
MLF

Raising ML to the Power of System F

Didier Le Botlan and Didier Rémy
INRIA-Rocquencourt

78153 Le Chesnay Cedex, France
{Didier.Le_Botlan,Didier.Remy}@inria.fr

Abstract

We propose a type system MLF that generalizes ML with
first-class polymorphism as in System F. We perform par-
tial type reconstruction. As in ML and in opposition to
System F, each typable expression admits a principal type,
which can be inferred. Furthermore, all expressions of ML
are well-typed, with a possibly more general type than in
ML, without any need for type annotation. Only arguments
of functions that are used polymorphically must be anno-
tated, which allows to type all expressions of System F as
well.

1 Introduction

Type inference and first-class polymorphic types

Programming languages considerably benefit from static
typechecking. In practice however, types may sometimes
trammel programmers, from two opposite directions.

On the one hand, type annotations may quickly become
a burden to write; while they usefully serve as documen-
tation for toplevel functions, they also obfuscate the code
when every local function must be decorated. On the other
hand, since types are only approximations, any type system
will reject programs that are perfectly well-behaved and that
could be accepted by another more expressive one; hence,
sharp programmers may be irritated in such situations.

Fortunately, solutions have been proposed to both of
these problems: Type inference allows to elide most type
annotations, which simultaneously relieves the programmer
from writing such details and lightens programs. In paral-
lel, more expressive type systems have been developed, so
that programmers are less exposed to their limitations.

Unfortunately, those two situations are often conflict-
ing. Expressive type systems tend to require an unbearable
amount of type decorations, so that many of them only re-

mained at the status of prototypes. Indeed, full type infer-
ence for System F is undecidable [Wel94]. Conversely, lan-
guages with simple type inference are still limited in expres-
siveness; more sophisticated type inference engines, such as
those with subtyping constraints or higher-order unification
have not yet been proved to work well in practice.

The ML language [DM82] appears to be a surprisingly
stable point of equilibrium between those two forces: it
combines a reasonably powerful yet simple type system and
comes with an effective type inference engine. Besides,
the ML experience made it clear that expressiveness of the
type system and a significant amount of type inference are
equally important.

Despite its success, ML could still be improved: in-
deed, there are real examples that require first-class poly-
morphic types; however infrequently these may occur, ML
does not provide any reasonable alternative. (In fact, any
tentative measure of the inconvenience can only be under-
estimated, since the lack of a full-fledged language to exper-
iment with first-class polymorphism insidiously keeps pro-
grammers thinking in terms of toplevel polymorphism.) A
first approach is to extend ML with first-class second-order
polymorphism [LO94, Rém94, OL96, GR99]. However,
the existing solutions are still limited in expressiveness and
the amount of necessary type declarations keeps first-class
polymorphism uneasy to use.

An alternative approach, initiated by Cardelli [Car93],
is to start with an expressive but explicitly typed language,
say F!:>, and perform a sufficient amount of type infer-
ence, so that simple programs—ideally including all ML
programs—would not need any type annotation at all. This
lead to local type inference [PT98], recently improved to
colored local type inference [OZZ01]. These solutions are
quite impressive. In particular, they include subtyping in
combination with higher-order polymorphism. However,
they fail to type all ML programs. Moreover, they also
fail to provide an intuitive and simple specification of where
type annotations are mandatory.

In this work, we follow the first approach. At least, by

1

being conservative over ML, we are guaranteed to please
programmers who are already quite happy with ML1. We
build on some previous work [GR99], called Poly-ML,
which has already been used to add polymorphic methods
to OCaml [LDG+02]. Here, we retain the same expressive-
ness goal, that is, to type all System F programs, but elimi-
nate the need to indicate coercions from polymorphic types
to ML-types (the constructh�i in Poly-ML). Our intention
is also to provide for a simpler yet more flexible presenta-
tion of Poly-ML, on top of which further extensions, such
as higher-order polymorphism—a feature that is highly de-
sired to inherit from classes with polymorphic methods—
could be built.

