such as

in (Moran and Sands 1999; Hackett and Hutton 2014), as they lead to simplified reasoning

steps. Once added by the user, cost-equivalent contexts are manipulated by the system in

the same manner as all other forms of contexts.

In section 4.6, we demonstrate how cost-equivalent contexts can be added to Unie’s

library and then utilised in a mechanised improvement proof.

Remark. We note that the use of cost-equivalent contexts is potentially unsound, as the

system does not check that they are indeed cost-equivalent to syntactically valid contexts.

Adding such checks in the form of provable lemmas is part of our future work.

4.4.6 Context manipulation

Managing contexts is one of the primary intricacies in developing improvement proofs. In

this subsection, we explain how this is handled by the Unie system.

Context matching

In our setting, a context pattern is simply shorthand notation for one or more program

contexts, allowing sub-terms to be specified implicitly using wildcards and constructor pat-

terns. For example, the context let { x = a ; y = b } in [−] may be described by

153

any of the following context patterns, among others:

let { x = a ; } in [−] let { x = VAR ; } in [−] let in [−]

As is standard, the underscores above are wildcards that match with any term, while VAR

is a constructor pattern that matches with any variable.

Although context patterns do not represent unique contexts, when used in conjunction

with a specific transformation rule, they are often sufficient to determine a unique context.

In practice, they are used to simplify and reduce the amount of input required from users

when interacting with the system. For example, recall the following rule, (X-E), allowing

ticks to be moved in and out of evaluation contexts:

E[XM] ��∼ XE[M]

Suppose we wish to apply this rule to the term X(a b c). To do so, we must determine

an evaluation context E and a term M for which XE[M] = X(a b c). In this case it is

straightforward, such as by taking E = [−] b c and M = a. Applying (X-E) right-to-left

then allows us to move the tick inside the context:

X(a b c)

��∼ { X-E where E = [−] b c }

(Xa) b c

This transformation can be mirrored almost identically in our system:

unie> trans $`(a b c)$

3(a b c)

[1]> untick -eval $[-] b c$
��∼ 3a b c

In this instance, Unie uses the specified context [−] b c and the current term X(a b c)

to verify the preconditions necessary for (X-E)’s safe application. In particular, it checks

that [−] b c is a valid evaluation context and, by calculating the substituted term M = a,

154

ensures the initial term has the required form XE[M]. If any of these preconditions were

not met, the transformation rule would be rejected.

Suppose that the context E from the above example was more complex, such as a

let statement with multiple bindings. In this case, it would be impractical to expect a

user to manually enter E’s complete definition. Context patterns address this problem by

allowing users to specify contexts by shorthand representations. The system uses these

representations to automatically calculate valid contexts on the user’s behalf, by matching

the specified pattern against the syntax of the term being transformed. For example, we

can use wildcard patterns to apply the above transformation in a simplified manner:

unie> trans $`(a b c)$

3(a b c)

[1]> untick -eval $[-] _ _$
��∼ 3a b c

Context generation

Applying the same transformation rule as above but without specifying a context pa-

rameter for E leads to the following system response:

unie> trans $`(a b c)$

3(a b c)

[1]> untick -eval

Select a context/substitution option:

(1) E = [-] M = a b c

(2) E = [-] c M = a b

(3) E = [-] b c M = a

That is, three possible context/substitution pairs have been automatically generated on

behalf of the user. Each allow the (X-E) transformation rule to be correctly applied to the

given term. Option three corresponds to our previous choice:

[1]> 3
��∼ 3a b c

155

Context generation is available when applying any of the system’s transformation rules.

In contrast to context manipulation, which affords a simple means to specify contexts

precisely, context generation fills in such details automatically. In practice, this feature has

proved to be invaluable when validating proofs from the original article (Moran and Sands

1999) on improvement theory, as the calculations presented in this work state which tick

algebra rules are applied, but not how they are applied.

4.4.7 Inequational reasoning

As we have seen, a central feature of the Unie system is its support for inequational reason-

ing. The relationships between the different improvement relations that were introduced in

section 4.3 are summarised in the following lattice:

��∼

�∼��∼∼

�∼∼

In Unie, a proof is initiated by the user entering a proof statement, such as XXx �∼ x.

The system extracts from the proof statement a ‘global’ improvement relation: �∼ in this

case. Each time a transformation is applied, its corresponding operator is checked to ensure

that it entails this global relation in the above lattice. If this is not the case, the rewrite

rule is rejected and an appropriate error message is displayed, for example:

unie> trans $``x$ IMP x

Global relation set: �∼.

Transformation goal set: x.

33x

[1]> tick-elim
�∼ 3x

[2]> untick -intro

Relation error: ��∼∼ ; �∼.

The first step of the above reasoning successfully applies the tick-elim rule. This rule is

156

defined using the �∼ relation, which trivially entails the global relation. On the other hand,

the error message at the bottom states that the relation of the second rule untick-intro,

��∼∼ , does not entail �∼. Hence the transformation is rejected.

4.5 The worker/wrapper transformation

While developing the Unie system, we were guided by the desire to mechanically verify

the results from the article that renewed interest in improvement theory (Hackett and

Hutton 2014). In this section, we review the main result of this article, which shows that

the worker/wrapper transformation is an improvement, and an example application of this

result, which shows how the familiar naive reverse function on lists can be improved. In

the next section, we show how the latter result can be mechanised in our system.

4.5.1 Formalising correctness

The worker/wrapper transformation is a technique for improving the performance of recur-

sive programs by changing their types (Gill and Hutton 2009). Given a recursive program

of some type, the basic idea is to factorise the program into a worker program of a different

type, together with a wrapper program to interface between the original program and the

new worker. If the worker type supports more efficient operations than the original type,

then this efficiency improvement should result in a more efficient program overall.

More formally, suppose that we are given a recursive program, which is defined as the

least fixed point, fix f , of a function f on some type A. Now, consider a more efficient

program that performs the same task, defined by first taking the least fixed point, fix g,

of a function g on some other type B, and then migrating the resulting value back to the

original type A by applying a conversion function, abs. The equivalence between the two

programs is captured by the following equation:

fix f = abs (fix g)

This equation states that the original program, fix f , can be factorised into the application

of a wrapper function abs to a worker program fix g. The validity of the equation depends

157

on some properties of the functions f , g, and abs, together with a dual conversion function

rep. These properties are summarised in the following worker/wrapper correctness theo-

rem (Sculthorpe and Hutton 2014). Given functions f : A → A, g : B → B, abs : B → A,

and rep : A→ B satisfying one of the assumptions (a–c) and one of the conditions (1–3)

(a) abs ◦ rep = idA (1) g = rep ◦ f ◦ abs

(b) abs ◦ rep ◦ f = f (2) g ◦ rep = rep ◦ f

(c) fix (abs ◦ rep ◦ f) = fix f (3) f ◦ abs = abs ◦ g

then we have the correctness equation: fix f = abs (fix g).

4.5.2 Formalising improvement

The previous subsection formalised that the worker/wrapper transformation is correct, in

the sense that the original and new programs have the same denotational meaning. We now

formalise that the transformation improves efficiency, in the sense that the new program

improves the runtime performance of the original.

To reformulate the correctness theorem as an improvement theorem, we must first make

some changes to the basic setup to take account of the differences between the underlying

denotational and operational theories. In particular, functions are replaced by contexts,

that is, the functions f and g become contexts F and G; the use of a fix operator is replaced

by recursive let bindings, that is, fix f becomes let x = F[x] in x; and the use of equality

is replaced by an appropriate improvement relation, that is, = becomes �∼, �∼∼, or ��∼∼ . Thus,

we have the following worker/wrapper improvement theorem (Hackett and Hutton 2014).

Given value contexts F, G, Abs, and Rep satisfying one of the assumptions (a–c)

(a) Abs[Rep[x]] ��∼∼ x

(b) Abs[Rep[F[x]]] ��∼∼ F[x]

(c) let x = Abs[Rep[F[x]]] in x ��∼∼ let x = F[x] in x

where x is free, and one of the conditions (1–3)

158

(1) G[x] �∼∼ Rep[F[Abs[x]]]

(2) G[XRep[x]] �∼ Rep[XF[x]]

(3) Abs[XG[x]] �∼∼ F[XAbs[x]]

then we have the improvement: let x = F[x] in x �∼∼ let x = G[x] in Abs[x].

The assumptions and conditions above ensuring the original recursive program let x =

F[x] in x is improved by let x = G[x] in Abs[x] are natural extensions of the corresponding

properties for correctness. For example, correctness condition (1), g = rep ◦ f ◦ abs, is

replaced by improvement condition (1), G[x] �∼∼ Rep[F[Abs[x]]].

The proof of the this theorem utilises two other results: a rolling rule and a fusion rule.

Both are central to the worker/wrapper transformation (Gill and Hutton 2009), and can be

proved using tick algebra laws. Consequently, the worker/wrapper improvement theorem

is itself a direct result of the tick algebra’s inequational theory. Indeed, all aforementioned

results have been verified using our system. The proofs can be found online in the form of

command scripts that can be loaded into Unie (Handley 2018).

4.5.3 Improving naive reverse

Recall from the previous chapter the standard definition for naively reversing lists:

slowRev = let f = Revbody[f] in f

Revbody = λxs. case xs of

[] → []

(y : ys) → [−] ys ++ [y]

Here, slowRev is defined using a recursive let binding rather than explicit recursion, with

the context Revbody capturing the non-recursive part of the definition. We previously

stated that this implementation is inefficient due to its use of the append operator, (++),

which is linear in the length of its first argument. For the purposes of this example, we

would like to use the worker/wrapper technique to improve it.

The first step is to select a new type to replace the original type [a]→ [a], and define

contexts to convert between the two types. As before, we utilise the type [a]→ [a]→ [a]

159

to provide an additional argument used to accumulate the resulting list. The necessary

contexts to convert between the original and new types are defined as follows:

Abs = λxs. [−] xs [] Rep = λxs. λys. [−] xs ++ ys

We must now verify that the conversion contexts, Abs and Rep, satisfy one of the work-

er/wrapper assumptions. We verify assumption (b) as follows:

Abs[Rep[Revbody[f]]]

= { unfold the definitions of Abs and Rep }

λxs. (λxs. λys.Revbody[f] xs ++ ys) xs []

��∼ { β-reduction }

λxs. Revbody[f] xs ++ []

= { unfold the definition of Revbody }

λxs. (λxs. case xs of

[] → []

(y : ys)→ f ys ++ [y]) xs ++ []

��∼ { β-reduction }

λxs. (case xs of

[] → []

(y : ys)→ f ys ++ [y]) ++ []

��∼ { case-E where E = [−] ++ [] }

λxs. case xs of

[] → [] ++ []

(y : ys)→ (f ys ++ [y]) ++ []

��∼∼ { associativity of (++) }

λxs. case xs of

[] → [] ++ []

(y : ys)→ f ys ++ ([y] ++ [])

��∼∼ { evaluate [] ++ [] and [y] ++ [] }

λxs. case xs of

160

[] → []

(y : ys)→ f ys ++ [y]

= { fold the definition of Revbody }

Revbody[f]

Note that the above calculation uses the fact that (++) is associative up to weak cost

equivalence, that is, (xs ++ ys) ++ zs ��∼∼ xs ++ (ys ++ zs).

Next, we must verify that one of the worker/wrapper conditions is satisfied. In this case,

we use condition (2) as a specification for the context G, whose definition can be calculated

using laws from the tick algebra. We omit the details for brevity, but they are included in

the original article (Hackett and Hutton 2014), and result in the following definition:

G = λxs. λys. case xs of

[] → ys

(z : zs) → let ws = z : ys in [−] zs ws

The crucial step in the construction of G is applying property (4.2), which expresses that

reassociating the append operator to the right is an improvement.

Finally, if we define fastRev = let x = G[x] in Abs[x], then, by applying the work-

er/wrapper improvement theorem, we have shown that the original version of reverse is

improved by the new version, that is, slowRev �∼∼ fastRev. Furthermore, by expanding out

the definition of fastRev and renaming and simplifying the resulting let binding, we arrive

at the familiar fast version of the original function:

fastRev :: [a] → [a]

fastRev xs = revCat xs []

where

revCat [] ys = ys

revCat (x : xs) ys = revCat xs (x : ys)

4.6 Mechanising improvement proofs

In this section, we demonstrate how to improve the naive list-reversing function from the

previous section mechanically using our system. In doing so, we illustrate a number of

161

Unie’s key features and show how it supports interactive reasoning using transformation

and navigation rules. All of the interaction is taken directly from the system itself, with

some minor reformatting in light of the paper-based medium.

As in the previous section, we focus on the proof of assumption (b). Prior to constructing

the proof, we must ensure that Unie has access to the definitions from section 4.5, which

are required at different stages throughout. For convenience, we have stored them in a

file whose contents are imported into the system’s library using the import-lib command,

and the names of the definitions displayed by show-lib defs. We have also included the

definition of append as it is required in a number of proof steps involving evaluation.

unie> import -lib ./libs/slowRev

Info: library updated.

unie> show-lib defs

Terms: (++), slowRev

Contexts: Abs, Rep, Revbody

We instruct the system to enter its transformation mode using trans. The relevant proof

statement Abs[Rep[Revbody[f]]] ��∼∼ Revbody[f] is supplied as a parameter and determines

the proof’s global relation and goal. The global relation will prevent rules being applied

whose operators do not entail ��∼∼ , and we will be notified when the goal Revbody[f] is

reached. When entering expressions into the system, the forms of contexts must be specified:

Abs, Rep, and Revbody are value contexts, hence we use the V_ prefix.

unie> trans $V_Abs[V_Rep[V_Revbody[f]]]$ WCE $V_Revbody[f]$

Global relation set: ��∼∼ .

Transformation goal set: V_Revbody[f].

Just as with the paper proof, we begin by unfolding the definitions of Abs and Rep, and

beta-reducing inside the body of the outer abstraction. To reduce the correct sub-terms,

we navigate using left and right, which move the focus to the current term’s left and right

child, respectively. In turn, top restores focus to the full expression.

V_Abs[V_Rep[V_Revbody[f]]]

[1]> unfold -def 'Abs ; unfold -def 'Rep

162

= λxs.(λxs.λys.(V_Revbody[f] xs) ++ ys) xs []

[3]> right

= (λxs.λys.(V_Revbody[f] xs) ++ ys) xs []

[4]> left

= (λxs.λys.(V_Revbody[f] xs) ++ ys) xs

[5]> beta
��∼ λys.(V_Revbody[f] xs) ++ ys

[6]> up ; beta
��∼ (V_Revbody[f] xs) ++ []

[8]> top

= λxs.(V_Revbody[f] xs) ++ []

Next, we unfold the definition of Revbody and beta-reduce the resulting redex. We then

move up to focus on the application of append.

[9]> unfold -def 'Revbody

= λxs.((λxs.case xs of

[] → []

(y : ys) → (f ys) ++ [y]) xs) ++ []

[10]> right ; left

= (++) ((λxs.case xs of

[] → []

(y : ys) → (f ys) ++ [y]) xs)

[12]> right

= (λxs.case xs of

[] → []

(y : ys) → (f ys) ++ [y]) xs

[13]> beta
��∼ case xs of

[] → []

(y : ys) → (f ys) ++ [y]

[14]> up ; up

= (case xs of

[] → []

(y : ys) → (f ys) ++ [y]) ++ []

Recall the (case-E) rule, which allows an evaluation context to be moved inside a case

163

statement subject to certain conditions regarding free and bound variables:

E[case M of { pati → Ni }] ��∼ case M of { pati → E[Ni] }

In this instance, we would like to use this rule to move (++ []) inside the case statement.

Knowing that the system can generate evaluation contexts on our behalf, we can attempt

to apply the rule without specifying a parameter:

[16]> case-eval

Error: no valid evaluation contexts.

However, an error results because the context [−] ++ [] we wish to use is not strictly

speaking an evaluation context, but only cost equivalent to a context of this form. The

equivalence is demonstrated in (Hackett and Hutton 2014). By default, only contexts with

valid syntactic forms are accepted by the system, meaning that even if we manually specified

the desired context as a parameter to case-eval, the rule would still be rejected.

The solution is to add [−] ++ [] to Unie’s library of cost-equivalent evaluation contexts,

which instructs the system to treat it as if it were an evaluation context. This can be

achieved using add-lib. In fact, the proof in (Hackett and Hutton 2014) is more general

and shows that [−] ++ xs is cost equivalent to an evaluation context for any list xs. This

result can be captured using the constructor pattern LIST that matches with any list:

[16]> add-lib EVAL $[-] ++ LIST$

Info: library updated.

Cost-equivalent contexts are made available to the system’s context generation and

matching mechanisms (see section 4.4.6), meaning that when we apply case-eval again

without a parameter, the correct context is used automatically:

[16]> case-eval
��∼ case xs of

[] → [] ++ []

(y : ys) → ((f ys) ++ [y]) ++ []

164

Notice that, in this case, the context pattern [−] ++ LIST is instantiated to [−] ++ [] in

order to apply the transformation rule correctly.

We have almost completed the proof. All that is left to do is evaluate the applications

of append that have resulted from (++ []) being moved inside both case alternatives. In

the second case alternative, we wish to evaluate [y] ++ []. In order to do so, we must first

reassociate the term using the fact that append is associative up to weak cost equivalence.

[17]> right ; rhs

= [] ++ []

[19]> eval-wce
��∼∼ []

[20]> up ; next ; rhs

= ((f ys) ++ [y]) ++ []

[23]> append -assoc -lr-wce
��∼∼ (f ys) ++ ([y] ++ [])

[24]> right ; eval-wce
��∼∼ [y]

[26]> top

= λxs.case xs of

[] → []

(y : ys) → (f ys) ++ [y]

Finally, after folding the definition of Revbody, Unie notifies us that we have reached

our transformation goal and hence the proof of the property is complete:

[27]> fold-def 'Revbody

Info: transformation goal reached!

= V_Revbody[f]

In conclusion, the above calculation demonstrates how improvement proofs can be con-

structed mechnically using our system. By following the same pattern of reasoning as in

the original paper proof, with the addition of navigation steps to make the point of appli-

cation of each rule clear, we were able to mechanise the calculation by simply entering the

transformation rules as commands into the system. Behind the scenes, the technicalities of

each proof step were administered automatically on our behalf to ensure the resulting proof

is correct. Moreover, by entering commands without parameters, we allowed the system to

165

simplify the development of proof steps by automatically generating the necessary contexts.

4.7 Discussion

Several tools have been developed to mechanise equational reasoning about Haskell pro-

grams (Tullsen 2002; Guttmann et al. 2003; Li, Reinke, and Thompson 2003; Thompson

and Li 2013). Most relevant to our work is the Hermit system (Farmer 2015), which builds

upon the Haskell Equational Reasoning Assistant (Hera) (Gill 2006). There appears to

be no other systems in the literature that directly support inequational reasoning about

Haskell programs. To the best of our knowledge, our system is the first to provide mechan-

ical support for improving pure Haskell programs.

In the wider literature, the Algebra of Programming in Agda library (Mu, Ko, and

Jansson 2009) is designed to encode relational program derivations, which supports a form

of inequational reasoning. The Jape proof calculator (Bornat and Sufrin 1997; Bornat

and Sufrin 1999) provides step-by-step interactive development of proofs in formal logics,

and supports both equational and inequational reasoning. Improvement theory has not

been explored within either of these settings, however. More generally, automated theorem

provers (Bertot and Castéran 2013; Norell 2007) can be used to provide machine-checked

proofs of program properties, but require expertise in dependently typed programming.

Other methods for reasoning about runtime in a lazy setting include (Wadler 1988;

Bjerner and Holmström 1989; Madhavan, Kulal, and Kuncak 2017). Most notably, Okasaki

(1999) used a notion of time credits to analyse the amortized performance of a range of

purely functional data structures. This approach has recently been implemented in Agda

by Danielsson (2008) and heavily inspired our work on formalising efficiency proofs in Liquid

Haskell (Vazou 2016), which is the focus of the next chapter.

Much research has been conducted on type-based methods for statically predicting ex-

ecution cost, for example, (Hughes, Pareto, and Sabry 1996; Crary and Weirich 2000;

Hofmann and Jost 2003; Vasconcelos and Hammond 2003; Brady and Hammond 2005; Mc-

Carthy et al. 2017; Wang, Wang, and Chlipala 2017; Çiçek et al. 2017). Given that improve-

ment theory is untyped, comparisons with these works are somewhat difficult. Nonetheless,

166

from a high-level, a number of these articles present type-and-effect systems for automat-

ically inferring the execution cost of individual programs, which is known as unary cost

analysis. In contrast, improvement theory is a semantic approach to relational cost analy-

sis, which is used to compare the relative performance of two programs.

Furthermore, most work on static cost analysis falls into one of two camps: the first

aims at full automation while the second aims at expressiveness. In the former case, restric-

tions are often placed on the corresponding operational model (or on the analysis itself)

to ensure full automation, for example, terms are monomorphic and/or first-order only. In

comparison, improvement theory’s operational model is much more expressive. In the latter

case, precise analysis relies on input from the user, typically in the form of cost annotations

added to the source syntax, which are used to guide the cost inference engine. As we have

seen, the Unie system provides mechanical support for improvement proofs, but such proofs

are fundamentally user-directed. Investigating the addition of Coq-style proof tactics, or,

more generally, ‘proof search’, to Unie is part of our future work.

Finally, frameworks for static cost analysis do not in general incorporate a call-by-need

semantics. One notable exception is (Jost et al. 2017).

Before discussing our ideas for further work, we that feel it is important to highlight

an implementation detail of the Unie system that may be subsequently readdressed in

light of recent advancements in the literature. With the rise of datatype-generic program-

ming (Gibbons 2006), a large number of libraries have recently been designed to aid the

task of automatically generating traversals of, for example, syntax trees by analysing the

generic structure of datatypes. For instance, Kiss, Pickering, and Wu (2018) combine the

notions of lenses and traversals to give a flexible approach for querying and modifying com-

plex data structures. As such, we believe that the Kure library could now be replaced by a

more recent generic library, which is likely to be more efficient.

We have three main avenues for further work. First of all, we would like to investigate

higher level support for navigating through terms and applying transformation to specific lo-

cations during improvement proofs. Such support is provided by the Hermit system (Farmer

2015), which also uses the Kure library. Nonetheless, we look to the Generic-Lens pack-

age (Kiss 2017) for guidance on this, which was created and is currently maintained by

167

the first author of (Kiss, Pickering, and Wu 2018). Hence, this work could be naturally

undertaken while replacing the Kure library with a generic alternative.

Secondly, we wish to incorporate Coq-style proof tactics into Unie to capture and express

common recipes for improvement, such as the one discussed in section 4.2. In this instance,

we are encouraged by the fact that—on many occasions—rules from the tick algebra can

be correctly applied to a term in at most one way. As such, a ‘proof search’ of some kind

may be feasible, but does require further investigation.

Finally, we would like Unie to produce proof objects that can be independently checked

using an external proof assistant such as Coq (Bertot and Castéran 2013) or Agda (Norell

2008), to provide a formal guarantee of their correctness. This may require the Unie system

to interface with, for example, the AoPA library (Mu, Ko, and Jansson 2009).

4.8 Conclusion

In this chapter, we presented the design of an inequational reasoning assistant called Unie,

which provides mechanical support for proofs of program improvement. In doing so, we

highlighted a number of difficulties in manually constructing improvement proofs, and de-

scribed how our system has been developed to address these challenges. We have illustrated

the applicability of our system by verifying a range of improvement results from the litera-

ture. In particular, we have mechanised all proofs in (Hackett and Hutton 2014), including

the proof of the worker/wrapper improvement theorem, which relates to a general-purpose

optimisation technique. We have also mechanically verified a number of proofs in (Moran

and Sands 1999). All of these proofs are freely available online as scripts that can be loaded

into our system, along with the system itself (Handley 2018).

In section 3.2 of the previous chapter, performance results from the AutoBench system

indicated that the linear-time reverse function, fastRev, optimises the naive reverse function,

slowRev, in 95% of test cases. In particular, AutoBench output the following optimisation:

slowRev Q fastRev (0.95)

In section 4.6 of this chapter, we demonstrated how the Unie system can be used to

168

improve slowRev, by interactively developing a calculation that resulted in the definition

of fastRev, that is, slowRev �∼∼ fastRev. Notice that this relation is a weak improvement

only: �∼∼. Interestingly, the reason for this is that fastRev is less efficient than slowRev (by

a constant factor) when the input to both functions is the empty list. For all other lists,

fastRev is the more efficient of both functions, however, fastRev’s ‘start-up costs’ in the

empty base case mean that slowRev �∼ fastRev does not hold.

Previously we stated that AutoBench’s optimisation results aim to predict operational

improvements à la improvement theory. In this instance, the system’s results show that

fastRev does not improve slowRev in the case of the empty list (see section 3.2.1). Thus,

based on these results, we may have anticipated that slowRev �∼ fastRev would not hold.

169

Chapter 5

Liquidate Your Assets
Reasoning about Resource Usage in Liquid Haskel

Liquid Haskell is an extension to the type system of Haskell that supports formal reasoning

about program correctness by encoding logical properties as refinement types. In this

chapter, we show how Liquid Haskell can also be used to reason about program efficiency in

the same setting, by introducing a library, RTick, for formal cost analysis. We use Liquid

Haskell’s existing verification machinery to ensure that the results of our cost analysis are

valid, together with custom invariants for particular program contexts to ensure that the

results are precise. To illustrate our approach, we analyse the efficiency of a wide range of

popular data structures and algorithms, and in doing so, explore various notions of resource

usage. Our experience is that reasoning about efficiency in Liquid Haskell is often just as

simple as reasoning about correctness, and that the two can naturally be combined.

5.1 Introduction

Up until this point, we have presented two different approaches to reasoning about the effi-

ciency of pure Haskell programs. Chapter 3 introduced the AutoBench system, which com-

bines two well-established systems, namely QuickCheck and Criterion, to give a lightweight,

fully automated means of comparing time performance. In turn, chapter 4 introduced Unie,

a reasoning assistant that provides mechanical support for proofs of program improvement,

based on Moran and Sands’ improvement theory.

170

An advantage of the first approach is that it is entirely Haskell-based. In other words,

AutoBench operates directly on Haskell source code and its results extrapolate measure-

ments taken from Haskell’s runtime environment. On the other hand, the style of reasoning

employed by this approach is somewhat informal, as the system’s performance results are

based entirely on empirical analyses, which provide no formal guarantees.

At the end of the previous chapter, we observed a direct correspondence between Auto-

Bench’s empirical analysis and Unie’s semi-formal analysis. In this manner, Unie addresses

a primary drawback of the AutoBench system, by aiding the construction of proofs of pro-

gram improvement that are ‘universal’ in the sense that they account for evaluation in all

contexts. Despite being implemented in Haskell, however, Unie operates on a variant of

GHC’s Core language. Therefore, although the system’s operational model is comparable to

Haskell’s intermediate representation, it is distinct from the language that ordinary Haskell

programmers frequently use in practice.

One way to combine the advantages of both approaches is to devise a means to reason

about the efficiency of Haskell programs within the language itself. Moreover, to provide

formal guarantees, such reasoning should incorporate efficiency proofs rather than extrap-

olating experimental results. To achieve this, we utilise the Liquid Haskell system (Vazou

2016) to statically analyse the resources required to execute pure Haskell programs.

Estimating the amount of resources that are required to execute a program is a key

aspect of software development. Nonetheless, performance bugs are as difficult to detect

as they are common (Jin et al. 2012). As a result, the problem of statically analysing

the resource usage, or execution cost, of programs has been subject to much research,

in which a broad range of techniques have been studied, including resource-aware type

systems (Hofmann and Jost 2003; Hoffmann, Aehlig, and Hofmann 2012; Jost et al. 2017;

Wang, Wang, and Chlipala 2017; Çiçek et al. 2017), program and separation logics (Aspinall

et al. 2007; Atkey 2010), and sized types (Vasconcelos 2008; Campbell 2009).

Another technique for statically analysing execution cost, inspired by the work in (Moran

and Sands 1999) on improvement theory, is to reify resource usage into the definition of a

program by means of a datatype that accumulates abstract computation ‘steps’. Steps can

either accumulate at the type level inside an index, or at the value-level inside an integer

171

field. Formal analysis at the type level has been successfully applied in Agda (Danielsson

2008) and, more recently, Coq (McCarthy et al. 2017), while recent work in (Radiček et al.

2018) developed the theoretical foundations of the value-level approach.

In this chapter, we take inspiration from (Radiček et al. 2018) and implement a monadic

datatype to measure the abstract resource usage of pure Haskell programs. We then use

Liquid Haskell’s (Vazou 2016) refinement type system to statically prove bounds on resource

usage. Our framework supports the standard approach to cost analysis, which is known as

unary cost analysis and aims to establish upper and lower bounds on the execution cost

of a single program, together with the more recent relational approach (Çiçek et al. 2017),

which aims to calculate the difference between the execution costs of two related programs

or between one program on two different inputs.

Reasoning about execution cost using the Liquid Haskell system has two main advan-

tages over most other formal cost analysis frameworks (Radiček et al. 2018). First of all,

the system allows correctness properties to be naturally integrated into cost analysis, which

helps to ensure that cost analyses are valid. And secondly, the wide range of sophisticated

invariants that can be expressed and automatically verified by the system can be exploited

to analyse resource usage in particular program contexts, which often leads to more precise

and/or simpler analyses (Radiček et al. 2018).

By way of example, Liquid Haskell can automatically verify that Haskell’s standard sort

function returns an ordered list (of type OList a) with the same length as its input, even

when the result is embedded in the Tick datatype that we use to measure resource usage:

{−@ sort :: Ord a ⇒ xs : [a] → Tick { zs : OList a | length zs = length xs } @−}

Applying our cost analysis to this function then allows us to prove that the maximum

number of comparisons required to sort any list xs is O(n log n), where n = length xs:

{−@ sortCost :: Ord a ⇒ xs : [a] →

{ tcost (sort xs) 6 4 ∗ length xs ∗ log2 (length xs) + length xs } @−}

Moreover, we can also combine correctness and resource properties to show that the maxi-

mum number of comparisons is linear when the input list is already sorted:

{−@ sortCostSorted :: Ord a ⇒ xs : OList a → { tcost (sort xs) 6 length xs } @−}

172

The aim of the work in this chapter is thus to develop, prove correct, and evaluate

a system that supports the above form of reasoning. As our system builds upon Liquid

Haskell, our cost analysis is based on the language’s core calculus (Vazou et al. 2014),

which models a subset of Haskell’s runtime semantics. In particular, our analysis of time

and space usage does not account for compiler optimisations or garbage collection. How to

interpret the results of our cost analysis in practice is discussed in section 5.2. In addition,

a formal operational semantics for Liquid Haskell’s core calculus is given in section 5.5.

Finally, our library is available on GitHub, along with the source code for all of the

examples presented throughout this chapter (Handley and Vazou 2019).

5.2 Analysing resource usage

In this section, we exemplify our library’s two main approaches to analysing resource usage,

which are intrinsic and extrinsic and support both unary and relational cost analysis. In

addition, each example serves to demonstrate how correctness properties can be naturally

integrated into each method of cost analysis in our setting. We conclude this section by

discussing how to interpret such analyses in practice.

5.2.1 Intrinsic cost analysis

In the case of intrinsic cost analysis, the resources utilised by a function are declared inside

its refinement type signature and are automatically checked by Liquid Haskell.

Example 5.1: Time complexity

We start by analysing the number of recursive calls made by Haskell’s list append

function (++). First, we define a new operator, (++), that is similar to append, but lifted

into our Tick datatype using applicative methods provided by our library:

(++) :: [a] → [a] → Tick [a]

[] ++ ys = pure ys

(x : xs) ++ ys = pure (x :) <1> (xs ++ ys)

173

That is, if the first argument list is empty, the second list, ys, is embedded into the Tick

datatype using pure, which records zero cost. In turn, if the first list is non-empty, (x :) is

embedded using pure and applied to the result of the recursive call. To record the cost of

the recursive call we use the (<1>) operator, a variant of the applicative operator (<∗>)

that sums the costs of the two arguments and increases the total by one.

Remark. The example code above includes the Haskell type signature for (++). For

brevity, we omit such types in the remainder of the chapter in favour of the corresponding

Liquid Haskell type specifications. However, Haskell type signatures are typically required

when defining functions and proofs using our library, and are included in the online source

code of all of our examples (Handley and Vazou 2019).

Now that we have defined the new operator, we can use Liquid Haskell to encode

properties about append’s execution cost by means of a refinement type specification:

{−@ (++) :: xs : [a] → ys : [a] →

{ t : Tick { zs : [a] | length zs = length xs + length ys } | tcost t = length xs } @−}

This type states that the length of the output list is given by the sum of the lengths of

the two input lists: a correctness property; and that the cost of appending two lists, in

terms of the number of required recursive calls, is given by the length of the first list: an

efficiency property. Liquid Haskell is able to automatically verify both properties without

any assistance from the user. In general, we note that resource bounds can be checked by

the Liquid Haskell system but cannot be inferred.

Example 5.2: Memory allocation

Next, we analyse a different resource: the number of thunks allocated when folding lists.

As before, we lift the standard foldl function into the Tick datatype. However, this time

we use step to manually increment foldl’s resource usage each time it allocates a thunk:

foldl f z [] = pure z

foldl f z (x : xs) = let w = f z x in 1 ‘step‘ foldl f w xs

174

As foldl’s resource usage increases for each element in the input list, we can use Liquid

Haskell to automatically check that the cost of folding is equal to the length of this list:

{−@ foldl :: (b → a → b) → b → xs : [a] → { t : Tick b | tcost t = length xs } @−}

In contrast, the strict variant of foldl, called foldl ′, uses Haskell’s seq primitive to force

the evaluation of its intermediate results during execution:

{−@ foldl ′ :: (b → a → b) → b → xs : [a] → { t : Tick b | tcost t = 0 } @−}

foldl ′ f z [] = pure z

foldl ′ f z (x : xs) = let w = f z x in w ‘seq‘ foldl ′ f w xs

As before, the Tick datatype is used to record the number of allocated thunks. As no

thunks are allocated by foldl ′, we do not increase the cost at each recursive step, and thus

Liquid Haskell correctly verifies that foldl ′’s total execution cost is zero.

Both of these examples are simplified models of execution, in the sense that they only

account for the number of thunks allocated by the higher-order folding functions (foldl and

foldl ′) and assume that the input function f has no cost. In our subsequent case studies in

section 5.4, we give a more accurate account of resource usage that incorporates the number

of additional thunks allocated by each f .

Example 5.3: Cost analysis and verification

In this example, we analyse the number of comparisons made when merging two ordered

lists. As before, we lift the standard merge function into the Tick datatype and use the

(<1>) operator to increase the cost each time a comparison is made:

merge xs [] = pure xs

merge [] ys = pure ys

merge (x : xs) (y : ys)

| x 6 y = pure (x :) <1> merge xs (y : ys)

| otherwise = pure (y :) <1> merge (x : xs) ys

The resource usage of the merge function depends on the values of the input lists, and so we

cannot easily establish a precise bound on its execution cost. We can, however, use Liquid

Haskell to automatically check upper and lower bounds on this cost:

175

{−@ merge :: Ord a ⇒ xs : OList a → ys : OList a →

{ t : Tick { zs : OList a | length zs = length xs + length ys }

| tcost t 6 length xs + length ys

∧ tcost t > min (length xs) (length ys) }

/ [length xs + length ys] @−}

In the worst case, merge performs length xs + length ys comparisons as both input lists

may need to be completely traversed to produce an ordered output. Conversely, the best

case requires min (length xs) (length ys) comparisons as merge terminates when one of the

input lists becomes empty. The above type uses the ordered list type constructor, OList,

which is defined using abstract refinements (Vazou, Rondon, and Jhala 2013) as follows:

{−@ type OList a = [a]<{ λx y → x 6 y }> @−}

Hence, the refinement type for merge also states that merging two ordered lists returns an

ordered list whose length is equal to the sum of the two input lengths. Once again, we

see that building our cost analysis on top of existing Liquid Haskell features allows us to

naturally combine correctness and efficiency properties.

Finally, we note that merge’s specification includes the following termination metric

[length xs + length ys]

which enables Liquid Haskell to deduce that merge will terminate. All examples up to this

point are automatically proved terminating by the system’s structural termination checker.

However, merge’s definition does not satisfy the preconditions for structural termination,

and hence a semantic termination metric must be provided. We omit such termination

metrics in the remainder of the chapter for brevity, however, they are included in the online

source code of our examples (Handley and Vazou 2019).

5.2.2 Extrinsic cost analysis

In the case of extrinsic cost analysis, we use refinement types to express theorems about

resource usage and then define Haskell terms that inhabit these types to prove the theo-

rems. In contrast to intrinsic cost analysis, this approach does not support fully automated

176

verification, as proof terms must be provided by users. Nonetheless, this method allows

us to specify efficiency properties that are not intrinsic to the definitions of functions. For

example, we can relate the costs of multiple functions and analyse the resource usage of

functions applied to specific subsets of their domains.

Example 5.4: Unary cost analysis

Using the merge function from the previous example, we can define a function that

implements merge sort, with the following refinement type:

{−@ msort :: Ord a ⇒ xs : [a] → Tick { zs : OList a | length zs = length xs } @−}

This type captures two correctness properties of merge sort, namely that the output list

is sorted and has the same length as the input list. To analyse the cost of msort we use

the extrinsic approach. That is, we specify appropriate theorems outside of the function’s

definition and prove them manually. In particular, the following two theorems capture lower

and upper bounds on merge sort’s execution cost:

{−@ msortCostLB :: Ord a ⇒ { xs : [a] | pow2 (length xs) } →

{ tcost (msort xs) > (length xs / 2) ∗ log2 (length xs) } @−}

{−@ msortCostUB :: Ord a ⇒ { xs : [a] | pow2 (length xs) } →

{ tcost (msort xs) 6 2 ∗ length xs ∗ log2 (length xs) } @−}

Together, the theorems state that the number of comparisons required is Θ(n log n), where

n is the length of the input list. In both cases, because merge sort proceeds by repeatedly

splitting the input list into two equal parts, we assume the input length to be a power of

two, specified by pow2 (length xs). This approach highlights the flexibility of the extrinsic

method: even though it is reasonable to use this assumption for cost analysis, it would be

unreasonable to impose this restriction on all of the inputs to which msort is applied. Proofs

of these theorems can be constructed using the proof combinators introduced in section 5.3

and are available online (Handley and Vazou 2019).

Note that if we assume the cost of comparison outweighs the cost of all other operations

performed during merge sort’s execution, we can use the above theorems to infer asymptotic

177

upper and lower bounds on the algorithm’s runtime performance, respectively.

Example 5.5: Relational cost analysis

The extrinsic approach enables us to describe arbitrary program properties, including

those that compare the relative cost of two functions or the same function applied to different

inputs. This is known as relational cost analysis (Çiçek 2018). Here, we adapt an example

from (Çiçek et al. 2017) to demonstrate how relational cost is encoded in our setting.

In cryptography, a program adheres to the ‘constant-time discipline’ if its execution time

is independent of secret inputs. Adhering to this discipline is an effective countermeasure

against side-channel attacks, which can allow intruders to infer secret inputs by measuring

variations in execution time. Using relational cost analysis, we can prove that a program

is constant-time without having to show that it has equal upper and lower bounds on its

execution cost (for example, by performing two separate unary analyses). To demonstrate

this, we use our library to analyse the execution cost of a function that compares two

equal-length password hashes represented as lists of binary digits:

{−@ type EqLen xs = { ys : [Bit] | length ys = length xs } @−}

{−@ compare :: xs : [Bit] → ys : EqLen xs → t : Tick Bool @−}

compare [] [] = pure True

compare (x : xs) (y : ys) = pure (∧ x == y) <1> compare xs ys

We assume that the equality (==) and conjunction (∧) functions are both constant-time,

therefore, we only measure the number of recursive calls made during compare’s execution.

As we have assumed that the computations performed during each recursive step are

constant-time, we can prove that compare is a constant-time function by showing that

it requires the same number of recursive calls when comparing any stored password pwd

against any two equal-length user inputs, u1 and u2:

{−@ constant :: pwd : [Bit] → u1 : EqLen pwd → u2 : EqLen pwd →

{ tcost (compare pwd u1) = tcost (compare pwd u2) } @−}

constant [] = ()

constant (: ps) (: us1) (: us2) = constant ps us1 us2

178

The proof of this theorem proceeds by induction on the length of the input lists. Con-

sequently, our proof has a trivial base case and an inductive case that recursively calls the

inductive hypothesis. In this instance, Liquid Haskell can deduce the relative cost of both

executions from the definition of compare. As such, the proof can be handled automatically

by Liquid Haskell’s proof by logical evaluation (PLE) tactic (Vazou et al. 2017).

Example 5.6: Cost improvement

As a final example, we outline how extrinsic cost analysis can be used to calculate the

difference in the execution costs of two related programs. This is also a primary application

of relational cost analysis. Consider the familiar monoid laws of the (++) operator:

[] ++ ys = ys left identity

xs ++ [] = xs right identity

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) associativity

As we know from chapter 3, these properties can be automatically checked using the

QuickCheck system. In fact, they can also be proved correct in Liquid Haskell via equational

reasoning (Vazou et al. 2018). However, although the two sides of each property give

the same results, each side does not necessarily require the same amount of resources (as

demonstrated previously in chapter 4). This observation can be made precise by proving

the following properties of the annotated append operator, (++):

[] ++ ys <=> pure ys

xs ++ [] >== length xs ==> pure xs

(xs ++ ys) >>= (++ zs) >== length xs ==> (xs ++) =<< (ys ++ zs)

Recall from example 5.1 that the (++) operator records the number of recursive calls made

during append’s execution. Using this notion of cost, the first property above states that the

left identity law is a cost equivalence. That is, [] ++ ys and ys evaluate to the same result,

and moreover, both require the same number of recursive calls to append. We make this

precise by relating the annotated version of each side using the cost equivalence relation

<=>. Note that ys must be embedded in the Tick datatype using pure in order for the

179

property to be type-correct. On the other hand, the right identity and associativity laws

are cost improvements in the left-to-right direction. That is, both sides of each property

evaluate to the same result, but in each case the right-hand side requires fewer recursive

calls to append. Again, we make this precise by relating the corresponding annotated

definitions. Moreover, we make the cost difference explicit using quantified improvement,

written >== n ==> for a positive cost difference n, by showing that each right-hand side

requires length xs fewer recursive calls than its respective left-hand side.

We return to the notions of cost equivalence, cost improvement, and quantified improve-

ment in section 5.3, where we discuss our library’s implementation and prove the second

property as an example. Subsequently, in section 5.4, we use quantified improvement to con-

struct a unified proof that shows the well-known map fusion technique preserves correctness

and improves performance. In turn, we then use quantified improvement to systematically

derive an optimised-by-construction reverse function from a high-level specification.

5.2.3 Interpreting cost analysis

Our library allows users to analyse a wide range of resources. Specifically, the Tick datatype

can measure any kind of resource whose usage is additive, in the sense that the basic

operation on costs is addition (and subtraction). Nonetheless, the correctness of a cost

analysis relies on appropriate cost annotations being added to a program by the user. As

such, it is the user’s responsibility to ensure that such annotations correctly model the

intended usage of a resource. In section 5.5, we use Liquid Haskell’s metatheory to prove

the correctness of refinement specifications with respect to annotations.

Assuming that an annotated program does correctly model the intended usage of a

particular resource, then the question is: how can a user relate its (intrinsic or extrinsic)

cost analysis back to the execution cost of its unannotated counterpart? In other words,

what is the interpretation of an annotated expression’s cost bound in practice?

180

Haskell’s lazy evaluation

As illustrated in the previous examples, any bound established on the execution cost of

an annotated function that manipulates standard Haskell datatypes is a worst-case approxi-

mation of actual resource usage. For example, consider the annotated append function (++)

that measures the number of recursive calls made by (++). Then, tcost ([a, b, c] ++ ys) = 3

implies that the evaluation of [a, b, c] ++ ys makes three recursive calls to (++). Three re-

cursive calls to (++) corresponds to [a, b, c] ++ ys being fully evaluated.

An intuitive way to describe our library’s cost analysis in this instance is to use ter-

minology from Okasaki (1999): the analysis assumes that functions applied to standard

Haskell datatypes are monolithic. That is, once run, such functions are assumed to run

until completion. This is not true in practice because Haskell’s lazy evaluation strategy

proactively halts computations to prevent functions from being unnecessarily fully applied.

Moreover, for efficiency, lazy evaluation allows computations to share intermediate re-

sults so that expressions are not re-evaluated when needed on multiple occasions. By

default, however, annotated expressions do not model sharing. For example, the square

function below records the resource usage of its input, n :: Tick Int, twice even though its

unannotated counterpart, square n = n ∗ n, only evaluates n :: Int once:

{−@ square :: n : Tick Int → { t : Tick Int | tcost t = 2 ∗ tcost n } @−}

square n = pure (∗) <∗> n <∗> n

Thus, overall, our library’s default analysis assumes that computations are fully evalu-

ated and overlooks sharing, leading to worst-case approximations of actual execution costs

in practice, that is, under Haskell’s lazy evaluation strategy.