Actually, MLF is an alternative to explicitly-typed Sys-
tem F that can type the same set of untyped terms and po-
tentially more, but with strictly fewer type information. Pre-
cisely, all type abstractions and type applications are left im-
plicit, and type annotations on arguments of lambda abstrac-
tions are optional whenever the argument is used monomor-
phically in the body of the abstraction. Moreover, every
term of MLF admits a principal type (which, in general, de-
pends on its annotations).

The paper is organized as follows. In the rest of this
section we will briefly recall the problems that arise when
combining first-class polymorphic types with first-order-
unification-based type inference, and introduce our solu-
tion, intuitively. In section 2, we will present our types. The
core language is described in Section 3, including syntax,
static and dynamic semantics. Section 4 presents some stan-
dard results, including type soundness and type inference.
Section 5 introduces type annotations, which are manda-
tory to give the language its full power. In the last section
(Section 6), we discuss language extensions, imperative fea-
tures, and related works. For the sake of readability, some
technical parts of the formal presentation, including the uni-
fication algorithms have been moved to the appendices. By
lack of space all proofs are omitted.

“Monomorphic abstraction of polymorphic types”

Explicit F-style polymorphism and implicit ML-style
polymorphism are quite different in nature, and the two
strategies enter in conflict almost immediately: in System F,
the elimination of polymorphism is explicit, while in ML it
is automatic at every occurrence of a polymorphic variable.

For illustration, let us combine two simple functions,
namely apply the functionchoose defined asfun (x) fun
(y) if true then x else y to the identity functionid. In
ML, chooseandid have principal types8 (�) �! �! �
and8 (�) � ! �, respectively. For conciseness, we shall
write id� for � ! �. Shouldchoose id have type

1On a practical level, this would also ensure upward compatibility of
existing code, although translating tools could always be provided.

�1 equal to8 (�) id� ! 8 (�) id�, obtained by keep-
ing the type ofid uninstantiated, or have type�2 equal to
8 (�) (id� ! id�), obtained by instantiating the type of
id to the monomorphic typeid� and generalizing� only
at the end? Indeed, both�1 and�2 are correct types for
choose id. However, neither one is more general than
the other in System F. Indeed, the functionauto defined
as fun (x : 8 (
) id
) x x, can be typed with�1, as
choose id, but not with�2; otherwiseauto could be ap-
plied, for instance, to the successor function, which would
produce an error. Hence,�1 can not be safely coerced to�2.
Conversely, however, there is a retyping function —a func-
tion whose type erasure�-reduces to the identity [Mit88]—
from type�2 to type�1, that is,fun (g : �2) fun (x :
8 (�) id�) fun (�) g � (x �). Actually, �2 is a prin-
cipal type forchoose id in F�� (System F closed by�-
expansion) [Mit88].

In fact, the argument of the functionchoose id does
not have to be polymorphic: the function simply returns a
value that is at best as polymorphic as both its argument and
the identity. Conversely, the argument to the functionauto

must be at least as polymorphic as8 (�) id�. We could
summarize these constraints by saying that:

auto : 8 (�= 8 (
) id
) �! �
choose id : 8 (� � 8 (
) id
) �! �

Note that the type given tochoose id captures the intuition
that this application has type� ! � for any instance� of
8 (
) id
 . This form of quantification allows to postpone
the decision of whether8 (
) id
 should be instantiated as
soon as possible or kept polymorphic as long as possible.
The bound of� can be weaken either by instantiating8 (
)
id
 or by replacing� by =. Hence, bothchoose id succ

andchoose id auto are well-typed, takingint! int or
8 (
) id
 for the type of�, respectively.

In fact, the type8 (� � 8 (
) id
) �! � happens to be
a principal type forchoose id in MLF. This type summa-
rizes in a compact way the part of typecheckingchoose id

that depends on the context in which it will be used: some
typing constraints have been resolved definitely and forgot-
ten; others, such that “� is any instance of8 (
) id
”, are
important and have been kept unresolved. In short, MLF

provides richer types with constraints on the bounds of vari-
ables so that instantiation of these variables can be delayed
until there is a principal way of instantiating them.