Explicit laziness

Our library can be used to precisely analyse the execution costs of computations that are

explicitly lazy. This is achieved by encoding non-strictness into the definitions of datatypes

and utilising a ‘manual sharing’ function, similarly to the approach taken by (Danielsson

2008). We return to these ideas in a case study on insertion sort in section 5.4.

181

5.3 Implementation

In this section, we present the implementation of our library and discuss two soundness

assumptions it makes. The library consists of two modules. The first, RTick, defines the

Tick datatype and functions for modifying resource usage, for example, pure and (<1>)

from section 5.2. The second, ProofCombinators, defines combinators to encode steps of

(in)equational reasoning about the values and resource usage of annotated expressions.

5.3.1 Recording resource usage

Our library’s principal datatype is Tick. For a given type a, Tick a consists of an integer,

tcost, to track the resource usage of a value, tval, of type a:

{−@ data Tick a = Tick { tcost :: Int, tval :: a } @−}

The Tick datatype is a monad, with the following applicative and monad functions:

{−@ pure, return :: x : a → { t : Tick a | tval t = x ∧ tcost t = 0 } @−}

pure x = Tick 0 x

return x = Tick 0 x

{−@ (<∗>) :: t1 : Tick (a → b) → t2 : Tick a →

{ t : Tick b | tval t = (tval t1) (tval t2) ∧ tcost t = tcost t1 + tcost t2 } @−}

Tick m f <∗> Tick n x = Tick (m + n) (f x)

{−@ (>>=) :: t1 : Tick a → f : (a → Tick b) → { t : Tick b

| tval t = tval (f (tval t1)) ∧ tcost t = tcost t1 + tcost (f (tval t1)) } @−}

Tick m x >>= f = let Tick n y = f x in Tick (m + n) y

The functions pure and return embed expressions in the Tick datatype and record zero

cost, while the (<∗>) and (>>=) operators sum up the costs of subexpressions.

We have formalised the applicative and monad laws for the above definitions in Liquid

Haskell; the proofs can be found online (Handley and Vazou 2019).

182

5.3.2 Modifying resource usage

The RTick module defines various functions to record and modify resource usage. Inspired

by the work in (Danielsson 2008), we refer to these (and the applicative and monad functions

above) as annotations. Next, we present the main annotation functions used throughout

this chapter. The most basic way to record resource usage is by using step:

{−@ step :: m : Int → t1 : Tick a →

{ t : Tick a | tval t = tval t1 ∧ tcost t = m + tcost t1 } @−}

step m (Tick n x) = Tick (m + n) x

A positive integer argument to step indicates the consumption of a resource, while a negative

argument indicates the production of a resource.

Interestingly, Danielsson (2008) defines a (X) operator to increment the resource usage

of an annotated expression in the spirit of improvement theory (Moran and Sands 1999).

Such an operator can be defined in our setting using step:

{−@ (X) :: t1 : Tick a →

{ t : Tick a | tval t = tval t1 ∧ tcost t = 1 + tcost t1 } @−}

(X) = step 1

We often wish to sum the costs of subexpressions and modify the result. For this,

we provide a number of resource combinators. One such combinator, (<1>), was used in

section 5.2 and is a variant of the apply operator, (<∗>). Specifically, (<1>) behaves as

(<∗>) at the value-level, but increases the total resource usage of its subexpressions by one:

{−@ (<1>) :: t1 : Tick (a → b) → t2 : Tick a → { t : Tick b

| tval t = (tval t1) (tval t2) ∧ tcost t = 1 + tcost t1 + tcost t2 } @−}

Tick m f <1> Tick n x = Tick (1 + m + n) (f x)

A similar combinator is defined in relation to the bind function:

{−@ (>1=) :: t1 : Tick a → f : (a → Tick b) → { t : Tick b

| tval t = tval (f (tval t1)) ∧ tcost t = 1 + tcost t1 + tcost (f (tval t1)) } @−}

Tick m x >1= f = let Tick n y = f x in Tick (1 + m + n) y

183

Finally, our library provides functions to embed computations in the Tick datatype while

simultaneously consuming or producing resources. For example, inspired by Danielsson

(2008), we have wait and waitN , which act in the same manner as pure and return at the

value-level but consume one and n resources, respectively:

{−@ wait :: x : a → { t : Tick a | tval t = x ∧ tcost t = 1 } @−}

wait x = Tick 1 x

{−@ waitN :: n : Nat → x : a → { t : Tick a | tval t = x ∧ tcost t = n } @−}

waitN n x = Tick n x

Similarly, go and goN produce one and n resources, respectively:

{−@ go :: x : a → { t : Tick a | tval t = x ∧ tcost t = (−1) } @−}

go x = Tick (−1) x

{−@ goN :: n : Nat → x : a → { t : Tick a | tval t = x ∧ tcost t = (−n) } @−}

goN n x = Tick (−n) x

From the definitions of (>1=), step, and (>>=) above it should be clear that the follow-

ing equality holds: (t >1= f) = step 1 (t >>= f). In fact, all of the resource modification

functions provided by the RTick module, including (<∗>) and (<1>), can be defined using

return, (>>=), and step. We make use of this fact in section 5.5 to simplify our proofs of

correctness for both intrinsic and extrinsic cost analysis.

Remark. It is important to note that Tick’s cost parameter should not be modified by

any means other than through the use of the functions provided by the RTick module, for

example, by case analysis. Doing so breaks the encapsulation of Tick’s effects, potentially

leading to invalid cost analyses. This is discussed in detail at the end of this section.

5.3.3 Proving extrinsic theorems

As exemplified in section 5.2, extrinsic cost analysis requires manually proving that bounds

on resource usage hold. In Liquid Haskell, this is formalised as (in)equational reasoning. In

other words, a proof of an extrinsic theorem is a total and terminating Haskell function that

appropriately relates the left-hand side of the theorem’s proof statement to the right-hand

184

Equal {−@ (==.) :: x : a → { y : a | y = x }
→ { z : a | z = x ∧ z = y } @−}

==. y = y

Greater than {−@ (>.) :: m : a → { n : a | m > n }
or equal → { o : a | m > o ∧ o = n } @−}

>. n = n

Theorem (?) :: a → Proof → a
invocation x ? = x

Proof (∗∗∗) :: a → QED → Proof
finalisation ∗∗∗ QED = ()

QED definition data QED = QED

Figure 5.1: Proof combinators introduced in (Vazou et al. 2018)

side by, for example, unfolding and folding definitions (Burstall and Darlington 1977) and

through the use of mathematical induction (Burstall 1969).

Next, we introduce a number of proof combinators from our library’s ProofCombinators

module that aid the development of extrinsic proofs. As a running example, we show that

append’s right identity law, xs ++ [] = xs, is an optimisation in the left-to-right direction

by proving properties about the annotated append function, (++), from section 5.2.

Proof construction

We first recall how to construct (in)equational proofs in Liquid Haskell. To exemplify both

the equational and inequational styles of proof, we reason about the results and resource

usage of append separately. Readers may refer to section 2.4.1 or to (Vazou et al. 2018) for

a more detailed discussion on the following concepts.

Specifying theorems

The Proof type is simply the unit type, refined to express a theorem: type Proof = ().

For example, in order to show that append’s right identity law is a denotational equivalence,

we can express that the values of xs ++ [] and pure xs are equal:

{−@ rightIdVal :: xs : [a] → { p : Proof | tval (xs ++ []) = tval (pure xs) } @−}

185

Here the binder p : Proof is superfluous and so we can remove it:

{−@ rightIdVal :: xs : [a] → { tval (xs ++ []) = tval (pure xs) } @−}

Equational proofs

The above extrinsic theorem, rightIdVal , expresses a value equivalence between two

annotated expressions. In this case, Liquid Haskell cannot prove the theorem automatically

on our behalf. To prove it ourselves, we can define one of its inhabitants using a number of

proof combinators from figure 5.1, as follows:

rightIdVal []

= tval ([] ++ [])

==. tval (pure [])

∗∗∗ QED

rightIdVal (x : xs)

= tval ((x : xs) ++ [])

==. tval (pure (x :) <1> (xs ++ []))

? rightIdVal xs

==. tval (pure (x :) <1> pure xs)

==. tval (Tick 0 (x :) <1> Tick 0 xs)

==. tval (Tick 1 (x : xs))

==. tval (Tick 0 (x : xs))

==. tval (pure (x : xs))

∗∗∗ QED

Recall that the aim of the proof is to equate the left-hand side of the theorem’s proof

statement, tval (xs ++ []), with the right-hand side, tval (pure xs). We split it into two

cases. In the base case, where xs is empty, the proof simply unfolds the definition of (++).

In the inductive case, where xs is non-empty, the proof unfolds (++) and (<1>), and unfolds

and folds pure. It also appeals to the inductive hypothesis using (?), which combines the

refinements from its argument theorem with those from the current theorem being proved.

In both cases, the (==.) combinator relates steps of reasoning by ensuring that both of its

arguments are equal and returns its second argument to allow multiple uses to be chained

together. The (∗∗∗ QED) function signifies the end of each proof.

186

Inequational proofs

Having proved that the values of xs ++ [] and pure xs are equal, the next step is to

compare their resource usage. From section 5.2, we know that the costs of both expressions

are not equal. In particular, xs ++ [] requires length xs more recursive calls to append

than pure xs. This can be formalised by proving that the execution cost of xs ++ [] is

greater than or equal to that of pure xs using the (>.) combinator from figure 5.1:

{−@ rightIdCost :: xs : [a] → { tcost (xs ++ []) > tcost (pure xs) } @−}

rightIdCost xs

= tcost (xs ++ [])

>. tcost (pure [])

∗∗∗ QED

The resource usage of pure xs is zero as it requires no recursive calls to (++). Further-

more, Liquid Haskell can automatically deduce that tcost (xs ++ []) = length xs and that

length xs > 0. Hence the theorem follows from a single use of (>.).

The ProofCombinators module includes numerous other numerical operators for reason-

ing about the relative execution costs of annotated expressions, including greater than (>.),

less than (<.), less than or equal (6.), and equal (==.).

Proofs of cost equivalence, improvement, and diminishment

In this subsection, we return to the notions of cost equivalence, improvement, and quantified

improvement illustrated in example 5.6. We also introduce two new notions: diminishment

and quantified diminishment. It is important to note that these relations are distinct from

those relations with the same name introduced in chapter 4. To clarify this, we give them

(and their associated Liquid Haskell operators) new notations.

Cost equivalence

Often it is beneficial to reason about the values and resource usage of expressions si-

multaneously. For example, if we unfold the base case of the annotated append function,

187

(++), it is easy to show that both expressions are equal:

[] ++ ys = pure ys

However, instead of relating the two expressions using equality, we prefer to use the notion

of cost equivalence, which better clarifies our topic of reasoning. This cost-equivalence

relation is defined as a Liquid Haskell predicate in figure 5.2, and states that two annotated

expressions are cost equivalent if they have the same values and resource usage:

[] ++ ys <=> pure ys

The above property is thus a ‘resource-aware’ version of append’s left identity law, which

formalises that both expressions evaluate to the same result and require the same number

of recursive calls to append (as shown previously in example 5.6).

Cost improvement

Previously in this section, we proved that append’s right identity law is a value equiv-

alence: tval (xs ++ []) = tval (pure xs) and a cost inequivalence: tcost (xs ++ []) >

tcost (pure xs). Both of these properties are captured by the cost improvement relation

defined in figure 5.2. Append’s right identity law is thus an improvement—with respect to

number of recursive calls—in the left-to-right direction. Following Moran and Sands (1999),

we say that “xs ++ [] is improved by pure xs”.

One way to prove that append’s right identity law is a left-to-right improvement is to

combine both sets of refinements from rightIdVal and rightIdCost using (?):

{−@ rightIdImp :: xs : [a] → { xs ++ [] >'> pure xs } @−}

rightIdImp xs = rightIdVal xs ? rightIdCost xs

However, in general, this approach overlooks a key opportunity afforded by relational cost

analysis, which is the ability to precisely relate intermediate execution steps using, for ex-

ample, inequational reasoning. Crucially, unfolding and folding the definitions of annotated

expressions makes resource usage explicit in steps of (in)equational reasoning. Not only

does this allow savings in resource usage to be quantified in proofs, but it allows such sav-

188

ings to be localised. This approach fundamentally requires reasoning about the values and

execution costs of annotated expressions simultaneously, however, and thus proofs relating

values and costs independently simply cannot exploit it (Çiçek 2018).

Quantified improvement

It is straightforward to show that xs ++ [] is improved by pure xs by relating the

expressions’ intermediate execution steps using cost combinators from figure 5.2. However,

we know the exact cost difference between xs ++ [] and pure xs, namely length xs. This

additional information allows us to relate the expressions more precisely using the quantified

improvement relation, also defined in figure 5.2. Quantified improvement extends cost

improvement by taking an additional argument, which is the cost difference between its

first and last arguments. Therefore, we can say “xs ++ [] is improved by pure xs, by a

cost of length xs”, and make it precise by defining a corresponding theorem, as follows:

{−@ rightIdQImp :: xs : [a] → { xs ++ [] >== length xs ==> pure xs } @−}

To prove this theorem, we can simply extend the previous proof of value equivalence,

rightIdVal , by replacing equality with cost equivalence and by making cost savings wherever

possible. Readers are encouraged to note the strong connection between rightIdVal and the

following proof, which, as before, is split into two cases:

rightIdQImp []

= [] ++ []

<=>. pure []

∗∗∗ QED

In the base case, where xs is empty, there is no cost saving. This is because length [] = 0

and, therefore, tcost ([] ++ []) = tcost (pure []). Hence, it suffices to show that [] ++

[] <=> pure [], which follows immediately from the definition of (++).

rightIdQImp (x : xs)

= (x : xs) ++ []

<=>. pure (x :) <1> (xs ++ [])

189

Relations

Value equivalence t1 =!= t2 = tval t1 = tval t2

Cost equivalence t1 <=> t2 = t1 =!= t2 ∧ tcost t1 = tcost t2

Improvement t1 >'> t2 = t1 =!= t2 ∧ tcost t1 > tcost t2

Diminishment t1 <w< t2 = t1 =!= t2 ∧ tcost t1 6 tcost t2

Quantified improvement t1 >== n ==> t2 = t1 =!= t2 ∧ tcost t1 = n + tcost t2

Quantified diminishment t1 <== n ==< t2 = t1 =!= t2 ∧ n + tcost t1 = tcost t2

Combinators

Cost equivalence {−@ (<=>.) :: t1 : Tick a → { t2 : Tick a | t1 <=> t2 }

→ { t : Tick a | t1 <=> t ∧ t2 <=> t } @−}

Improvement {−@ (>'>.) :: t1 : Tick a → { t2 : Tick a | t1 >'> t2 }

→ { t : Tick a | t1 >'> t ∧ t2 <=> t } @−}

Diminishment {−@ (<w<.) :: t1 : Tick a → { t2 : Tick a | t1 <w< t2 }

→ { t : Tick a | t1 <w< t ∧ t2 <=> t } @−}

Quantified improvement {−@ (.>==) :: t1 : Tick a → n : Nat

→ { t2 : Tick a | t1 >== n ==> t2 }

→ { t : Tick a | t1 >== n ==> t ∧ t2 <=> t } @−}

Quantified diminishment {−@ (.<==) :: t1 : Tick a → n : Nat

→ { t2 : Tick a | t1 <== n ==< t2 }

→ { t : Tick a | t1 <== n ==< t ∧ t2 <=> t } @−}

Separators

Quantified improvement (==>.) :: (a → b) → a → b f ==>. x = f x

Quantified diminishment (==<.) :: (a → b) → a → b f ==<. x = f x

Figure 5.2: RTick cost relations, combinators, and separators

190

? rightIdQImp xs

.>== length xs ==>. pure (x :) <1> pure xs

<=>. Tick 0 (x :) <1> Tick 0 xs

<=>. Tick 1 (x : xs)

.>== 1 ==>. Tick 0 (x : xs)

<=>. pure (x : xs)

∗∗∗ QED

In the inductive case, where xs is non-empty, we must save length (x : xs) cost. We start by

unfolding the definition of (++) and then replace xs ++ [] with pure xs by appealing to the

inductive hypothesis using (?), which saves length xs resources. This saving is made explicit

using the quantified improvement operator, (.>== length xs ==>.), which is a combination of

two functions from figure 5.2, (.>==) and (==>.), whereby the latter is a syntactic sugar for

Haskell’s ($) operator, which allows (.>==) to be used infix. We save one further recursive

call by unfolding the definition of (<1>). Finally, our goal follows from the definition of

pure. The total resource saving is 1 + length xs, which is equal to length (x : xs).

By starting at the left-hand side of a resource-aware version of append’s right identity

law, we have used simple steps of inequational reasoning to derive the right-hand side.

Each step of reasoning ensures denotational meaning (value equivalence) is preserved while

simultaneously maintaining or improving resource usage. Resource usage is made explicit

in steps of reasoning by cost annotations. Furthermore, the location and quantity of each

resource saving is made explicit through the use of quantified improvement. We remind

readers that Liquid Haskell verifies the correctness of every proof step.

In this particular instance, quantified improvement shows that one recursive call is saved

per inductive step of the proof, and hence append’s right identity law is a left-to-right

optimisation precisely because xs ++ [] evaluates to xs.

Diminishment and quantified diminishment

The combinators introduced up until now can only be used to prove that one expression,

t1 :: Tick a, is improved by another, t2 :: Tick a, by starting at t1 and deriving t2. This

191

is because (quantified) improvement enforces a positive cost difference in the left-to-right

direction. However, in some cases it may be easier to derive t1 from t2. To support this,

we use the notion of (quantified) diminishment, also presented in figure 5.2, which is dual

to (quantified) improvement. For example, it is straightforward to prove that pure xs is

diminished by xs ++ [], by a cost of length xs: simply reverse the calculation steps of

rightIdQImp replacing instances of quantified improvement with quantified diminishment.

Note that t1 >'> t2 if and only if t2 <w< t1, and likewise, t1 >== n ==> t2 if and only

if t2 <== n ==< t1. Similar relationships also exist between other cost relations. We have

formalised all such relationships in Liquid Haskell as part of our implementation.

Notions of improvement

Before discussing the key assumptions of our library, it is instructive to draw a number of

comparisons between our new notions of improvement >'> and cost equivalence <=> and

those from Moran and Sands’ improvement theory, �∼ and ��∼ , respectively. Recall that the

latter relations were introduced previously in section 4.3.2.

Firstly, note that the >'> and <=> relations are not contextually defined, unlike �∼ and

��∼ . As such, comparisons made between execution costs using our library only account for

one context of use, which is the empty context, [−]. In practice, this means that M >'> N

does not necessarily indicate that N performs better than M in all cases, for example, when

N and M appear as subexpressions in larger program contexts.

Secondly, the relations >'> and <=> can be used to compare a wide range of different

resources whereas �∼ and ��∼ compare evaluation steps only.

Thirdly, our notions of quantified improvement and diminishment make the cost differ-

ence explicit, but there are no corresponding relations in improvement theory.

Finally, all of our improvement relations incorporate denotational meaning. For exam-

ple, M >'> N also entails that M and N give the same results. However, this is not true of

M �∼ N because N may terminate more often than M . Hence, in practice, separate proofs

of correctness often accompany proofs of improvement à la improvement theory (Hackett

and Hutton 2014), while our approach attempts to unify such proofs. (In fact, a separate

notion of strong improvement Q was used for correctness-preserving optimisations in Moran

192

and Sands’ work. Readers may recall this notation from AutoBench’s optimisation results

in section 3.3.4 as the system attempts to empirically predict this relation.)

5.3.4 Library assumptions

To ensure its cost analysis is sound, the library makes two key assumptions:

(a) Expressions subject to cost analysis are not defined in terms of tval or tcost, nor do

they perform case analysis on the Tick data constructor;

(b) Liquid Haskell’s totality and termination checkers are active at all times.

These assumptions are discussed for the remainder of this section.

Projections and case analysis

Annotated expressions subject to resource analysis must not be defined in terms of Tick’s

projection functions tval and tcost. This is to preserve the encapsulation of Tick’s accu-

mulated cost. For example, tval can be used to (indirectly) show that two lists can be

appended using (++) without incurring any cost, as follows:

{−@ (++0) :: xs : [a] → ys : [a] → { t : Tick [a] | tcost t = 0 } @−}

xs ++0 ys = pure (tval (xs ++ ys))

From the type specification of (++), we know that tcost (xs ++ ys) = length xs. However,

the cost of (++0) is zero because it uses tval to discard (++)’s incurred cost. Similarly, user-

defined functions can freely overwrite accumulated costs using the tcost projection or by

performing case analysis on Tick’s data constructor. Consequently, these primitives are not

permitted in the definitions of expressions, as such expressions are not safe for cost analysis.

(We formally define a safety predicate in section 5.5.) Instead, users should record resource

usage implicitly using the functions provided by the RTick module.

Remark. Despite this assumption, the tval and tcost projections and the Tick data

constructor are exported from the RTick module. This is because, as we’ve seen previously,

these definitions are required in refinement type specifications and extrinsic proof terms.

193

Totality and termination

Partial definitions, which Haskell permits, are not valid inhabitants of theorems expressed

in refinement types (Vazou et al. 2018). As such, the resource usage of partial definitions

should not be analysed using the library. Similarly, partial definitions should not be used

to prove theorems regarding the resource usage of total annotated expressions. Haskell can

also be used to specify non-terminating computations. Divergence in refinement typing (in

combination with lazy evaluation) can, however, be used to prove false predicates (Vazou

et al. 2014). Hence, the library’s cost analysis is only sound for computations that require

finite resources. Liquid Haskell provides powerful totality and termination checkers that are

active by default (Vazou 2016). Partial and/or divergent definitions will thus be rejected

so long as these checkers remain active at all times.

5.4 Case studies

In this section, we present an evaluation of our library, encompassing four detailed case

studies: cost analyses of monolithic and non-strict implementations of insertion sort (sec-

tions 5.4.1 and 5.4.2); a proof that the well-known map fusion technique is a correctness-

preserving optimisation (section 5.4.3); and a derivation of an optimised-by-construction

list-reversing function (section 5.4.4). The evaluation concludes with a summary of all of

the examples we have studied while developing the library (section 5.4.5), the majority of

which have been adapted from the existing literature for purposes of comparison.

5.4.1 Case study 1: Insertion sort

This case study analyses the number of comparisons required by the standard insertion sort

algorithm. First, we use intrinsic cost analysis to prove a quadratic upper bound on the

number of comparisons needed to sort a list of any configuration. In turn, we then use

extrinsic cost analysis to prove a linear upper bound on the number of comparisons needed

to sort a list that is already in a sorted order.

To begin, we lift the textbook insertion sort function into the Tick datatype:

194

insert x [] = pure [x]

insert x (y : ys)

| x 6 y = wait (x : y : ys)

| otherwise = pure (y :) <1> insert x ys

isort [] = return []

isort (x : xs) = insert x =<< isort xs

According to the definition of isort, an empty list is already sorted; the result is simply

embedded in the Tick datatype using return. To sort a non-empty list, its head is inserted

into its recursively sorted tail. In this case, the ‘flipped’ bind operator, (=<<), sums up the

costs of the insertion and the recursive sorting.

Inserting an element into a sorted list is standard, with each comparison being recorded

using the functions wait and (<1>) introduced previously in section 5.3.

Intrinsic cost analysis

Refinement types can now be used to simultaneously specify properties about the correctness

and resource usage of the above functions. In particular, abstract refinement types (Vazou,

Rondon, and Jhala 2013) can be used to define sorted Haskell lists, that is, a list whereby

the head of each sublist is less than or equal to every element in the tail:

{−@ type OList a = [a]<{ λx y → x 6 y }> @−}

Here we use the OList type constructor to ensure that insert’s input list, xs, is sorted:

{−@ insert :: Ord a ⇒ x : a → xs : OList a → { t : Tick { zs : OList a

| length zs = 1 + length xs } | tcost t 6 length xs } @−}

The result type of insert asserts that the function’s output list, zs, is also sorted and

contains one more element than xs. With respect to efficiency, this type states that an

insertion requires at most length xs comparisons.

The specification for isort states that it returns a sorted list of the same length as its

input, xs, and that sorting xs requires at most (length xs)2 comparisons:

195

{−@ isort :: Ord a ⇒ xs : [a] → { t : Tick { zs : OList a

| length zs = length xs } | tcost t 6 (length xs)2 } @−}

Liquid Haskell is able to automatically verify insert’s specification. On the other hand,

isort’s specification is rejected. This is because the cost of insert x =<< isort xs can only be

calculated by performing type-level computations that are not automated by the system. At

this point, we could switch to extrinsic cost analysis and perform the necessary calculations

manually. However, we can also take a different approach that allows us to continue on with

our intrinsic analysis. The key to this approach is utilising the following function, which is

a variant of the flipped bind operator, (=<<):

{−@ (=<<{·}) :: n : Nat → f : (a → { t1 : Tick b | tcost t1 6 n }) → t2 : Tick a →

{ t : Tick b | tcost t 6 tcost t2 + n } @−}

(=<<{·}) :: Int → (a → Tick b) → Tick a → Tick b

f =<<{n} x = f =<< x

From an operational point of view, it should be clear that the expression f =<<{n} x is

equal to f =<< x. However, the refinement type of this ‘bounded’ version of (=<<) restricts

its domain to functions f :: a → Tick b with execution costs no greater than n. The total

execution cost of f =<<{n} x thus cannot exceed that of x plus n.

Using (=<<{·}) in the definition of isort allows Liquid Haskell to verify its execution cost

without performing any type-level computations. Hence, isort’s type can be automatically

verified by specifying a length xs upper bound on the cost of each insertion:

isort [] = return []

isort (x : xs) = insert x =<<{length xs} isort xs

A more accurate bound

A simple recurrence relation for insertion sort is as follows

T (n) =


0 if n = 0

T (n− 1) + O(n) if n > 0

196

where n = length xs for an input list xs. In the base case, where length xs = 0, no

comparisons are made. In the recursive case, where length xs > 0, we know from the above

specification for insert that each insertion requires at most length xs − 1 comparisons.

Furthermore, isort (x : xs) is defined recursively in terms of isort xs. The solution to this

recurrence relation is the sum of integers between 1 and n − 1, which is equal to n(n−1)
2 .

This result provides a more accurate upper bound on the execution cost of isort

{−@ isort :: Ord a ⇒ xs : [a] →

{ t : Tick (OList a) | tcost t 6 (length xs ∗ (length xs − 1)) / 2 } @−}

which is automatically verified by the system. Liquid Haskell is able to intrinsically prove

this particular bound due to the correctness property length zs = 1 + length xs appearing

in insert’s refinement specification. Again, this demonstrates how building upon Liquid

Haskell’s existing verification machinery allows for more precise cost analysis.

Extrinsic cost analysis

Next, we prove that the maximum number of comparisons made by isort is linear when its

input is already sorted. We capture this property with the following extrinsic theorem that

takes a sorted list as input. Therefore, the definition of isort does not need to be modified.

{−@ isortCostSorted :: Ord a ⇒ xs : OList a → { tcost (isort xs) 6 length xs } @−}

To prove this theorem, we consider three different cases: when the input list is empty;

when the list is a singleton, which invokes the base case of insert; and when the list has

more than one element, which invokes the recursive case of insert. The first two cases follow

immediately from the definitions of isort and insert, and thus can be proved automatically

using Liquid Haskell’s PLE feature (Vazou 2016):

{−@ ple isortCostSorted @−}

isortCostSorted [] = ()

isortCostSorted [x] = ()

When the input list contains more than one element, we begin by unfolding the definitions

of isort and (=<<{·}), and then appeal to the inductive hypothesis:

197

isortCostSorted (x : (xs@(y : ys)))

= tcost (isort (x : xs))

==. tcost (insert x =<<{length xs} isort xs)

==. tcost (isort xs) + tcost (insert x (tval (isort xs)))

? isortCostSorted xs

6. length xs + tcost (insert x (tval (isort xs)))

At this point, we invoke a lemma that proves tval (isort xs) is an identity on xs when the

list is sorted; its proof can be found online (Handley and Vazou 2019).

? isortSortedVal xs

==. length xs + tcost (insert x xs)

==. length xs + tcost (insert x (y : ys))

As the input x : y : ys is sorted, we know that x 6 y. Consequently, insert x (y : ys) will

not recurse and unfolding the definitions of insert and wait completes the proof:

==. length xs + tcost (wait (x : y : ys))

==. length xs + 1

==. length (x : xs)

∗∗∗ QED

Overall, this case study exemplifies how our library can be used to establish precise

bounds on the resource usage of functions operating on subsets of their domains. In this

instance, we imposed a ‘sortedness’ constraint on isort’s input list using an extrinsic theo-

rem, without needing to modify the function’s original definition. Furthermore, the proof

relies on the fact that isort’s result is a sorted list in order to show that tval (isort xs) is

an identity on xs. Hence, once more, we have demonstrated how correctness properties can

be utilised for the purposes of precise cost analysis.

Resource propagation

The execution cost of any annotated function utilising isort will, in general, be at least

quadratic. For example, a minimum function defined by taking the head of a non-empty

198

list that is sorted using isort also has a quadratic upper bound:

{−@ type NonEmpty a = { xs : [a] | length xs > 0 } @−}

{−@ minimum :: Ord a ⇒ xs : NonEmpty a →

{ t : Tick a | tcost t 6 (length xs)2 } @−}

minimum xs = pure head <∗> isort xs

This is because, as discussed in section 5.2.3, isort is treated as monolithic given that it

operates on standard Haskell lists. The cost of pure head <∗> isort xs, therefore, includes

the cost of fully evaluating isort xs. In practice, however, insertion sort does not need to

be fully applied to obtain the least element in the input list. In particular, Haskell’s lazy

evaluation will halt the sorting computation as soon the head of the list is generated. Next,

we see how the Tick datatype can be used to explicitly encode such non-strict behaviour.

5.4.2 Case study 2: Non-strict insertion sort

Our cost analysis treats functions operating on standard Haskell datatypes as monolithic.

To encode non-strict evaluation, we include Tick in the definitions of datatypes in order to

explicitly suspend computations. We call datatypes that are defined using Tick lazy and

functions that operate on them are called non-strict.

To illustrate these concepts, in this case study we define a non-strict minimum function

to calculate the least element in a non-empty lazy list sorted using insertion sort. The

execution cost of the new minimum function has a linear upper bound, which corresponds

to the resources required by Haskell’s on-demand evaluation.

Refined lazy lists

Following Danielsson (2008), we define lazy lists to be either empty (Nil) or constructed

(Cons) from a lhead :: a and a ltail :: Tick (LList a):

{−@ data LList a<p :: a → a → Bool >

= Nil

| Cons { lhead :: a, ltail :: Tick (LList <p> (a<p lhead >)) } @−}

199

Notice that the tail of a non-empty lazy list is an annotated computation that returns

another lazy list. Furthermore, to encode recursive properties into lazy lists, we use an

abstract refinement p to capture invariants that hold between the head of a lazy list and

each element of its tail, and moreover, that recursively hold inside the tail.

Sorted lazy lists are defined similarly to OList a, by instantiating the abstract refinement

p to express that the head of each sublist is less than or equal to any element in the tail:

{−@ type OLList a = LList <{ λx y → x 6 y }> a @−}

Non-strict sorting

We can now define a non-strict version of the insertion function using lazy lists. The key

distinction between insert and insertns is that, in the definition below, the recursive call to

insertns is suspended and stored in the tail of the resulting list.

{−@ insertns :: Ord a ⇒ a → xs : OLList a → { t : Tick (OLList a) | tcost t 6 1 } @−}

insertns x Nil = return (Cons x (return Nil))

insertns x (Cons y ys)

| x 6 y = wait (Cons x (return (Cons y ys)))

| otherwise = wait (Cons y (ys >>= insertns x))

When analysing functions that operate on standard Haskell datatypes, we have seen

that execution costs correspond to such functions being fully applied. Now we see that the

execution costs of non-strict functions correspond to such functions returning the first part

of their results. In this instance, insertns returns the first element of its result by making

one comparison when its input is non-empty, and zero comparisons otherwise: tcost t 6 1.

Non-strict insertion sort is analogous to isort, however its result is a sorted lazy list:

{−@ isortns :: Ord a ⇒ xs : [a] → { t : Tick (OLList a) | tcost t 6 length xs } @−}

isortns [] = return Nil

isortns (x : xs) = insertns x =<<{1} isortns xs

Given a standard Haskell list as input, isortns returns a sorted lazy list of type OLList a.

Hence, it is a non-strict function whose execution cost reflects the maximum number of

200

comparisons required to produce the first element in its result. Notice that this cost has

been intrinsically verified because (=<<{·}) limits the execution cost of each insertns.

Non-strict minimum

The following non-strict minimum function returns the first element in a non-empty list xs

partially sorted using isortns. As minimumns only forces the first element of isortns xs to

be calculated, it requires at most length xs comparisons:

{−@ minimumns :: Ord a ⇒ xs : NonEmpty a → { t : Tick a | tcost t 6 length xs } @−}

minimumns xs = pure lhead <∗> isortns xs

Explicit laziness

Lazy lists of type LList a are defined such that examining the head is zero-cost, but ex-

amining the last element has a cost equal to the sum total of the costs of each suspended

computation in the tail. As discussed in section 5.2.3, if such a list is fully evaluated on mul-

tiple occasions during a computation, the library’s default analysis records the cost of each

evaluation independently. However, in practice, once a list is fully evaluated by Haskell, its

value is memoised and thus subsequent uses are ‘cost-free’.

To explicitly capture such sharing in our analysis, we use pay (Danielsson 2008):

{−@ pay :: m : Nat → { t1 : Tick a | tcost t1 > m } →

{ t : Tick (Tick a) | tcost (tval t) = tcost t1 − m } @−}

pay m (Tick n x) = Tick m (Tick (n − m) x)

Evaluating pay m x >>= f allows f to use x numerous times while only paying m cost for it

once. Therefore, if m = tcost x then this effectively models sharing.

We repeated Danielsson’s analysis of Okasaki’s queues as part of the library’s evaluation

(section 5.4.5). In this example, non-strictness is captured by a lazy queue datatype and

sharing is modelled explicitly by lazy functions that are non-strict and use pay.

201

5.4.3 Case study 3: Map fusion

In this case study, we use the proof combinators from section 5.3.3 to simultaneously reason

about the correctness and efficiency of map fusion. This well-known property states that

mapping one function f :: a → b followed by another function g :: b → c over a list xs :: [a]

gives the same result as mapping the composite function g ◦ f :: a → c over the same list:

map g (map f xs) = map (g ◦ f) xs

Although the two sides of this equation give the same results, they do not require the same

amount of resources. In particular, the left-hand side traverses the list xs twice, whereas

the right-hand side traverses xs only once. Thus, replacing the expression on the left-hand

side with that on the right preserves correctness while saving length xs resources. To prove

this, we first define annotated versions of the mapping and function composition operators,

and then reason simultaneously about the correctness and efficiency of these definitions.

Definitions

First, we define an annotated mapping function, mapM , which takes as input a function

f :: a → Tick b returning an annotated result and a list xs. The cost of mapM ’s result,

given by applying f to each element x in the list xs, includes the number of recursive calls

made during mapM ’s execution and the cost of each application f x:

mapM :: (a → Tick b) → [a] → Tick [b]

mapM [] = pure []

mapM f (x : xs) = step 1 (liftA2 (:) (f x) (mapM f xs))

In particular, when the input list is empty, no resources are consumed; and when the input

list is non-empty, step 1 is used to record the recursive call to mapM and liftA2 (defined

subsequently) reconstructs the list while recording the cost of the application f x.

Remark. To the best of our knowledge, it is not possible to define a refinement type

for mapM that precisely describes its resource usage. This is because f is applied to ar-

bitrary inputs x from the list xs, and thus we cannot specify the cost of each f x in the

202

general case. One way to approximate this cost is to employ the technique described in

section 5.4.1, which is to establish an upper bound n on the cost of f x for any input x.

The total execution cost of mapM would then be bounded above by (n + 1) ∗ length xs.

Nonetheless, we can prove that map fusion is an optimisation (a relational cost property)

without needing to precisely compute the cost of each f x (a unary cost property). This is

a notable advantage of relational cost analysis (Çiçek 2018).

The liftA2 function is defined in the RTick library. Similarly to the applicative operator

(<∗>), liftA2 takes as input a binary function f and two annotated arguments and returns

an annotated result whose cost is equal to the sum of the costs of its arguments:

{−@ liftA2 :: f : (a → b → c) → t1 : Tick a → t2 : Tick b → { t : Tick c

| tval t = f (tval t1) (tval t2) ∧ tcost t = tcost t1 + tcost t2 } @−}

liftA2 f (Tick m x) (Tick n y) = Tick (m + n) (f x y)

To compose two annotated functions f and g, we define a composition function (>=>)

that, when given an argument x, applies g to the value of f x:

(>=>) :: (a → Tick b) → (b → Tick c) → a → Tick c

(>=>) f g x = let Tick m y = f x in let Tick n z = g y in Tick (m + n) z

Notice that (>=>) returns the total cost of both applications.

Specification

Using the above definitions and cost relations introduced in section 5.3.3, we can now

state that the map fusion technique is a cost improvement in the left-to-right direction.

Specifically, we can use quantified improvement to precisely capture the amount of resources

saved by the optimisation, which is given by the length of the list being traversed:

(mapM f xs >>= mapM g) >== length xs ==> (mapM (f >=> g) xs)

The following extrinsic theorem formalises this property in Liquid Haskell:

{−@ mapFusion :: f : (a → Tick b) → g : (b → Tick c) → xs : [a] →

{ (mapM f xs >>= mapM g) >== length xs ==> (mapM (f >=> g) xs) } @−}

203

Proof by inequational rewriting

To prove the mapFusion theorem, we must define a (total and terminating) Haskell term

that inhabits its type specification. In practice, we define such a term by (in)equationally

rewriting on the left-hand side of the proof statement, mapM f xs >>= mapM g, ultimately

deriving the right-hand side, mapM (f >=> g) xs. By utilising the proof combinators from

section 5.3.3, we ensure that each rewrite step preserves correctness, that is, value equiva-

lence. Furthermore, such combinators capture the total resource saving, which is calculated

‘on the fly’ as part of the derivation process. The proof proceeds in the standard manner,

by induction on the structure of the argument list.

In the base case, we begin by unfolding the definitions of mapM and (>>=). The right-

hand side of the proof statement then follows by folding the definition of mapM :

mapFusion f g []

= mapM f [] >>= mapM g

<=>. pure [] >>= mapM g

<=>. mapM g []

<=>. pure []

<=>. mapM (f >=> g) []

∗∗∗ QED

Here we see that the map fusion technique is a cost equivalence for empty lists. That is,

the costs of both sides of the property are equal. This is to be expected as the length of

the input list is zero, and hence no resources can be saved.

The inductive case also begins by unfolding the definition of mapM :

mapFusion f g (x : xs)

= mapM f (x : xs) >>= mapM g

<=>. step 1 (liftA2 (:) (f x) (mapM f xs)) >>= mapM g

We then use quantified improvement to capture the cost saved by eliminating step 1:

.>== 1 ==>. liftA2 (:) (f x) (mapM f xs) >>= mapM g

204

To continue, we must unfold the definition of liftA2 . By deconstructing the results of f x

and mapM f xs, by pattern matching on the Tick datatype in a where clause, we can

independently refer to the costs and values of liftA2 ’s arguments:

where

Tick cf fx = f x

Tick cfs fxs = mapM f xs

Storing these parameters is particularly useful as the remaining cost savings and expendi-

tures can be expressed entirely in terms of cf , cfs, and constants. This makes manipulating

cost straightforward and allows us to focus primarily on correctness.

Using the bindings from the where clause, we can unfold the definition of liftA2 and

continue rewriting. First, we save the cost cf + cfs of liftA2 ’s result:

<=>. Tick (cf + cfs) (fx : fxs) >>= mapM g

.>== cf + cfs ==>. pure (fx : fxs) >>= mapM g

We then unfold the definitions of (>>=) and mapM in turn:

<=>. mapM g (fx : fxs)

<=>. step 1 (liftA2 (:) (g fx) (mapM g fxs)

Eliminating step 1 saves an additional resource, however, we must then expend cfs resources

in order to map f over the tail of the input list, xs:

.>== 1 ==>. liftA2 (:) (g fx) (mapM g fxs)

.<== cfs ==<. liftA2 (:) (g fx) (mapM f xs >>= mapM g)

At this point, we can appeal to the inductive hypothesis in order to save length xs resources,

by substituting mapM (f >=> g) xs for mapM f xs >>= mapM g:

? mapFusion f g xs

.>== length xs ==>. liftA2 (:) (g fx) (mapM (f >=> g) xs)

To finalise the proof, we apply f and fold the definition of mapM :

205

.<== cf ==<. liftA2 (:) ((f >=> g) x) (mapM (f >=> g) xs)

.<== 1 ==<. step 1 (liftA2 (:) ((f >=> g) x) (mapM (f >=> g) xs))

<=>. mapM (f >=> g) (x : xs)

∗∗∗ QED

As we have seen throughout the proof, the quantified cost operators are used to explicitly

record resource saving, for example (.>== cf + cfs ==>.), and expenditure, for example

(.<== cf ==<.). Overall, the cost savings and expenditures involving cf and cfs cancel out,

as do the latter two costs involving step 1. The remaining costs are from the initial saving

of 1 from step 1 and the saving of length xs from the inductive hypothesis. Hence, the

resulting expression, mapM (f >=> g) (x : xs), requires length (x : xs) fewer resources than

the initial expression, mapM f (x : xs) >>= mapM g, as expected. As Liquid Haskell has

SMT support for arithmetic, this cost saving is calculated automatically by the system.

In summary, this proof illustrates the power of relational cost analysis in our setting.

In particular, the costs of f x and mapM f xs cannot be easily captured by a unary cost

analysis of mapM . Nevertheless, our extrinsic approach overcomes this restriction by allow-

ing such ‘higher-order costs’ to cancel out on both sides of the theorem’s proof statement.

Furthermore, storing the costs of f x and mapM f xs in a where clause allowed us to pri-

marily focus on the correctness aspect of the proof. As such, we have not only shown how

reasoning about resource usage can be as straightforward as reasoning about correctness,

we have shown that the two can in fact coincide.

5.4.4 Case study 4: Optimised-by-construction reverse

In chapter 4, we used the Unie system to mechanically improve the naive list-reversing

function, slowRev. In particular, we proved that slowRev �∼∼ fastRev (see section 4.6).

Recall from our previous discussion in section 5.3.3 that efficiency results à la improvement

theory do not entail correctness results. In other words, a separate proof is required to

show that slowRev and fastRev give the same results. Such a proof is given in (Hackett and

Hutton 2014), which has recently been formalised in Liquid Haskell (Vazou et al. 2018).

The fundamental goal of the proofs in (Hackett and Hutton 2014) and (Vazou et al. 2018)

206

is to show that the implementation of fastRev is correct-by-construction. More specifically,

the proofs show that the denotational meaning of an initial specification defined using

slowRev is preserved by the calculation resulting in fastRev.

Our previous case study used the proof combinators from figure 5.2 to reason simul-

taneously about the correctness and efficiency of the map fusion optimisation technique.

We apply a similar approach in this case study to go one step further than (Vazou et al.

2018). That is, we prove that the derived implementation of fastRev preserves meaning and

improves efficiency, thereby unifying the separate proofs of slowRev xs = fastRev xs and

slowRev �∼∼ fastRev given by Hackett and Hutton (2014) (albeit in a simplified manner as

we do not consider all program contexts). As before, total resource saving and final resource

usage are both calculated on the fly during the derivation.

We begin by recalling the naive reverse function, which has been annotated to count

the total number of recursive calls, that is, by itself and (++):

slowRev [] = return []

slowRev (x : xs) = slowRev xs >1= (++ [x])

The slowRev function appends each element of the input list to the end of its reversed tail.

As the cost of (++) is linear in the length of its first argument, the total number of recursive

calls is quadratic, as expected. This cost is captured by the following extrinsic theorem:

{−@ slowRevCost :: xs : [a] → { tcost (slowRev xs) =

((length xs)2 / 2) + ((length xs + 1) / 2) } @−}

To improve slowRev, we seek to fuse together the processes of appending and reversing.

In section 4.5, we achieved this by applying the worker/wrapper theorem. Here we use

induction as it allows us to extend the approach taken by Vazou et al. (2018). To this end,

we seek to define a new function that reverses its first argument and appends its second,

and express this requirement as a Liquid Haskell specification, as follows:

{−@ revApp :: xs : [a] → ys : [a] → { t : Tick [a] | slowRev xs >>= (++ ys) >'> t } @−}

As we plan to use revApp to improve slowRev, any implementation we propose for the

function must record the total number of recursive calls. Furthermore, note that the above

207

specification is an improvement. This means that revApp must give the same results as

slowRev xs >>= (++ ys) but consume no more resources. We start with a trivial definition

for revApp that satisfies the specification but makes no cost savings:

revApp [] ys = slowRev [] >>= (++ ys)

revApp (x : xs) ys = slowRev (x : xs) >>= (++ ys)

Initial resource usage

While deriving a new implementation for revApp, we will calculate the total resource

saving—call it s—on the fly using quantified improvement. In order to calculate the re-

source usage of the final result, however, we must first calculate the initial resource usage

of revApp, that is, of slowRev xs >>= (++ ys)—call it u. The final resource usage of the

improved definition once derived is then simply u − s.

The resource usage of slowRev xs >>= (++ ys) is as follows:

{−@ revAppCost0
:: xs : [a] → ys : [a] → { tcost (slowRev xs >>= (++ ys)) =

((length xs)2 / 2) + ((3 ∗ length xs + 1) / 2) } @−}

The proof of this theorem follows immediately from the execution costs of slowRev (given

previously by slowRevCost) and (++), and is available on the library’s GitHub page (Handley

and Vazou 2019) along with the proof of slowRevCost .

Proof by inequational rewriting

The next step of the improvement process is to rewrite the right-hand sides of revApp’s

trivial definition to more efficient forms. As before, we use proof combinators introduced

in section 5.3.3 to ensure that each rewrite preserves the result (denotational meaning) of

revApp while preserving or improving its execution cost.

The rewriting follows the general insight that proofs of improvement are very similar to

their counterpart proofs of correctness (as illustrated previously in section 5.3.3). Conse-

quently, we initially focus on correctness by unfolding and folding definitions. Whenever a

resource saving can be made, we use quantified improvement to precisely capture it. Finally,

at the end of the calculation, we turn our attention to resource usage.

208

We begin by rewriting the base case of revApp. First we unfold the definitions of slowRev,

(>>=), and (++); then we inline the let binding and fold return:

revApp [] ys

= slowRev [] >>= (++ ys)

<=>. Tick 0 [] >>= (++ ys)

<=>. (let Tick n y = [] ++ ys in Tick n y)

<=>. (let Tick n y = Tick 0 ys in Tick n y)

<=>. return ys

In the recursive case, we also begin by unfolding definitions as much as possible:

revApp (x : xs) ys

= slowRev (x : xs) >>= (++ ys)

<=>. (slowRev xs >1= (++ [x])) >>= (++ ys)

<=>. (let Tick o w = slowRev xs in Tick o w >1= (++ [x])) >>= (++ ys)

<=>. (let Tick o w = slowRev xs in

let Tick p v = w ++ [x] in

Tick (1 + o + p) v >>= (++ ys))

<=>. (let Tick o w = slowRev xs in

let Tick p v = w ++ [x] in

let Tick q u = v ++ ys in

Tick (1 + o + p + q) u)

Notice that in order to unfold the definition of (>1=), we must introduce a let binding

because slowRev xs is not in ‘Tick normal form’.

At this point, there is an addition of a constant cost on the returned Tick. As we are

in the recursive case of the calculation, we do not save this cost under the assumption that

we will recurse on revApp. Instead, we ‘bank’ the recursive call using step.

<=>. step 1 (let Tick o w = slowRev xs in

let Tick p v = w ++ [x] in

let Tick q u = v ++ ys in Tick (o + p + q) u)

209

<=>. step 1 (let Tick o w = slowRev xs in

let Tick p v = w ++ [x] >>= (++ ys) in Tick (o + p) v)

Folding the definition of (>>=) exposes the expression w ++ [x] >>= (++ ys), which is two

appends associated to the left. In order to continue with the calculation, these appends

must be reassociated to the right. From example 5.6 of section 5.2, we know that this is an

improvement that saves length xs resources:

{−@ appendAssocQImp :: xs : [a] → ys : [a] → zs : [a] →

{ (xs ++ ys >>= (++ zs)) >== length xs ==> ((xs ++) =<< ys ++ zs) } @−}

Therefore, we appeal to the appendAssocQImp lemma with xs = tval (slowRev xs), ys = [x],

and zs = ys. Note that slowRev’s refinement type specification from above automatically

entails that length (tval (slowRev xs)) = length xs:

? appendAssocQImp (tval (slowRev xs)) [x] ys

.>== length xs ==>. step 1 (let Tick o w = slowRev xs in

let Tick p v = [x] ++ ys >>= (w ++) in Tick (o + p) v)

The proof continues by unfolding the definitions of (++), pure, and (<1>):

<=>. step 1 (let Tick o w = slowRev xs in

let Tick p v = pure (x :) <1> ([] ++ ys) >>= (w ++) in

Tick (o + p) v)

<=>. step 1 (let Tick o w = slowRev xs in

let Tick p v = Tick 1 (x : ys) >>= (w ++) in Tick (o + p) v)

Unfolding the definition of (<1>) has presented us with another opportunity to save re-

sources. We take it, capturing the saving using quantified improvement:

.>== 1 ==>. step 1 (let Tick o w = slowRev xs in

let Tick p v = Tick 0 (x : ys) >>= (w ++) in Tick (o + p) v)

Then, we unfold (>>=) and inline the resulting let binding:

210

<=>. step 1 (let Tick o w = slowRev xs in

let Tick p v = Tick 0 (x : ys) in

let Tick q u = w ++ v in Tick (o + p + q) u)

<=>. step 1 (let Tick o w = slowRev xs in

let Tick q u = (w ++ (x : ys)) in Tick (o + q) u)

<=>. step 1 (slowRev xs >>= (++ (x : ys)))

The final step of the calculation is to rewrite the new definition of revApp to be self-

contained. It should be clear that replacing the expression slowRev xs >>= (++ (x : ys))

with revApp xs (x : ys) saves resources. In particular:

? revAppCost0
xs (x : ys)

.>== ((length xs)2 ‘div‘ 2) + ((length xs + 1) ‘div‘ 2) ==>. step 1 (revApp xs (x : ys))

The above resource saving is calculated by subtracting length xs from the resource usage of

slowRev xs >>= (++ (x : ys)), calculated previously using revAppCost0
. Note that length xs

must be subtracted because evaluating revApp xs (x : ys) requires length xs recursive calls,

whereby each recursive call is recorded by the step 1 that we banked earlier.

Resource saving

Having reached the end of the proof, we can now turn our attention to calculating

revApp’s final resource usage. Below is a table listing the function’s initial resource usage,

u, calculated by revAppCost0
; the total saving, s, calculated by summing up the individual

savings throughout the proof; and the final usage, which is simply u − s.

Initial usage (u) |(x : xs)|2
2 + 3 ∗ |(x : xs)| + 1

2

Total saving (s) |xs|+ 1 + |xs|2
2 + |xs| + 1

2

Final usage (u − s) |(x : xs)|

By way of a simple subtraction, we have calculated the final resource usage of revApp

to be linear in the length of its first argument, as expected. Adding this bound to revApp’s

211

initial specification allows Liquid Haskell to verify that this property holds, and thus the

derivation of an optimised-by-construction implementation for revApp is complete:

{−@ revApp :: xs : [a] → ys : [a] →

{ t : (Tick [a]) | slowRev xs >>= (++ ys) >'> t ∧ tcost t = length xs } @−}

Similarly to the last case study on map fusion, quantified improvement makes the quan-

tity and locality of each cost saving explicit throughout the above calculation. In particular,

it shows a linear cost saving per recursive call. This corresponds precisely to evaluating (++)

in order to fuse together the processes of reversing and appending, which was our primary

goal. Furthermore, the proof combinators we used simply return their last arguments. As

such, at compile time, GHC will remove all of the intermediate calculation steps, leading

to the following concise definition of revApp:

revApp :: [a] → [a] → Tick [a]

revApp [] ys = return ys

revApp (x : xs) ys = step 1 (revApp xs (x : ys))

Optimising naive reverse

Finally, we can use revApp to improve the definition of slowRev, as follows:

{−@ fastRev :: xs : [a] → { t : Tick [a] | slowRev xs >'> t ∧ tcost t = length xs }

fastRev xs

= slowRev xs

<=>. (let Tick o w = slowRev xs in let Tick p v = pure w in Tick (o + p) v)

? rightIdQImp (tval (slowRev xs))

.<== length xs ==<. (let Tick o w = slowRev xs in

let Tick p v = w ++ [] in Tick (o + p) v)

<=>. slowRev xs >>= (++ [])

? revAppCost0
xs []

.>== ((length xs)2 ‘div‘ 2) + ((length xs + 1) ‘div‘ 2) ==>. revApp xs []

Notice that by applying append’s right identity law, rightIdQImp, in the right-to-left direc-

tion, the resource usage of the resulting expression is greater than or equal to that of the

212

initial expression, by a cost of length xs. This is captured using quantified diminishment. A

simple subtraction (as above) reveals that the final resource usage of fastRev xs is length xs,

which is verified by Liquid Haskell. Similarly to revApp, the intermediate calculation steps

of fastRev will be removed at compile time, leading to the following concise definition:

fastRev :: [a] → Tick [a]

fastRev xs = revApp xs []

The familiar functions revApp and fastRev were the results of the derivations in (Hackett

and Hutton 2014) and (Vazou et al. 2018). Each can be derived from revApp and fastRev,

respectively, by simply removing the cost annotations:

revApp :: [a] → [a] → [a]

revApp [] ys = ys

revApp (x : xs) ys = revApp xs (x : ys)

fastRev :: [a] → [a]

fastRev xs = revApp xs []

In summary, the proof in this case study mirrors that of section 4.1 in (Vazou et al.

2018) step-for-step: we encourage readers to check. More concretely, we have replaced equa-

tional reasoning with inequational reasoning, whereby the resource saving of each rewrite is

made explicit using the notion of quantified improvement. This allows us to calculate final

resource usage on the fly as part of the derivation process. Thus, overall, we have taken a

calculation aimed at deriving a correct-by-construction reverse function and transformed it

into a calculation aimed at deriving an optimised-by-construction reverse function.

5.4.5 Summary of examples

To finalise our library’s evaluation, we summarise all of the examples we have surveyed

during its development. The corresponding source files for each example can be found on

the library’s GitHub page (Handley and Vazou 2019).

213

Overview

Table 5.1 provides a quantitative summary of each example and is split into five cate-

gories. The first three categories include examples from the existing literature, the fourth

category consists of higher-order examples, and the final category includes complexity anal-

yses of different sorting algorithms. An overview of the five categories is provided below.

– Laziness includes functions that manipulate lazy lists and lazy queues from (Daniels-

son 2008). For example, in section 5.4.2, we proved that non-strict insertion sort on

lazy lists is linear. We also encoded lazy queues and proved that viewing a lazy queue

and appending at the end are constant-time operations. Danielsson (2008) reifies cost

using a type-level index, namely Thunk n a where n is a type-level Nat, while we use

a value-level integer field. Because of this distinction, Danielsson (2008) does not re-

quire ghost cost parameters (as per our (=<<{·}) of section 5.4.1). On the other hand,

type-level costs cannot be abstracted, which is a requirement of our higher-order ex-

amples. Finally, as our analysis builds on top of Liquid Haskell’s existing features, it

incorporates additional (automated) correctness properties such as ‘sortedness’.

– Relational comprises all cost analyses from (Aguirre et al. 2017; Çiçek et al. 2017;

Radiček et al. 2018). These examples compare the resource usage of the same func-

tion on different inputs, for instance, the constant-time comparison example from

section 5.2.2; or different functions on the same input, for instance, the memory allo-

cation case study compares the space usage required by the standard and tail recursive

implementations of Haskell’s length function on lists.

Overall, this set of examples highlights a number of distinctions between our approach

and that of relational refinement type systems developed for resource analysis. First

of all, our system is agnostic to the resource being analysed, which means that the user

has the flexibility to define arbitrary resources but also the responsibility to manually

annotate resource usage. In comparison, the approach taken by (Çiçek et al. 2017;

Çiçek 2018) only analyses runtime complexity.

214

Table 5.1: Cost analysis using the RTick library

Code reports the lines of executable code, Spec reports the lines of specifications, and Proof reports the lines of proof terms.
Lines of code

Property Code Spec Proof
Laziness (Danielsson 2008)
Insertion sort COST(isortns xs) 6 |xs | 11 9 0
Implicit queues COST(snoclz q x) = 5, COST(viewlz q) = 1 47 22 0
Relational (Aguirre et al. 2017; Çiçek et al. 2017; Radiček et al. 2018)
2D count COST(count2D find1) 6 COST(count2D find2) 17 7 21
Binary counters COST(decr k tt) = COST(incr k ff) 23 18 16
Boolean expressions NOSHORT(e)⇒ COST(eval1 e) = COST(eval2 e) 24 2 6
Constant-time comparison COST(compare p u1) = COST(compare p u2) 6 5 2
Insertion sort SORTED(xs)⇒ COST(isort xs) 6 COST(isort ys) 11 19 53
Memory allocation of length COST(lengthgr xs)− COST(lengthtr xs) = |xs | 13 6 5
Relational insertion sort COST(isort xs)− COST(isort ys) = unsorteddiff xs ys 21 25 16
Relational merge sort COST(msort xs)− COST(msort ys) 6 |xs | ∗ (1 + log2(diff xs ys)) 34 21 52
Square and multiply COST(sam t x l1)− COST(sam t x l2) 6 t ∗ diff l1 l2 16 8 2
Datatypes (Vazou et al. 2018)
Append’s monoid laws see example 5.6 of section 5.2 13 18 75
Appending COST(xs ++ ys) = |xs | 9 6 0
Flattening PERFECT(t)⇒ COST(fastFlatten t) = 2|t| − 1 21 17 56
Optimised-by-construction reverse slowRev xs >'> fastRev xs 18 38 183
Reversing (naive) COST(slowRev xs) = |xs|2

2 + |xs| + 1
2 14 16 52

Reversing (optimised) COST(fastRev xs) = |xs | 8 7 0
Higher-order
fold COST(foldl xs) = |xs|, COST(foldl ′ xs) = 0 9 3 0
foldM COST(foldlM xs) = (1 + n) ∗ |xs|, COST(foldlM ′ xs) = n ∗ |xs| 7 3 0
foldM relational foldlM xs >==|xs |==> foldlM ′ xs 13 3 19
Map fusion (mapM f xs >>= mapM g) >==|xs |==> (mapM (f >=> g) xs) 8 2 26
Sorting
Data.List.sort COST(sort xs) 6 4 ∗ |xs| ∗ log2 |xs | + |xs | 42 52 70
Insertion sort COST(isort xs) 6 |xs|2 11 8 0
Merge sort |xs|

2 log2|xs| 6 COST(msort xs) 6 |xs | ∗ log2
|xs|

2 + |xs | 27 53 144
Quicksort COST(qsort xs) 6 1

2 ∗ (|xs |+ 1) ∗ (|xs |+ 2) 11 3 25
Total 434 371 823

215

Secondly, unary cost analysis in our setting is automatically checked but users must

specify appropriate cost bounds manually, which adds some degree of complexity to

the analysis. In relational systems, such annotations are typically not required when

the analysis is performed using ‘synchronous’ rules. Nonetheless, when synchronous

rules fail, relational systems essentially replicate the unary analysis automatically

performed by our system. Whether to use the synchronous or ‘asynchronous’ approach

is dictated by heuristics in (Çiçek et al. 2019).

And finally, in many of our examples, we must manually prove extrinsic theorems that

can be automatically inferred by relational type systems. This is to be expected, as

such systems are specialised for resource tracking. On the other hand, these systems

cannot encode the sophisticated correctness invariants, such as ‘sortedness’, that we

frequently use to simplify our analyses or improve their precision.

– Datatypes includes properties concerning lists, trees, and optimisations whose Liquid

Haskell correctness proofs initially appeared in (Vazou et al. 2018). We used the proof

combinators in figure 5.2 to extend the correctness proofs with explicit resource track-

ing. Our experience, in accordance with the case studies of sections 5.4.3 and 5.4.4, is

that because Liquid Haskell has SMT-automated integer arithmetic, reasoning about

resource usage is as straightforward as reasoning about correctness. In fact, most of

the proofs are very similar to their correctness counterparts.

– Higher-order includes three higher-order examples. As per example 5.2 in sec-

tion 5.2, we tracked the number of thunks allocated by foldl and foldl ′. We then

extended the analysis, considering foldM and foldM ′ whose function arguments can

also allocate thunks. For unary analysis, the cost of the function being folded is

bounded above by a ghost cost parameter n. The relational comparison between

foldM and foldM ′ does not require this bound and is greatly simplified using our

proof combinators, similarly to the map fusion case study of section 5.4.3.

This category illustrates two key features of our cost analysis. Firstly, tracked re-

sources can have arbitrary, user-defined meanings, such as number of allocated thunks.

And secondly, our analysis supports higher-order functions, whose resource analysis

216

is straightforward in a relational setting.

– Sorting includes cost analyses of well-known sorting algorithms: Data.List’s smooth

merge sort, insertion sort, merge sort, and quicksort. Other than the known upper

bounds of the algorithms, we proved a lower bound for merge sort (section 5.2.2) and

that both insertion sort (section 5.4.1) and smooth merge sort require at most linear

comparisons when applied to sorted lists.

Two of the functions listed above have logarithmic bounds. We axiomatised logarith-

mic properties as Haskell functions using Liquid Haskell’s assume feature. To prove

these complexity bounds we used extrinsic reasoning, making explicit calls to the ax-

ioms when necessary. This showcases another feature of our analysis: despite Liquid

Haskell only providing SMT automation for linear arithmetic, our analysis is still able

to check arbitrarily expressive resource bounds.

Overall, we chose these examples because they: required both unary and relational cost

analysis; often imposed constraints on the inputs/outputs of functions; were reasonably

challenging to encode using our library; allowed us to draw comparisons against existing

systems in the literature. Importantly, all of the examples demonstrate how correctness

properties can be naturally integrated into our cost analysis.

Breakdown

Each line in table 5.1 describes an indicative property we proved. In some cases,

we proved additional properties. In other cases, the desired property required proving

a stronger theorem. For brevity, these additional properties are not included. However, the

source files for all of the examples are available online (Handley and Vazou 2019).

Synopsis

In total, we wrote 434 lines of executable code, 371 lines of Liquid Haskell specifications,

and 823 lines of proof terms. The total lines of code dedicated to specifications and proofs

is approximately three times as much as executable code. Given the complexity of the

217

Constants c ::= 0, 1,−1, … | true, false |
+,−, … | =, <, … | Crash

Values v ::= c | λx.e | D ~e

Expressions e ::= v | x | e e | let x = e in e |
case x = e of { D ~x → e }

Refinements r ::= e

Basic types B ::= Int, Bool, T
Types τ ::= { v : B | r } | x : τ → τ

Evaluation contexts C ::= [−] | C e | c C | D ~e C ~e |
case x = C of { D ~y → e }

Reduction
C[e] ↪→ C[e′] if e ↪→ e′

c v ↪→ δ(c, v)
(λx.e) ex ↪→ e[ex/x]

let x = ex in e ↪→ e[ex/x]
case x = Dj ~e of {Di ~yi → ei } ↪→ ej [Dj ~e/x][~e/~yj]

Figure 5.3: λU : syntax and operational semantics (Vazou et al. 2014).

properties we have proved, we consider this reasonable. Moreover, the sizes of many proof

terms have been decreased by using Liquid Haskell’s PLE feature (Vazou 2016).

5.5 Correctness of static cost analysis

In this section, we use the metatheory of Liquid Haskell (Vazou et al. 2014) to prove that

our intrinsic and extrinsic methods of cost analysis are correct.

5.5.1 Metatheory of Liquid Haskell

Figure 5.3 summarises the syntax and operational semantics of ‘Lambda-U’, λU , which is

the core language used to model Liquid Haskell (Vazou et al. 2014). The language λU

includes constants, abstractions, applications, let and case statements, and datatypes. Its

operational semantics is defined as a contextual, small-step, call-by-name relation ↪→ whose

reflective, transitive closure is denoted by ↪→?.

218

Constants

Constants applied to values are reduced using the primitive constant operation c v ↪→

δ(c, v). For example, consider (=), the primitive equality operator on integers. In this

instance, δ(=, n) = (=n), where δ(=n, m) equals true if and only if m is the same as n.

Types

The basic types in λU are integers, booleans, and type constructors. Types are either

refinement types of the form { v : B | e } where the basic type B, captured by the variable v,

is refined by the boolean expression e; or dependent function types of the form x : τx → τ ,

where the input x has the type τx and the result type, τ , may refer to the binder x.

Denotations

Each type τ denotes a set of expressions [[τ]], defined by the dynamic semantics of Liquid

Haskell, given in (Vazou et al. 2014). Let bτc be the type obtained by erasing all refinements

from τ and e : bτc be the standard typing relation for the typed lambda-calculus. Then,

the denotation of types is defined as follows:

[[{ x : B | er }]] = { e | e : B, if e ↪→? v then er[v/x] ↪→? true }

[[x : τx → τ]] = { e | e : bx : τx → τc, ∀ex ∈ [[τx]] . e ex ∈ [[τ [ex/x]]] }

Syntactic typing

The typing judgement Γ ` e :: τ decides syntactically if e is a member of τ ’s deno-

tation using the environment Γ that maps variables to their types:

Γ = x1 : τ1, . . . , xn : τn

To analyse resource usage in λU , we do not need to modify the typing rules of the

language, which are given in (Vazou et al. 2014). Instead, we can use λU constants to

encode Tick’s annotation functions. This approach corresponds to our implementation, as

219

we have defined a library for cost analysis that builds on top of Liquid Haskell, without

changing the underlying behaviour of the system.

To type a λU constant c, we use the meta-function Ty(c) that returns c’s type:

Γ ` c :: Ty(c)
T-CON

To ensure soundness, Ty(c) must satisfy denotational inclusion, that is, for each c, c ∈

[[Ty(c)]]. For example, the following definitions ensure that this is true:

Ty(3) = { v : Int | v = 3 }

Ty(+) = x : Int → y : Int → { v : Int | v = x + y }

Soundness of λU

The soundness of λU proves that if each constant belongs to the denotation of its assumed

type, then syntactic typing implies denotational inclusion:

Theorem 1 (Soundness of λU)

If for all c, c ∈ [[Ty(c)]], then ∅ ` e :: τ implies e ∈ [[τ]].

5.5.2 Correctness of cost analysis

As λU contains type constructors, data constructors, and constants, but does not support

type polymorphism, we formalise our approach by defining the Tick datatype and a number

of its annotation functions as a type family, where each function is a λU constant. The

correctness of our cost analysis is then simply a corollary of the soundness of λU .

The Tick datatype

For each type τ , we define a datatype Tickτ with a single constructor: Tickτ :: Int →

τ → Tickτ . Tickτ data constructors should not be used directly. Instead, each Tickτ

datatype should be accessed implicitly using the constants defined below.

220

Resource annotations

We define the following annotation functions from section 5.3.3 as constants in λU :

returnτ , bindτ1,τ2 , stepτ , tcostτ , tvalτ for all types τ , τ1, and τ2. In turn, we use λU to

define the types and (type-specific) bodies of each constant just as in section 5.3.3. Given

that Liquid Haskell type-checks our previous definitions, it must be true that c ∈ [[Ty(c)]]

for each constant returnτ , bindτ1,τ2 , stepτ , and so on. Therefore, these constants can be

used safely in λU while preserving soundness.

Safe expressions

Recall from section 5.3.4 the following restrictions on annotated expressions, required

in order to correctly analyse their resource usage: firstly, expressions should not be defined

using tval or tcost; secondly, expressions should not perform case analysis on the Tick data

constructor. We formalise these restrictions by defining a safety predicate on λU expressions:

Definition 1 (Safety)

A λU expression e is safe if and only if:

– e : τ , that is, e is typeable;

– e’s body is not defined in terms of any tvalτ or tcostτ constants;

– e does not perform case analysis on any Tickτ data constructors.

Execution cost

Consider a safe, terminating function f :: x : τx → Tickτ . We define the execution

cost of f on an input ex :: τx to be the index of the returned value. In other words, the

execution cost of f ex is i where f ex ↪→? Tickτ i v. As f does not directly modify any

Tickτ datatypes, all resource consumptions or productions via applications of stepτ in f ’s

definition accumulate in the cost i of the final value, Tickτ i v.

221

Static cost analysis

Finally, we use the soundness of λU to prove that the library’s intrinsic and extrinsic

approaches to analysing resource usage are both sound:

Theorem 2 (Soundness of cost analysis)

Let p :: Int → Bool be a predicate over the integers and f :: x : τx → Tickτ a safe, total,

and terminating function.

– Intrinsic cost analysis If ∅ ` ef :: x : τx → { t : Tickτ | p (tcostτ t) }, then for

all ex ∈ [[τx]], ef ex ↪→? Tickτ i v and p i ↪→? true.

– Extrinsic cost analysis If ∅ ` e :: x : τx → {w : τ | p (tcostτ (f x)) }, then for

all ex ∈ [[τx]], f ex ↪→? Tickτ i v and p i ↪→? true.

The proof of this theorem follows immediately from the soundness of the core language λU ,

the denotations of dependent function types, and the definition of tcostτ .

Other annotations

Theorem 2 proves that the library’s cost analysis is consistent for expressions defined

using return, (>>=), and step. However, the RTick module provides many more annotation

functions, for example, pure and (<∗>) introduced in section 5.3.3. Nonetheless, all such

functions can be defined using return, (>>=), and step: a proof of this fact can be found on

the library’s GitHub page (Handley and Vazou 2019). Thus, we tacitly extend theorem 2

to include expressions defined using any of the functions provided by the RTick module.

5.6 Discussion

The work in this chapter has been strongly influenced by Danielsson’s (2008) lightweight

framework for cost analysis in Agda. This library is based on the Thunk datatype (and

shares the same name), which is indexed with a dependent type used to measure the time

complexity of purely functional algorithms and data structures in the style of Okasaki

222

(1999). Our Tick datatype is comparable to Thunk but captures abstract resource usage,

for example, recursive calls and thunk allocations, at the value-level.

A primary goal of this work was to formalise improvement proofs from chapter 4 within

the language of Haskell. This led to our use of refinement types (Vazou 2016) and relational

cost analysis (Çiçek et al. 2017). A notable distinction between our approach and that

of Danielsson (2008) is that whereas our library supports both unary and relational cost

analysis, Danielsson’s library only supports the unary variant. As such, the improvement

proofs underpinning sections 5.4.3 and 5.4.4 cannot be formalised using the Thunk library.

Conversely, we have re-implemented all of the examples presented in (Danielsson 2008).

Finally, much of Thunk’s analysis requires basic equality proofs because Agda does not

automatically prove arithmetic equalities. In contrast, our use of Liquid Types allows us to

delegate all linear arithmetic necessary for our cost analysis to an SMT solver.

Another relevant Agda implementation is the AoPA library (Mu, Ko, and Jansson 2009),

which encodes relational program derivations. As we noted in the previous chapter, this

library does appear to support a form of inequational reasoning. Hence, we believe it could

be used to formalise proofs of improvement, perhaps using relational cost analysis similarly

to our work in this chapter. Given that Agda (like Haskell) has a call-by-need semantics, it

may afford a more natural encoding for proofs of improvement à la Moran and Sands (see

chapter 4) in contrast to our approach, whereby laziness must be modelled explicitly.

Indexed types have been widely used for resource analysis. Crary and Weirich (2000)

index the type of functions to compute the number of recursive calls required by their

executions. Sized types (Hughes, Pareto, and Sabry 1996; Vasconcelos and Hammond

2003), which index types with natural numbers that denote the size of their values, have also

been used to analyse runtimes. However, none of these approaches can express correctness

properties, which as we have seen, allow for a more precise analysis.

Recent work (McCarthy et al. 2017; Wang, Wang, and Chlipala 2017) combines indexed

types with functional correctness. McCarthy et al. (2017) develop a Coq library that uses

a monad indexed by a predicate to measure runtimes. The approach is comparable to

Danielsson’s (2008), however the predicate is used to express invariants of data structures.

This enables more complex case studies (such as Okasaki’s Braun Trees) to be examined.

223

Another distinction is that cost annotations can be automatically inserted, and then erased

when code is extracted. A method for automated annotation is part of our future work.

Similarly to (Danielsson 2008), relational cost analysis is not supported.

TiML (Wang, Wang, and Chlipala 2017) indexes the types of functions with their time

bounds. A significant feature of this system is that it provides automated support for

solving recurrence relations, by heuristically matching against cases of the Master Theo-

rem. In comparison, we use extrinsic proofs to manually derive time complexity theorems.

Similarly to our approach, TiML supports sophisticated invariants, however, they are only

exploited for the purposes of cost analysis. Our library on the other hand uses invariants

to simultaneously reason about correctness and resource usage.

More generally, existing cost analyses based on indexed types (Xu and Pfenning 1999)

and those using dependent types in languages such as Coq (Bertot and Castéran 2013) and

Agda (Norell 2008) are also capable of encoding correctness properties to aid their analysis.

Automatic Amortized Resource Analysis (AARA) (Hofmann and Jost 2003) aims to au-

tomatically derive amortised bounds on execution cost. This is achieved using a type system

that generates resource-specific inequalities to be solved by a linear programming solver.

The initial system (Hofmann and Jost 2003) supports linear bounds on monomorphic, first-

order programs. This has since been generalised to incorporate polynomial bounds (Hoff-

mann, Aehlig, and Hofmann 2011; Hoffmann, Aehlig, and Hofmann 2012), higher-order

functions (Jost et al. 2010), parallelism (Hoffmann and Shao 2015), and, most recently, a

Haskell-like lazy semantics (Jost et al. 2017). As AARA focuses on automatically inferring

bounds, its analysis is often less precise than ours. In particular, our library’s extrinsic

cost analysis can notionally compute resource bounds of any kind: examples of polynomial,

logarithmic, and polylogarithmic bounds appear throughout this chapter. In comparisons,

AARA is (at best) restricted to polynomial bounds, though such bounds can be automati-

cally inferred. Correctness invariants are not supported by AARA.

RelCost (Çiçek et al. 2017; Çiçek et al. 2017) is a refinement type-and-effect system

for both unary and relational cost analysis. The main idea is to reason about structurally

related expressions as much as possible in order to calculate precise resource bounds via

relational cost analysis. When programs or inputs are not structurally related, the system

224

reverts back to unary cost analysis, which is comparable to (Wang, Wang, and Chlipala

2017). This is achieved using two ‘modes’ of typing: one for similar expressions and one for

unrelated expressions. Liquid Haskell only supports one mode of typing, nevertheless, our

library fully supports relational cost analysis by way of extrinsic theorems. In fact, Liquid

Haskell’s refinement type system is more expressive than that of RelCost, allowing us to

consider additional case studies, for example, those in (Radiček et al. 2018).

BiRelCost (Çiçek et al. 2019) is a bidirectional type checker for RelCost, implemented

in OCaml. This system, which appears to be the first of its kind, is able to type check

all of the examples presented in (Çiçek et al. 2017), and does so automatically while only

requiring minimal annotations from the user. However, the implementation is incomplete

and currently relies on example-driven heuristics to avoid nondeterminism in its type check-

ing process. Nondeterminism (and completeness) is not a concern for our system, but we

have seen throughout the article that users are often required to provide manual proofs

of resource usage, specifically for our extrinsic approach. Fundamentally, we see this as a

compromise between expressiveness and automation.

Radiček et al. (2018) develop theoretical frameworks for unary and relational cost analy-

sis, implemented in relational higher-order logic (RHOL). Their operational model includes

a monad used to encapsulate expressions with cost, much like our Tick datatype, which

shares the same monadic implementation. Similarly to our approach, the frameworks can

express correctness properties that allow for more precise analysis. In fact, Aguirre et al.

(2017) show that relational logics are as expressive as HOL, which is in turn as expressive

as Liquid Haskell (Vazou et al. 2017). The authors of (Radiček et al. 2018) note that the

use of a cost monad “syntactically separates reasoning about costs from reasoning about

functional properties, thus improving clarity in proofs”. From our experience, reasoning in-

dependently about correctness and resource usage (using tval and tcost) can indeed simplify

steps of (in)equational reasoning, especially in the latter case. On the other hand, we have

also demonstrated that reasoning about both simultaneously can be useful, for example,

when analysing higher-order optimisations such as map fusion.

Madhavan, Kulal, and Kuncak (2017) present a system that can verify resource bounds

for a higher-order functional language with a call-by-need semantics, developed in Scala.

225

As with our library, users must specify desired resource bounds to be verified by the system.

However, such bounds are so-called templates, which may contain ‘numerical holes’ that are

automatically inferred. During this verification process, programs are transformed to make

their resource usage explicit. In particular, the forcing of thunks is made explicit as per

our pay function. It is worth noting that this work contains examples involving logarithmic

bounds (as well as polynomial); this appears to be fairly uncommon in the literature.

Knoth et al. (2019) present a method for synthesizing recursive programs that satisfy

refinement type specifications: both functional specifications and symbolic resource bounds.

This approach is centred on an expressive type system that combines polymorphic refine-

ment types with potential resource annotations in the style of automatic amortized resource

analysis (AARA). Recent work (Knoth et al. 2020) on Liquid Resource Types extends the

notion of Liquid Types (Rondon, Kawaguci, and Jhala 2008) in a similar fashion, in order

to allow for automatic verification of resource usage. Synthesis of Haskell programs with

bounded resource usage could be possible if Liquid Haskell is made compatible with Liquid

Resource Types: currently it utilises Liquid Types.

Improvement theory (Moran and Sands 1999) inspired our notions of improvement and

quantified improvement. As introduced in the previous chapter, Sands (1995) defined im-

provements as a semantic approach to relational cost analysis. However, improvements in

this context only guarantee that one program uses no more resources than another. In this

work, we have extended this notion to quantify such guarantees.

Our notion of quantified improvement is modest for two reasons. Firstly, as we men-

tioned in section 5.3.3, the relation >== n ==> is not contextually defined, unlike �∼. This

means that a proof showing that M >== n ==> N does not indicate that N is more per-

formant than M in all program contexts, unlike a proof showing that M �∼ N . Secondly,

as our library is implemented on top of Liquid Haskell, it does not, by default, account for

lazy evaluation, that is, non-strictness plus sharing. On the contrary, our library’s default

analysis (that is, on standard Haskell datatypes) assumes that functions are monolithic and

overlooks memoisation. In contrast, Sestoft’s operatioal model (see figure 4.3) utilised by

improvement theory provides a natural semantics for lazy evaluation.

For the reasons highlighted above, we describe our library’s cost analysis as worst-case.

226

A more rigorous account of Haskell’s on-demand evaluation within Liquid Haskell would

likely require modifying the system itself. From our experience, it appears that Liquid

Haskell would need to be instrumented to track reduction steps in its own operational

semantics (Vazou et al. 2014). Given the effort required in ensuring refinement types are

sound for proving correctness properties under lazy evaluation, this does not appear to be

straightforward. If successful, such an implementation would remove the need for our safety

predicate (see section 5.5), but would mean that only one resource could be analysed.

If Liquid Haskell’s operational semantics could be instrumented, then it may be possible

to devise a corresponding tick algebra (Moran and Sands 1999) for λU . Recall from sec-

tion 5.5 that λU is both contextual and small-step. However, it is a call-by-name relation.

Hence, this approach would still leave a gap between costs predicted by λU and actual cost,

but given that Haskell does not yet have a formal call-by-need operational semantics, it is

difficult to quantify how big a gap this would be. Nonetheless, it would certainly be smaller

in comparison to our library’s default analysis.

A disadvantage of instrumenting an operational semantics to track a particular resource

is that it lacks generality. For example, recall from section 4.3 that improvement the-

ory (1999) is tied to a specific language, semantics, and cost model. As such, it must be

reworked for any new combination of these factors. This has been achieved, for example,

in (Gustavsson and Sands 1999), however, the new theory was built from scratch, which

makes it difficult to see how these fundamentally different approaches can be integrated

into a common framework. Although our library’s relational cost analysis is modest, it

uniformly caters for different notions of resource usage.

The style of inequational reasoning implemented by our library is notably different

from that which is supported by the Unie system of chapter 4. Program contexts aside,

users of our library must construct steps of reasoning manually, by defining sequences

of expressions—each of which is the result of a transformation applied to the previous

expression. Hence, we see that users can freely choose which transformations to apply, and

moreover, how to apply them. Proofs constructed in this manner can require additional

user effort in comparison to those constructed using Unie. This is because the Unie system

implements a specific set of transformation rules and governs when and where each can be

227

correctly applied. Furthermore, the system applies such transformations on the user’s behalf

and hence steps of reasoning are mechanised. On the other hand, inequational calculations

in Liquid Haskell are formal, whereas those derived using Unie are only semi-formal. This

begs us to question whether both systems can be combined.

To extend the work presented in this chapter, we consider four separate avenues. Firstly,

in order to make intrinsic cost analysis fully automated, metaprogramming can be used

to automatically add code annotations prior to analysis, and furthermore, remove cost

annotations post analysis. While implementing the AutoBench system (chapter 3), we

prototyped a system for automatically uncovering space leaks using the GHC-Heap-View

package (Breitner and Felsing 2012). In doing so, we were able to add annotations to

Haskell’s Core language using a GHC source plugin. Pickering, Wu, and Németh (2019)

have recently published a guide to writing source plugins, which can be used for guidance.

Secondly, our intrinsic cost analysis can be made more applicable by incorporating so-

lutions to recurrence relations. As with the TiML language (Wang, Wang, and Chlipala

2017), this could initially be implemented by hard-coding specific cases of the Master The-

orem. Heuristics could then be used to determine which case to match against. The TiML

language also supports Big-O notation, which allows users to prove that a program has, for

example, a quadratic worst-case time complexity, rather than by expressing a bound of the

form a0 +a1x+a2x2. Our experience with the AutoBench system suggests that abstracting

away the specific details (a0, a1, and a2) in favour of higher-level analysis is more useful in

practice. Hence, supporting Big-O notation in this setting would also be advantageous.

Thirdly, to cater for further real-world examples, cost analysis of impure Haskell code

should be supported by the library. We have made some progress on this front, by reimple-

menting the Tick datatype as a monad transformer. However, as yet Liquid Haskell does

not provide support for arbitrary monads or monad transformers.

Finally, for more accurate predictions of hardware costs, our analysis should account

for garbage collection. This would require a separate ‘points-to’ analysis for Haskell, which

does not currently exist. However, combining the results of such an analysis with our system

would be feasible because it supports reasoning about any notion of resource.

228

5.7 Conclusion

In this chapter, we have demonstrated how refinement types can be used to reason in a

precise manner about the execution cost of programs. More concretely, we have developed

a Liquid Haskell library that can be used to analyse the resource usage of pure Haskell

programs. Furthermore, by surveying a wide range of examples from the existing literature,

we have shown how Liquid Haskell’s existing support for correctness verification can be

utilised to simplify our cost analysis as well as improve its accuracy.

At the start of this chapter, we set out to combine advantages of the AutoBench (chap-

ter 3) and Unie (chapter 4) systems. Specifically, we sought to reason about the efficiency

of Haskell programs within the language itself, and provide formal guarantees in the form

of proofs as opposed to informal guarantees based on empirical analysis. Our resulting

library achieves both of these aims, enabling users to formalise inequational reasoning in a

style that is highly comparable to the pen-and-paper calculation used by ordinary Haskell

programmers. In addition, our intrinsic cost analysis allows unary efficiency properties to

be verified automatically, which is yet another advantage of the AutoBench system.

Previously, we highlighted that inequational reasoning in Liquid Haskell is more verbose

than when reasoning with the aid of the Unie system. Despite this, our library supports

more coarse-grained cost analysis than improvement theory, which may often be more useful

in practice. For example, recall that the improvement property slowRev �∼ fastRev does not

hold, given than fastRev xs requires more evaluation steps when xs is empty. In contrast,

by capturing resource usage at a higher level of abstraction, namely recursive calls, we have

proved that slowRev xs >'> fastRev xs, which shows that the linear-time reverse function

improves its quadratic counterpart in a more pragmatic sense.

229

Chapter 6

Conclusion

This final chapter is a reflection on the work presented in this thesis. In particular, we

summarise the main contributions of each chapter to review our achievements, and conclude

by discussing a number of possible avenues for further work.

6.1 Summary

In this thesis, we have studied three different methods for reasoning about the efficiency

of Haskell programs at three different levels of formality. At each level, we were inspired

by existing work on reasoning about program correctness, and aimed to bridge the gap to

bring about a similar approach for addressing questions of efficiency. To ensure the practical

applicability of our work, we implemented each approach in a new Haskell system, building

upon tools used to reason about program correctness, and applied it to a range of case

studies from the literature. More specifically, we have made the following contributions:

The AutoBench system

Chapter 3 was concerned with testing. In this chapter, we combined ideas from property-

based testing, microbenchmarking, and statistical analysis to develop a simple means for

comparing the time performance of Haskell programs. In doing so, we combined two pop-

ular systems, namely QuickCheck and Criterion, to give a lightweight, fully automated

system that can be used by everyday programmers. Furthermore, we devised a custom

230

algorithm for approximating empirical time complexity based on linear regression analysis

and demonstrated its effectiveness on a number of occasions. The latest version of Au-

toBench supports generic, sized, random data generation and polyvariadic benchmarking.

Both notions were explored in detail: in the former case, the underlying theory—based on

the solutions to Diophantine equations—was discussed. The applicability of AutoBench

was exemplified in a number of case studies taken from the Haskell programming literature,

including an erroneous implementation of the Sieve of Eratosthenes. In this instance, we

demonstrated how the system can be used to uncover operational program errors.

The Unie system

Chapter 4 was concerned with semi-formal reasoning. In this chapter, we presented the

design of an inequational reasoning assistant called Unie, which provides mechanical support

for semi-formal proofs of program improvement. In doing so, we highlighted a number of

difficulties in manually constructing such proofs and described how our system addresses

these challenges. We illustrated the applicability of our system by verifying a range of results

from the literature. In particular, we have mechanised all proofs in (Hackett and Hutton

2014), including the proof of the worker/wrapper improvement theorem, which relates to

a general-purpose optimisation technique. We have also mechanically verified a number of

proofs in Moran and Sands’ original paper (1999) on improvement theory.

The RTick library

Chapter 5 was concerned with formal reasoning. In this chapter, we demonstrated how

refinement types can be used to reason in a precise manner about execution cost. More

concretely, we developed a Liquid Haskell library that can be used to formally analyse the

resource usage of pure Haskell programs. By surveying a range of case studies from the

literature, including all the examples presented in (Aguirre et al. 2017; Çiçek et al. 2017;

Radiček et al. 2018), we demonstrated not only how refinement types can be used for the

purpose of static cost analysis, but also gave evidence that this can be done easily in Liquid

Haskell. In addition to cost analysis, we introduced a number of proof combinators that

231

support reasoning about correctness and efficiency properties in a combined, uniform man-

ner. We exemplified such reasoning by proving that the well-known map fusion technique is

an optimisation, and by deriving an optimised-by-construction list-reversing function. We

proved the correctness of our analysis using the metatheory of Liquid Haskell.

Finally, we note that the source code for all of the systems and all of the examples

discussed throughout this thesis is freely available online at the following addresses (Handley

2019; Handley 2018; Handley and Vazou 2019).

6.2 Further work

The AutoBench system

Throughout this thesis, we have focussed primarily on time performance. Nonetheless,

space performance is often just as important. Thus, it seems fitting that the AutoBench

system be extended to provide both time and space usage comparisons. As discussed

previously in section 3.5.2, the Criterion library (O’Sullivan 2014a) used by AutoBench is

capable of measuring total bytes allocated and total number of garbage collections. An

alternative option is to use the Weigh library (Done 2016), which has a similar API to

Criterion, and hence would fit well with AutoBench’s existing implementation. Weigh is

capable of measuring total bytes allocated, total number of garbage collections, total amount

of live data on the heap, and maximum residency memory in use.

In order to integrate AutoBench’s performance testing into existing build/deployment

tools such as Travis (2019), the system would benefit from a domain-specific language

(DSL) for specifying efficiency properties. This could be comparable to QuickCheck’s (2000)

language for specifying correctness properties, as discussed in section 3.3.1. We have made

some initial progress on this, by designing a prototype DSL based on the notion of orders

from Big-O complexity theory. Furthermore, we have described how the semantics of this

language can be mapped to AutoBench’s empirical complexity analysis. Despite our initial

investigation demonstrating that this approach complements AutoBench’s existing analysis,

further work is required in order to determine how effective it would be in practice. The

232

source code for our prototype DSL can be found online (Handley 2019).

AutoBench’s performance analysis currently only supports two-dimensional data. In

practice, this amounts to comparing the size of a program’s first input against a given

performance indicator. Despite this, the latest version of the system allows for testing

programs with multiple inputs (section 3.3.3). Hence, there is somewhat of a mismatch

between AutoBench’s ‘front end’ and ‘back end’. To address this, the analysis and visu-

alisation components of the system could be extended. In the former case, we previously

discussed multiple linear regression analysis (section 3.5.3), but this requires further con-

sideration. In the latter case, alternative ways of visualising performance results could be

incorporated, including heat maps and/or three-dimensional graphs. Useful methods for

visualising data with three or more degrees of freedom are less obvious.

Other avenues for further work include supporting real-world test data and implementing

alternative regression algorithms, for example, the LASSO method (section 3.5.1). This

could involve using R’s standard LASSO implementation via the HaskellR library (Boespflug

et al. 2014), which enables Haskell and R code to interoperate via quasiquotation.

The Unie system

To improve the Unie system, we would like to investigate higher-level support for navi-

gating through terms, and for applying transformations at specific locations during improve-

ment proofs. Profunctor optics (Pickering, Gibbons, and Wu 2017) provides a framework

for accessing, modifying, and traversing elements of data structures in a manner that is both

modular and composable, and has recently been the subject of many new implementations,

for example, the Generic-Lens package (Kiss 2017). Hence, we recommend this approach.

We note that this addition would be best implemented while simultaneously replacing the

underlying Kure system for a modern data-generic programming library, for example, (Kiss,

Pickering, and Wu 2018). See section 4.7 for more details.

It would be interesting to see if Coq-style proof tactics could be integrated into Unie,

to capture and express common recipes for improvement such as the one discussed at the

end of section 4.2. In this instance, we are encouraged by the fact that, on many occasions,

233

rules from Moran and Sands’ tick algebra (section 4.3.4) can be correctly applied to a

term in at most one way. In consequence, a ‘proof search’ of some kind may prove to be

computationally viable, but such an approach requires a thorough investigation.

A current limitation of the Unie system is that its reasoning is semi-formal. To ad-

dress this, the system’s output could be translated into a proof object to be independently

verified by a proof assistant such as Coq or Agda, to provide formal guarantees of cor-

rectness. This may require interfacing with, for example, the AoPA library (Mu, Ko, and

Jansson 2009). An alternative approach would be to define a corresponding tick algebra for

the operational semantics of Liquid Haskell (Vazou et al. 2014), and then combine Unie’s

mechanised support for inequational reasoning with Liquid Haskell’s refinement types for

formal verification. An advantage of this approach is that it could be fully Haskell-based.

The RTick library

In order to make the RTick library’s unary cost analysis fully automated, metapro-

gramming could be used to automatically add code annotation prior to analysis (and pos-

sibly remove cost annotations post analysis). While implementing the AutoBench system

(chapter 3), we prototyped a system for automatically uncovering space leaks using the

GHC-Heap-View package (Breitner and Felsing 2012). In doing so, we were able to add

annotations to Haskell’s Core language using a GHC source plugin. Pickering, Wu, and

Németh (2019) have recently published a guide to writing GHC source plugins.

The library’s intrinsic cost analysis can be made more applicable by incorporating solu-

tions to recurrence relations. As with the TiML language (Wang, Wang, and Chlipala 2017),

this could be implemented by hard-coding specific cases of the Master Theorem. Heuristics

could then be used to determine which case to match against. The TiML language also

supports Big-O notation, which allows users to prove that a program has, for example,

quadratic time complexity, rather than by expressing a bound of the form a0 + a1x + a2x2.

Our experience with the AutoBench system suggests that abstracting away the specific de-

tails (a0, a1, and a2) in favour of a higher level analysis is more useful in practice. Hence,

supporting Big-O notation would be advantageous.

234

To cater for further real-world examples, cost analysis of impure code should be sup-

ported by the library. We have made some preliminary progress on this front by reimple-

menting the library’s Tick datatype as a monad transformer. However, as yet Liquid Haskell

does not provide support for arbitrary monads. In fact, Tick’s applicative and monad meth-

ods (defined in section 5.3) are currently implemented as stand-alone functions. The initial

focus of this extension thus might be on improving Liquid Haskell’s support for type classes.

235

Bibliography

Abramsky, Samson (1990). “The Lazy λ-Calculus”. Proceedings of Research Topics in Func-
tional Programming.

Adams, Michael D., Andrew Farmer, and José P. Magalhães (2014). “Optimizing SYB is
Easy!” Proceedings of Workshop on Partial Evaluation and Program Manipulation.

Adams, Michael D., Andrew Farmer, and José P. Magalhães (2015). “Optimizing SYB
Traversals is Easy!” Science of Computer Programming.

Aguirre, Alejandro et al. (2017). “A Relational Logic for Higher-Order Programs”. Proceed-
ings of International Conference on Functional Programming.

Antoy, Sergio, Rachid Echahed, and Michael Hanus (2000). “A Needed Narrowing Strategy”.
Journal of the ACM.

Ariola, Zena M. et al. (1995). “A Call-By-Need Lambda Calculus”. Proceedings of Symposium
on Principles of Programming Languages.

Arts, Thomas et al. (2006). “Testing Telecoms Software with Quviq QuickCheck”. Proceed-
ings of Erlang Workshop.

Aspinall, David et al. (2007). “A Program Logic for Resources”. Theoretical Computer Sci-
ence.

Atkey, Robert (2010). “Amortised Resource Analysis with Separation Logic”. Proceedings
of European Symposium on Programming.

Barr, Earl T. et al. (2014). “The Oracle Problem in Software Testing: A Survey”. IEEE
Transactions on Software Engineering.

Bernardy, Jean-Philippe, Patrik Jansson, and Koen Claessen (2010). “Testing Polymorphic
Properties”. Proceedings of European Symposium on Programming.

Bershad, Brian N., Richard P. Draves, and Alessandro Forin (1992). “Using Microbench-
marks to Evaluate System Performance”. Proceedings of Workshop on Workstation Op-
erating Systems.

236

Bertolino, Antonia (2007). “Software Testing Research: Achievements, Challenges, Dreams”.
Proceedings of 2007 Future of Software Engineering.

Bertot, Yves and Pierre Castéran (2013). Interactive Theorem Proving and Program Devel-
opment: Coq’Art: The Calculus of Inductive Constructions. Springer.

Bird, Richard (1988). Lectures on Constructive Functional Programming. Oxford University
Computing Laboratory.

Bjerner, Bror and Sören Holmström (1989). “A Composition Approach to Time Analysis
of First Order Lazy Functional Programs”. Proceedings of Conference on Functional
Programming Languages and Computer Architecture.

Boespflug, Mathieu et al. (2014). “Project H: Programming R in Haskell”. Unpublished
draft.

Bornat, Richard and Bernard Sufrin (1997). “Jape: A Calculator for Animating Proof-On-
Paper”. Proceedings of International Conference on Automated Deduction.

Bornat, Richard and Bernard Sufrin (1999). “Animating Formal Proof at the Surface: The
Jape Proof Calculator”. The Computer Journal.

Bowen, Jonathan and Victoria Stavridou (1993). “Safety-Critical Systems, Formal Methods
and Standards”. Software Engineering Journal.

Brady, Edwin (2013). “Idris, a General-Purpose Dependently Typed Programming Lan-
guage: Design and Implementation”. Journal of Functional Programming.

Brady, Edwin and Kevin Hammond (2005). “A Dependently Typed Framework for Static
Analysis of Program Execution Costs”. Proceedings of Symposium on Implementation
and Application of Functional Languages.

Breitner, Joachim and Dennis Felsing (2012). The GHC-Heap-View Package. Available on-
line at: https://github.com/chrisnc/ghc-heap-view.

Brown, Neil (2010). The Progression Package. Available online at: https://hackage.
haskell.org/package/progression.

Burstall, Rod M. (1969). “Proving Properties of Programs by Structural Induction”. The
Computer Journal.

Burstall, Rod M. and John Darlington (1977). “A Transformation System for Developing
Recursive Programs”. Journal of the ACM.

Campbell, Brian (2009). “Amortised Memory Analysis Using the Depth of Data Structures”.
Proceedings of European Symposium on Programming.

237

https://github.com/chrisnc/ghc-heap-view
https://hackage.haskell.org/package/progression
https://hackage.haskell.org/package/progression

Cardelli, Luca and Peter Wegner (1985). “On Understanding Types, Data Abstraction, and
Polymorphism”. ACM Computing Surveys.

Christiansen, Jan and Sebastian Fischer (2008). “EasyCheck – Test Data for Free”. Proceed-
ings of International Symposium on Functional and Logic Programming.

Çiçek, Ezgi (2018). “Relational Cost Analysis”. PhD thesis. Saarland University, Saar-
brücken, Germany.

Çiçek, Ezgi et al. (2017). “Relational Cost Analysis”. Proceedings of Symposium on Principles
of Programming Languages.

Çiçek, Ezgi et al. (2019). “Bidirectional Type Checking for Relational Properties”. Proceed-
ings of Conference on Programming Language Design and Implementation.

Claeskens, Gerda and Nils L. Hjort (2008).Model Selection and Model Averaging. Tech. rep.
Cambridge University Press.

Claessen, Koen (2000). The QuickCheck Package. Available online at: https://hackage.
haskell.org/package/QuickCheck.

Claessen, Koen (2012). “Shrinking and Showing Functions”. Proceedings of International
Symposium on Haskell.

Claessen, Koen, Jonas Duregård, and Michał H. Pałka (2015). “Generating Constrained
Random Data with Uniform Distribution”. Journal of Functional Programming.

Claessen, Koen and John Hughes (2000a). “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. Proceedings of International Conference on Functional
Programming.

Claessen, Koen and John Hughes (2000b). The QuickCheck Online Manual. Available online
at: http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html.

Claessen, Koen and John Hughes (2002). “Testing Monadic Code with QuickCheck”. Pro-
ceedings of Haskell Workshop.

Claessen, Koen, Nicholas Smallbone, and John Hughes (2010). “QuickSpec: Guessing Formal
Specifications Using Testing”. Proceedings of International Conference on Tests and
Proofs.

Copeland, Chris (2017). The HVX Package. Available online at: https://github.com/
chrisnc/hvx.

Coppa, Emilio, Camil Demetrescu, and Irene Finocchi (2012). “Input-Sensitive Profiling”.
Proceedings of Conference on Programming Language Design and Implementation.

238

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html
https://github.com/chrisnc/hvx
https://github.com/chrisnc/hvx

Coppa, Emilio et al. (2014). “Estimating the Empirical Cost Function of Routines with
Dynamic Workloads”. Proceedings of International Symposium on Code Generation and
Optimization.

Crary, Karl and Stephnie Weirich (2000). “Resource Bound Certification”. Proceedings of
Symposium on Principles of Programming Languages.

Curry, Haskell B. (1934). “Functionality in Combinatory Logic”. Proceedings of National
Academy of Sciences of the United States of America.

Daka, Ermira and Gordon Fraser (2014). “A Survey on Unit Testing Practices and Prob-
lems”. Proceedings of International Symposium on Software Reliability Engineering.

Danielsson, Nils A. (2008). “Lightweight Semiformal Time Complexity Analysis for Purely
Functional Data Structures”. Proceedings of Symposium on Principles of Programming
Languages.

Danielsson, Nils A. et al. (2006). “Fast and Loose Reasoning is Morally Correct”. ACM
SIGPLAN Notices.

Docker, Tim (2006). The Chart Package. Available online at: http://hackage.haskell.
org/package/Chart.

Dolan, Elizabeth D. and Jorge J. Moré (2002). “Benchmarking Optimization Software with
Performance Profiles”. Mathematical Programming.

Done, Chris (2016). The Weigh Package. Available online at: https://hackage.haskell.
org/package/weigh.

Duregård, Jonas, Patrik Jansson, and Meng Wang (2013). “Feat: Functional Enumeration
of Algebraic Types”. Proceedings of International Symposium on Haskell.

Estivill-Castro, Vladmir and Derick Wood (1992). “A Survey of Adaptive Sorting Algo-
rithms”. Proceedings of ACM Computing Surveys.

Farmer, Andrew (2015). “HERMIT: Mechanized Reasoning During Compilation in the Glas-
gow Haskell Compiler”. PhD thesis. University of Kansas, Kansas, USA.

Farmer, Andrew, Neil Sculthorpe, and Andrew Gill (2015). “Reasoning with the HERMIT:
Tool Support for Equational Reasoning on GHC Core Programs”. Proceedings of Inter-
national Symposium on Haskell.

Farmer, Andrew, Christian H. zu Siederdissen, and Andrew Gill (2014). “The HERMIT in
the Stream”. Proceedings of Workshop on Partial Evaluation and Program Manipulation.

Farmer, Andrew et al. (2012). “The HERMIT in the Machine: A Plugin for the Interac-
tive Transformation of GHC Core Language Programs”. Proceedings of International
Symposium on Haskell.

239

http://hackage.haskell.org/package/Chart
http://hackage.haskell.org/package/Chart
https://hackage.haskell.org/package/weigh
https://hackage.haskell.org/package/weigh

Felleisen, Matthias (1987). “The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages”. PhD thesis. Indi-
ana University Bloomington, Indiana, USA.

Felleisen, Matthias and Matthew Flatt (1989). “Programming Languages and Lambda Cal-
culi”. Unpublished lecture notes.

Felleisen, Matthias and Robert Hieb (1992). “The Revised Report on the Syntactic Theories
of Sequential Control and State”. Theoretical Computer Science.

Fetscher, Burke et al. (2015). “Making Random Judgments: Automatically Generating Well-
Typed Terms from the Definition of a Type-System”. Proceedings of European Sympo-
sium on Programming Languages and Systems.

Foner, Kenneth, Hengchu Zhang, and Leonidas Lampropoulos (2018). “Keep Your Laziness
in Check”. Proceedings of International Conference on Functional Programming.

Fox, John (1997). Applied Regression Analysis, Linear Models, and Related Methods. Sage
Publications.

GHC Team (2001). The List Package. Available online at: http://hackage.haskell.org/
package/base-4.11.1.0/docs/src/Data.OldList.html#sort.

GHC Team (2007). The Process Package. Available online at: https://hackage.haskell.
org/package/process.

GHC Team (2017). The GHC API. Available online at: https://hackage.haskell.org/
package/ghc.

GHC Team (2019). The Glasgow Haskell Compiler’s User Guide. Available online at: https:
//downloads.haskell.org/~ghc/latest/docs/html/users_guide/.

Gibbons, Jeremy (2006). “Datatype-Generic Programming”. Proceedings of International
Spring School on Datatype-Generic Programming.

Gill, Andrew (2006). “Introducing the Haskell Equational Reasoning Assistant”. Proceedings
of Haskell Workshop.

Gill, Andrew and Graham Hutton (2009). “The Worker/Wrapper Transformation”. Journal
of Functional Programming.

Godefroid, Patrice, Adam Kiezun, and Michael Y. Levin (2008). “Grammar-Based Whitebox
Fuzzing”. ACM SIGPLAN Notices.

Godefroid, Patrice, Michael Y. Levin, and David Molnar (2012). “SAGE: Whitebox Fuzzing
for Security Testing”. Communications of the ACM.

240

http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort
http://hackage.haskell.org/package/base-4.11.1.0/docs/src/Data.OldList.html#sort
https://hackage.haskell.org/package/process
https://hackage.haskell.org/package/process
https://hackage.haskell.org/package/ghc
https://hackage.haskell.org/package/ghc
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Goldsmith, Simon F., Alex S. Aiken, and Daniel S. Wilkerson (2007). “Measuring Empirical
Computational Complexity”. Proceedings of European Software Engineering Conference
and Symposium on the Foundations of Software Engineering.

Grieco, Gustavo, Martín Ceresa, and Pablo Buiras (2016). “QuickFuzz: An Automatic Ran-
dom Fuzzer for Common File Formats”. ACM SIGPLAN Notices.

Grieco, Gustavo et al. (2017). “QuickFuzz Testing for Fun and Profit”. Journal of Systems
and Software.

Groote, Jan F. and Frits Vaandrager (1992). “Structured Operational Semantics and Bisim-
ulation as a Congruence”. Information and Computation.

Gustavsson, Jörgen and David Sands (1999). “A Foundation for Space-Safe Transformations
of Call-By-Need Programs”. Electronic Notes in Theoretical Computer Science.

Guttmann, Walter et al. (2003). “Tool Support for the Interactive Derivation of Formally
Correct Functional Programs”. Journal of Universal Computer Science.

Hackett, Jennifer and Graham Hutton (2014). “Worker/Wrapper/Makes It/Faster”. Pro-
ceedings of International Conference on Functional Programming.

Hackett, Jennifer and Graham Hutton (2018). “Parametric Polymorphism and Operational
Improvement”. Proceedings of International Conference on Functional Programming.

Hackett, Jennifer and Graham Hutton (2019). “Pre-ordered Metric Spaces for Program
Improvement”. Unpublished draft.

Handley, Martin A.T. (2018). GitHub Repository for the University of Nottingham Improve-
ment Engine (Unie). Available online at: https://github.com/mathandley/Unie.

Handley, Martin A.T. (2019).GitHub Repository for the AutoBench System. Available online
at: https://github.com/mathandley/AutoBench.

Handley, Martin A.T. and Graham Hutton (2018a). “AutoBench: Comparing the Time
Performance of Haskell Programs”. Proceedings of International Symposium on Haskell.

Handley, Martin A.T. and Graham Hutton (2018b). “Improving Haskell”. Proceedings of
International Symposium on Trends in Functional Programming.

Handley, Martin A.T. and Niki Vazou (2019). GitHub Repository for the RTick Library.
Available online at: https://github.com/mathandley/RTick.

Handley, Martin A.T., Niki Vazou, and Graham Hutton (2020). “Liquidate Your Assets:
Reasoning about Resource Usage in Liquid Haskell”. Proceedings of Symposium on Prin-
ciples of Programming Languages.

Hans, Chris (2009). “Bayesian Lasso Regression”. Biometrika.

241

https://github.com/mathandley/Unie
https://github.com/mathandley/AutoBench
https://github.com/mathandley/RTick

Harper, Robert (2014). “The Structure and Efficiency of Computer Programs”. Unpublished
draft.

Hennessy, Matthew and Robin Milner (1980). “On Observing Nondeterminism and Concur-
rency”. Proceedings of Automata, Languages and Programming.

Hinze, Ralf and Johan Jeuring (2003). “Generic Haskell: Practice and Theory”. Proceedings
of Generic Programming.

Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”. Proceedings of Technometrics.

Hoffmann, Jan, Klaus Aehlig, and Martin Hofmann (2011). “Multivariate Amortized Re-
source Analysis”. ACM SIGPLAN Notices.

Hoffmann, Jan, Klaus Aehlig, and Martin Hofmann (2012). “Resource Aware ML”. Proceed-
ings of International Conference on Computer Aided Verification.

Hoffmann, Jan and Zhong Shao (2015). “Automatic Static Cost Analysis for Parallel Pro-
grams”. Proceedings of European Symposium on Programming.

Hofmann, Martin and Steffen Jost (2003). “Static Prediction of Heap Space Usage for First-
Order Functional Programs”. ACM SIGPLAN Notices.

Hughes, John (2007). “QuickCheck Testing for Fun and Profit”. Proceedings of International
Symposium on Practical Aspects of Declarative Languages.

Hughes, John (2016). “Experiences with QuickCheck: Testing the Hard Stuff and Staying
Sane”. A List of Successes That Can Change the World.

Hughes, John, Lars Pareto, and Amr Sabry (1996). “Proving the Correctness of Reactive
Systems Using Sized Types”. Proceedings of Symposium on Principles of Programming
Languages.

Hutcheson, Graeme D. (2011). “Ordinary Least-Squares Regression”. The SAGE Dictionary
of Quantitative Management Research.

Hutton, Graham (1998). “Fold and Unfold for Program Semantics”. ACM SIGPLAN No-
tices.

Hutton, Graham (2016). Programming in Haskell (Second Edition). Cambridge University
Press.

Hyams, Daniel G. (2019). CurveExpert. Available online at: http://www.curveexpert.net.

Jansson, Patrik et al. (2006). “Testing Properties of Generic Functions”. Proceedings of
Symposium on Implementation and Application of Functional Languages.

242

http://www.curveexpert.net

Jay, Barry C. and J.R.B. Cockett (1994). “Shapely Types and Shape Polymorphism”. Pro-
ceedings of European Symposium on Programming.

Jin, Guoliang et al. (2012). “Understanding and Detecting Real-World Performance Bugs”.
ACM SIGPLAN Notices.

Jones, Mark P. (2003). The Hugs Interpreter. Available online at: https://www.haskell.
org/hugs.

Jost, Steffen et al. (2010). “Static Determination of Quantitative Resource Usage for Higher-
Order Programs”. ACM SIGPLAN Notices.

Jost, Steffen et al. (2017). “Type-Based Cost Analysis for Lazy Functional Languages”.
Journal of Automated Reasoning.

Kahn, Gilles (1987). “Natural Semantics”. Proceedings of Symposium on Theoretical Aspects
of Computer Science.

Kiss, Csongor (2017). The Generic-Lens Package. Available online at: https://github.
com/chrisnc/generic-lens.

Kiss, Csongor, Matthew Pickering, and Nicolas Wu (2018). “Generic Deriving of Generic
Traversals”. Proceedings of International Conference on Functional Programming.

Kleene, Stephen C. (1964). Introduction to Metamathematics. North Holland Publishing
Company.

Klein, Casey et al. (2012). “Run Your Research: On the Effectiveness of Lightweight Mech-
anization”. Proceedings of Symposium on Principles of Programming Languages.

Knoth, Tristan et al. (2019). “Resource-Guided Program Synthesis”. Proceedings of Confer-
ence on Programming Language Design and Implementation.

Knoth, Tristan et al. (2020). “Liquid Resource Types”. Proceedings of the ACM on Pro-
gramming Languages.

Lämmel, Ralf, Eelco Visser, and Joost Visser (2003). “The Essence of Strategic Program-
ming”. Unpublished draft.

Lampropoulos, Leonidas et al. (2017). “Beginner’s Luck: a Language for Property-Based
Generators”. Proceedings of Symposium on Principles of Programming Languages.

Lapets, Andrei (2010). “Machine Involvement in Formal Reasoning: Simulated Contexts
and an Interface Layer for Formal Verification”. Unpublished draft.

Li, Huiqing, Claus Reinke, and Simon Thompson (2003). “Tool Support for Refactoring
Functional Programs”. Proceedings of Haskell Workshop.

243

https://www.haskell.org/hugs
https://www.haskell.org/hugs
https://github.com/chrisnc/generic-lens
https://github.com/chrisnc/generic-lens

Lima, Luís G. et al. (2016). “Haskell in Green Land: Analyzing the Energy Behavior of
a Purely Functional Language”. Proceedings of International Conference on Software
Analysis, Evolution, and Reengineering.

Löh, Andres (2015). “Applying Type-Level and Generic Programming in Haskell”. Unpub-
lished lectures notes.

Madhavan, Ravichandhran, Sumith Kulal, and Viktor Kuncak (2017). “Contract-Based
Resource Verification for Higher-Order Functions with Memoization”. ACM SIGPLAN
Notices.

Martì, Daniel (2007). The Hint Package. Available online at: https://hackage.haskell.
org/package/hint.

Martin-Löf, Per (1984). Intuitionistic Type Theory. Bibliopolis.

McBride, Conor and James McKinna (2004). “The View from the Left”. Journal of Func-
tional Programming.

McCarthy, Jay et al. (2017). “A Coq Library for Internal Verification of Running-Times”.
Science of Computer Programming.

McGeoch, Catherine et al. (2002). “Using Finite Experiments to Study Asymptotic Perfor-
mance”. Experimental Algorithmics. Springer.

Meertens, Lambert (2004). “Calculating the Sieve of Eratosthenes”. Journal of Functional
Programming.

Mista, Agustín, Alejandro Russo, and John Hughes (2018). “Branching Processes for QuickCheck
Generators”. Proceedings of International Symposium on Haskell.

Mitchell, Neil (2007). “Deriving Generic Functions by Example”. Proceedings of York Doc-
toral Symposium on Computing.

Moran, Andrew and David Sands (1999). “Improvement in a Lazy Context: An Operational
Theory for Call-By-Need”. Proceedings of Symposium on Principles of Programming
Languages.

Moss, Graeme E. (2000). “Benchmarking Purely Functional Data Structures”. PhD thesis.
University of York, York, UK.

Moura, Leonardo de and Nikolaj Bjørner (2008). “Z3: An Efficient SMT Solver”. Proceedings
of International Conference on Tools and Algorithms for the Construction and Analysis
of Systems.

Mu, Shin-Cheng, Hsiang-Shang Ko, and Patrik Jansson (2009). “Algebra of Programming
in Agda: Dependent Types for Relational Program Derivation”. Journal of Functional
Programming.

244

https://hackage.haskell.org/package/hint
https://hackage.haskell.org/package/hint

Norell, Ulf (2007). “Towards a Practical Programming Language Based on Dependent Type
Theory”. PhD thesis. Chalmers University of Technology, Göteborg, Sweden.

Norell, Ulf (2008). “Dependently Typed Programming in Agda”. Proceedings of International
School on Advanced Functional Programming.

Okasaki, Chris (1999). Purely Functional Data Structures. Cambridge University Press.

O’Keefe, Richard A. (1982). A Smooth Applicative Merge Sort. Department of Artificial
Intelligence, University of Edinburgh.

O’Neill, Melissa E. (2009). “The Genuine Sieve of Eratosthenes”. Journal of Functional
Programming.

OriginLab (2019). Origin. Available online at: https://www.originlab.com.

O’Sullivan, Bryan (2014a). Criterion: Robust Reliable Performance Measurement and Anal-
ysis. Available online at: http://www.serpentine.com/criterion.

O’Sullivan, Bryan (2014b). The Aeson Package. Available online at: http://hackage.
haskell.org/package/aeson.

O’Donnell, John and Cordelia Hall (2006).Discrete Mathematics Using a Computer. Springer
Science and Business Media.

Pałka, Michał H. et al. (2011). “Testing an Optimising Compiler by Generating Random
Lambda Terms”. Proceedings of International Workshop on Automation of Software
Test.

Park, David (1981). “Concurrency and Automata on Infinite Sequences”. Proceedings of
GI-Conference on Theoretical Computer Science.

Pickering, Matthew, Jeremy Gibbons, and Nicolas Wu (2017). “Profunctor Optics: Modular
Data Accessors”. Art, Science, and Engineering of Programming.

Pickering, Matthew, Nicolas Wu, and Boldizsár Németh (2019). “Working with Source Plu-
gins”. Proceedings of International Symposium on Haskell.

Plotkin, Gordon D. (1975). “Call-by-Name, Call-by-Value and the λ-Calculus”. Theoretical
Computer Science.

Plotkin, Gordon D. (1981). “A Structural Approach to Operational Semantics”. Aarhus
University Computer Science Department.

Radiček, Ivan et al. (2018). “Monadic Refinements for Relational Cost Analysis”. Proceedings
of Symposium on Principles of Programming Languages.

245

https://www.originlab.com
http://www.serpentine.com/criterion
http://hackage.haskell.org/package/aeson
http://hackage.haskell.org/package/aeson

Rondon, Patrick M., Ming Kawaguci, and Ranjit Jhala (2008). “Liquid Types”. ACM SIG-
PLAN Notices.

Ruehr, Karl F. (1992). “Analytical and Structural Polymorphism Expressed Using Patterns
Over Types”. PhD thesis. University of Michigan, Michigan, USA.

Runciman, Colin, Matthew Naylor, and Fredrik Lindblad (2008). “Smallcheck and Lazy
Smallcheck: Automatic Exhaustive Testing for Small Values”. Proceedings of Interna-
tional Symposium on Haskell.

Sands, David (1995). “Total Correctness by Local Improvement in Program Transforma-
tion”. Proceedings of Symposium on Principles of Programming Languages.

Sands, David (1997). “Improvement Theory and Its Applications”. Proceedings of Higher
Order Operational Techniques in Semantics.

Schmidt, David A. (1986). Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown Publishers.

Schmidt-Schauß, Manfred and David Sabel (2015). “Improvements in a Functional Core
Language with Call-By-Need Operational Semantics”. Proceedings of International Sym-
posium on Principles and Practice of Declarative Programming.

Scott, Dana (1982). “Domains for Denotational Semantics”. Proceedings of International
Colloquium on Automata, Languages and Programming.

Scott, Dana and Christopher Strachey (1971). “Toward a Mathematical Semantics for Com-
puter Languages”. Proceedings of Symposium on Computers and Automata.

Sculthorpe, Neil, Andrew Farmer, and Andrew Gill (2013). “The HERMIT in the Tree:
Mechanizing Program Transformations in the GHC Core Language”. Proceedings of
Symposium on Implementation and Application of Functional Languages.

Sculthorpe, Neil, Nicolas Frisby, and Andrew Gill (2014). “The Kansas University Rewrite
Engine”. Journal of Functional Programming.

Sculthorpe, Neil and Graham Hutton (2014). “Work It, Wrap It, Fix It, Fold It”. Journal
of Functional Programming.

Sestoft, Peter (1997). “Deriving a Lazy Abstract Machine”. Journal of Functional Program-
ming.

Stump, Aaron (2016). Verified Functional Programming in Agda. Morgan & Claypool.

Sutton, Michal, Adam Greene, and Pedram Amini (2007). Fuzzing: Brute Force Vulnerability
Discovery. Pearson Education.

Systat Software (2019). TableCurve 2D. Available online at: http://www.sigmaplot.co.uk.

246

http://www.sigmaplot.co.uk

Thompson, Simon and Huiqing Li (2013). “Refactoring Tools for Functional Languages”.
Journal of Functional Programming.

Travis-CI.org (2019). Travis CI. Available online at: https://travis-ci.org.

Tullsen, Mark A. (2002). “Path, A Program Transformation System for Haskell”. PhD thesis.

Turner, David A. (2004). “Total Functional Programming”. Journal of Universal Computer
Science.

Vasconcelos, Pedro B. (2008). “Space Cost Analysis Using Sized Types”. PhD thesis. Uni-
versity of St. Andrews, Fife, Scotland.

Vasconcelos, Pedro B. and Kevin Hammond (2003). “Inferring Cost Equations for Recursive,
Polymorphic and Higher-Order Functional Programs”. Proceedings of Symposium on
Implementation and Application of Functional Languages.

Vazou, Niki (2016). “Liquid Haskell: Haskell as a Theorem Prover”. PhD thesis. University
of California San Diego, California, USA.

Vazou, Niki, Patrick M. Rondon, and Ranjit Jhala (2013). “Abstract Refinement Types”.
Proceedings of European Symposium on Programming.

Vazou, Niki et al. (2014). “Refinement Types for Haskell”. Proceedings of International
Conference on Functional Programming.

Vazou, Niki et al. (2017). “Refinement Reflection: Complete Verification with SMT”. Pro-
ceedings of Symposium on Principles of Programming Languages.

Vazou, Niki et al. (2018). “Theorem Proving For All: Equational Reasoning in Liquid
Haskell”. Proceedings of International Symposium on Haskell.

Vries, Edsko de and Andres Löh (2014). The Generics-Sop Package. Available online at:
http://hackage.haskell.org/package/generics-sop.

Wadler, Philip (1987). “The Concatenate Vanishes”. Appeared as a note on an electronic
mailing list.

Wadler, Philip (1988). “Strictness Analysis Aids Time Analysis”. Proceedings of Symposium
on Principles of Programming Languages.

Wadler, Philip (2015). “Propositions As Types”. Communications of the ACM.

Wang, Peng, Di Wang, and Adam Chlipala (2017). “TiML: A Functional Language for Prac-
tical Complexity Analysis with Invariants”. Proceedings of the ACM on Programming
Languages.

247

https://travis-ci.org
http://hackage.haskell.org/package/generics-sop

Watson, Henry W. and Francis Galton (1875). “On the Probability of the Extinction of
Families”. Journal of the Anthropological Institute of Great Britain and Ireland.

Weyuker, Elaine J. and Filippos I. Vokolos (2000). “Experience with Performance Testing
of Software Systems: Issues, an Approach, and Case Study”. IEEE Transactions on
Software Engineering.

Woodside, Murray, Greg Franks, and Dorina C. Petriu (2007). “The Future of Software
Performance Engineering”. Proceedings of Future of Software Engineering.

Xu, Hongwei and Frank Pfenning (1999). “Dependent Types in Practical Programming”.
Proceedings of Symposium on Principles of Programming Languages.

Xu, Qingsong and Yi-Zeng Liang (2001). “Monte Carlo Cross Validation”. Proceedings of
Chemometrics and Intelligent Laboratory Systems.

248

Appendices

249

Appendix A

Additional background

A.1 Program semantics

For completeness, we overview program semantics, which is the field of study that lays the

foundations for both equational (section 2.3.1) and inequational reasoning (section 2.3.1).

In particular, denotational semantics (section A.1.1) relates expressions to mathematical ob-

jects, typically for verifying correctness properties; and operational semantics (section A.1.2)

relates expressions to steps of execution, which can be used to verify efficiency properties.

A.1.1 Denotational semantics

Denotational semantics (Schmidt 1986) is concerned with giving mathematical models for

programming languages. A denotational semantics gives meaning to a programming lan-

guage by assigning a mathematical meaning to each of its terms, known as a denotation.

Each term in the language is thus said to denote a particular mathematical object. A de-

notational semantics is defined by first selecting a set of mathematical values collectively

known as a semantic domain (or just a domain), which contains all the possible meanings.

Terms are then interpreted by mappings from the language’s syntax to this domain.

Formally, a denotational semantics for a language T of syntactic terms comprises a set

V of semantic values (that is, V is a semantic domain) and a valuation function J · K of

type T → V that maps terms to their meanings as values. As a concrete example, we may

consider Hutton’s (1998) language of simple arithmetic expressions:

250

data Expr = Val Int | Add Expr Expr

This language is built up from integers and addition and has implicit bracketing. For

example, the expression 0 + (1 + 2) is represented by Add (Val 0) (Add (Val 1) (Val 2))

of type Expr . A denotational semantics for this expression language can be given by taking

the set V of semantic values as the Haskell type Int of integers, and the valuation function

as a recursive evaluation function for expressions, defined as follows:

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

The semantics thus assigns the meaning of the term Add (Val 0) (Add (Val 1) (Val 2)) to

the result of eval (Add (Val 0) (Add (Val 1) (Val 2))), which is 3.

The above valuation function demonstrates a fundamental principle of denotational

semantics, which is that denotations must be compositional. Compositionality means that

the denotation of a compound term is defined purely in terms of the denotation of its

subterms. In the case of eval, we can see that the meaning of an addition Add x y is

defined in terms of the meaning of its operands x and y, which is precisely the requirement.

The concept of denotational semantics originated in the work of Scott and Strachey,

who defined the denotation of a program as a function taking an initial state as input

and producing a final state as output (Scott and Strachey 1971). To give denotations to

recursively defined programs, Scott proposed working with continuous functions between

domains, specifically between complete pointed partial orders (Scott 1982), or CPPOs,

which are partial orders with a completeness property that ensures functions always have

least fixed-points. Moreover, this algebraic structure also provides an algorithm to calculate

such fixed points, in the form of the Kleene fixed-point theorem (Kleene 1964).

Complete pointed partial orders form the basis of most modern denotational seman-

tics for functional languages. For lazy functional languages, such as Haskell, types are

represented by CPPOs and functions between types are continuous functions between their

corresponding CPPOs. Non-termination is represented by the least element of every CPPO,

denoted ⊥ and pronounced ‘bottom’, and strictness for continuous functions corresponds

251

precisely to strictness in the functional programming sense.

Denotational equality

A fundamental requirement for any notion of equality between programs is for it to be a

congruence relation. More specifically, an equivalence relation that is compatible with the

syntactical constructs of the respective programming language. Such a relation is desir-

able for two reasons. Firstly, the transitivity property affords the well-known technique of

equational reasoning (section 2.3.1), where equalities of the form t = t′ can be derived from

sequences of intermediate equalities t = t0 = t1 = · · · = tn = t′. Secondly, the compatibility

property enables equalities between compound terms of the form t[s] = t[s′] to be deduced

from equalities between corresponding subterms, that is, s = s′. In practice, this is perhaps

an even more useful technique of equational reasoning.

In the denotational setting, two terms are considered equal if they are mapped to the

same value in the domain. This definition is clearly transitive (and reflexive). Furthermore,

assuming compositionality, this definition allows a subterm s of a compound term t to

be replaced with another subterm s′ of the same denotation without changing the overall

meaning of t. As such, a compositional denotational semantics supports the substitution of

denotationally equal subterms and is indeed a congruence relation.

Universally being able to substitute ‘equals for equals’ in this manner is often called

referential transparency, and is responsible for much interest in functional programming

precisely because it admits the techniques of equational reasoning discussed above, which

are akin to everyday mathematics (O’Donnell and Hall 2006).

Denotational approaches to program equivalence also lend themselves to calculational

programming (Bird 1988), in which algebraic techniques are used to derive programs that

satisfy high-level specifications. These techniques are frequently used when applying pro-

gram transformations, as a resultant program can often be calculated from one or more

preconditions that ensure the transformation’s correctness. A notable example appearing

in chapter 4 is the worker/wrapper transformation (Gill and Hutton 2009).

252

A.1.2 Operational semantics

In contrast to denotational semantics, the purpose of operational semantics is to describe

not what a program is in a mathematical sense but to describe how a computation is

performed. To this end, an operational semantics gives a meaning to a program as the

sequence of steps that must be performed to calculate its result. There are two main

approaches to operational semantics: structural operational semantics, initially developed

by Plotkin (1981); and natural semantics, first introduced by Kahn (1987). We focus on

the former approach as it is most relevant to the work of this thesis.

Structural operational semantics

Structural operational semantics (SOS), a form of small-step semantics, describes how a

program is executed in individual steps. Usually, it is expressed as a transition relation that

captures the execution steps taken by an appropriate transition system (Plotkin 1981).

Formally, an SOS for a language T of syntactic terms comprises a set S of states and a

transition relation→ ⊆ S×S that relates states to all other states reachable by performing

a single execution step. We write s → s′ to mean 〈s, s′〉 ∈ → and say there is a transition

from state s to state s′. Instead of enumerating every possible transition between states,

the transition relation is typically defined using rules of inference.

To make this concrete, we return to the example of basic arithmetic expressions from

section A.1.1. In doing so, we can give arithmetic expressions a simple operational semantics

by taking S as the Haskell type Expr of expressions and by specifying the transition relation

→ ⊆ Expr × Expr using the following inference rules:

Add (Val m) (Val n) → Val (m + n)

x → x ′

Add x y → Add x ′ y

y → y′

Add x y → Add x y′

The first rule states that two values can be added together to give a single value and is

known as an evaluation rule. The last two rules are known as structural congruence rules.

253

Informally, they say that the first rule can be applied to either argument of an addition.

These rules of inference can be translated into Haskell in the form of a function that maps

expressions to lists of expressions reachable by a single step (Hutton 1998):

trans :: Expr → [Expr]

trans (Val n) = []

trans (Add (Val m) (Val n)) = [Val (m + n)]

trans (Add x y) = [Add x ′ y | x ′ ← trans x]

++ [Add x y′ | y′ ← trans y]

In this simple example there are only two structural congruence rules. However, typically

many more arise in specifications of real-world programming languages. As such, a more

compact method of expressing where evaluation rules can be applied is often required.

Evaluation contexts, introduced by Felleisen (1987), provide a mechanism to do just that.

Reduction semantics

An evaluation context E is a meta-term representing a family of terms that contain a

single hole, written [−]. If E is an evaluation context, then E[t] represents E with the term

t substituted for the hole. Every evaluation context E induces a context rule

t → t′

E[t] → E[t′]

which says that we may apply the reduction t→ t′ in the context E that has been substituted

with t. Making use of evaluation contexts for arithmetic expressions

E ::= [−] | Add Expr E | Add E Expr

we can redefine our previous operational semantics in a more concise form, as follows:

Add (Val m) (Val n) → Val (m + n)

Now we have a single evaluation rule, which, just as before, states that two values can be

added together to give a single value. In addition, the simple grammar of E defines the

254

corresponding set of evaluation contexts for the type Expr , which indicate precisely where

in a given term the evaluation rule can be applied.

As a concrete example, given the term Add (Val 0) (Add (Val 1) (Val 2)), we can apply

the evaluation rule to the right subterm using the context Add (Val 0) [−]. The evaluation

rule can then be applied directly to the result, Add (Val 0) (Val 3), of this reduction to

give Val 3. In general, each time we use an evaluation context E to apply an evaluation

rule t → t ′, we say that “t reduces to t ′ in context E”.

Overall, this contextual approach, known as reduction semantics (Felleisen and Hieb

1992), is a much more convenient presentation of operational semantics, as we need only

define inference rules that evaluate terms. In turn, evaluation contexts describe how such

rules can be applied in a way that naturally corresponds to the recursive definitions of

terms. By making the evaluation context explicit and modifiable, reduction semantics with

evaluation contexts is considered by many to be a significant improvement over the more

conventional forms of small-step semantics (Felleisen and Flatt 1989).

Operational equivalence

Recall that a denotational semantics identifies terms that are mapped to the same value in

the domain. This notion of equality does not carry over to the operational setting, where

the meaning of a term incorporates all of the individual steps that constitute its evaluation

over time. For example, a direct translation of denotational equality to the operational

setting would merely identify terms with the same end state. However, this overlooks

all prior steps—and intermediate states—that make up the term’s evaluation process, of

which the result is simply a distinguished state. In consequence, an operational definition

of equivalence is typically more intricate than its denotational counterpart. Nonetheless, a

significant number of such definitions are centred around a simple principle, which is known

as The Identity of Indiscernibles, or Leibniz’s Law

∀x∀y [∀P [P (x) ⇐⇒ P (y)] =⇒ x = y]

and informally states that two objects are identical if they satisfy the same properties.

Contextual equivalence (Plotkin 1975) is a natural notion of program equivalence that

255

follows Leibniz’s Law. In this definition, two terms are said to be equal if and only if their

observable behaviour is indistinguishable, even when used as subterms of any other term.

One method of defining such a relation is bisimulation, a notion of equivalence between

abstract transition systems that was first developed by Park (1981). Bisimulation intuitively

captures what it means for two transition system to have the same behaviour. In particular,

two systems are said to be bisimilar if there exists a relation between the states of the

systems such that related states have related successor states.

A well-cited example of bisimulation is Abramsky’s applicative bisimulation (Abramsky

1990). In the context of lazy lambda calculus, where termination is defined as reduction to a

lambda abstraction, Abramsky states that two closed lambda terms are applicative bisimilar

if, in all program contexts, they have the same termination behaviour. This notion closely

resembles another technique for defining operational equivalence between terms, known as

observational equivalence, introduced by Hennessy and Milner (Hennessy and Milner 1980).

The idea behind observational equivalence also echoes Leibniz’s Law: if an external

observer is not able to distinguish between two programs, then they are equivalent. More

formally, if, for all program contexts C, the programs C[p] and C[q] have indistinguishable

observable results, then p and q are equivalent. The precise nature of what constitutes

an observation varies, but typically it is sufficient to consider only termination. This is

because should C[p] and C[q] both terminate with different results, then it is often possible

to construct a C′ such that C′[p] terminates and C′[q] diverges, or vice-versa.

When discussing denotational semantics, we stated that any notion of equality between

programs must fundamentally satisfy the transitivity and compatibility properties of a

congruence relation. This is also true in the operational setting. In fact, many notions

of operational equivalence are congruence relations by definition: one such example being

observational equivalence (as outlined above). Bisimilarity relations are not necessarily

congruences by definition. However, certain syntactic restrictions can be placed on the

form of transition rules in order to enforce this condition (Groote and Vaandrager 1992).

256

I think I’ll have myself a beer

—Reel Big Fish, Beer

	Title Page
	Table of Contents
	Introduction
	Contributions
	Organisation

	Background
	Property-based testing
	Property-based testing with QuickCheck

	Performance testing
	Benchmarking with Criterion

	Equational and inequational reasoning
	Equational reasoning
	Inequational reasoning

	Formal reasoning
	Formal reasoning in Liquid Haskell

	AutoBench
	Introduction
	AutoBench in practice
	Quickly reversing a list
	Robustly flattening a tree
	Quick versus robust results

	Architecture of AutoBench
	Data generation
	Generic data generation
	Benchmarking
	Statistical analysis

	Case studies
	Case study 1: QuickSpec
	Case study 2: Sorting
	Case study 3: The Sieve of Eratosthenes

	Discussion
	Data generation
	Benchmarking
	Statistical analysis

	Conclusion

	Improving Haskell
	Introduction
	Improvement theory in practice
	The theory of improvement
	Syntax and semantics
	Operational improvement
	Inequational reasoning
	Tick algebra

	Architecture of Unie
	Overview
	Read-evaluate-print loop
	Inequational layer
	Primitive rewrites and congruence combinators
	Cost-equivalent contexts
	Context manipulation
	Inequational reasoning

	The worker/wrapper transformation
	Formalising correctness
	Formalising improvement
	Improving naive reverse

	Mechanising improvement proofs
	Discussion
	Conclusion

	Liquidate Your Assets
	Introduction
	Analysing resource usage
	Intrinsic cost analysis
	Extrinsic cost analysis
	Interpreting cost analysis

	Implementation
	Recording resource usage
	Modifying resource usage
	Proving extrinsic theorems
	Library assumptions

	Case studies
	Case study 1: Insertion sort
	Case study 2: Non-strict insertion sort
	Case study 3: Map fusion
	Case study 4: Optimised-by-construction reverse
	Summary of examples

	Correctness of static cost analysis
	Metatheory of Liquid Haskell
	Correctness of cost analysis

	Discussion
	Conclusion

	Conclusion
	Summary
	Further work

	Bibliography
	Additional background
	Program semantics
	Denotational semantics
	Operational semantics