In our proposal, ML-style polymorphism, as in the type
of choose or id, can be fully inferred. (We will show
that all ML programs remain typable without type annota-
tions.) Unsurprisingly, some polymorphic functions cannot
be typed without annotations. For instance,fun (x) x x

cannot be typed in MLF. In particular, we do not infer
types for function arguments that are used polymorphically.
Fortunately, such arguments can be annotated with a poly-

2

Figure 1. Syntax of Types

� ::= � j gn �1 :: �n Monotypes
� ::= � j ? j 8 (�� �) � j 8 (�= �) � Polytypes

morphic type, as illustrated in the definition ofauto given
above. Once defined, a polymorphic function can be manip-
ulated by another unannotated function, as long as the latter
does notuse polymorphism, which is then retained. This is
what we qualify “monomorphic abstraction of polymorphic
types”. For instance,id auto (or choose id auto) re-
mains of type8 (�=8 (
) id
) �! �, whilechoose and
id do not have any type annotation. Finally, polymorphic
functions can be used by implicit instantiation, much as in
ML.

It should be noted that our notion of principal types is rel-
ative to partially annotated source terms,i.e. there is a type
that captures all possible types of any given source term,
but this type may depend on the type annotations that are
present. For instance, bothfun (x : 8 (�) id�) x x and
fun (x : 8 (�) �) x x are typable in MLF, with incompa-
rable types. (In our sense, explicitly typed System F, whose
terms have unique types, admits principal types as well but
implicitly typed System F does not.)

2 Types

2.1 Syntax of types

The syntax of types is given in Figure 1. The syntax is
parameterized by an enumerable set of type variables� 2 #
and a family of type symbolsg 2 G given with their arity.
To avoid degenerated cases, we assume thatG contains at
least a symbol of arity two (the infix arrow!) and a symbol
of arity zero (e.g. unit). We writegn if g is of arityn. We
also write�� for tuples of types.

We distinguish betweenmonotypes, andpolytypes. By
default, types refer to the more general forms,i.e. poly-
types. As in ML, monotypes do not contain quantifiers.
Polytypes generalize ML type schemes. Actually, ML type
schemes can be seen as polytypes of the form8 (�1 � ?)
: : :8 (�n�?) � with outer quantifiers. Inner quantifiers as
in System F cannot be written directly inside monotypes.
However, they can be simulated with types of the form
8 (� = �) �0, which stands, intuitively, for the polytype
�0 where all occurrences of� would have been replaced by
the polytype� (our notation contains additional meaningful
sharing information). Finally, the general form8 (���) �0

intuitively stands for the collection ofall polytypes �0 where
� is an instance of �.

Notation We say that� has arigid bound in (�=�) and a
flexible bound in (���). A particular case of flexible bound
is theunconstrained bound (� � ?), which we abbreviate
as(�). For convenience, we write(���) for either(�=�)
or (���). This acts as a meta-variable and two occurrences
of � in the same context mean that they all stand for= or all
stand for�. To allow independent choices we use indices
�1 and�2 for unrelated occurrences.

Conversion Type schemes are considered modulo�-
conversion where8 (���) �0 binds� in �0, but not in�. We
write ftv(�) the set of free type variables of�. Occurrences
and free type variables are defined formally in Appendix A.

Example 1 Quantifiers may only be outermost, as in ML,
or in the bound of other bindings. Therefore, the type
8� �(8� �(� [�]! �)) ! � of System F2 cannot be written
directly. (Here,� [�] means a type� in which the variable
� occurs.) However, it could be represented by the type
8 (�) 8 (�0 = 8 (�) � [�] ! �) �0 ! �. In fact, all types of
System F can easily be represented as polytypes by recur-
sively binding all occurrences of inner polymorphic types to
fresh variables beforehand—see Appendix E for details. In
this translation auxiliary variables are used in a linear way.
For instance,(8� � �) ! (8� � �) will be translated into
8 (�0 = 8 (�) �) 8 (�00 = 8 (�) �) �0 ! �00. Intuitively,
8 (�0 = 8 (�) �) �0 ! �0 could also represent the same
System F type, more concisely. However, this type is not
equivalent to the previous one, but only an instance of it,
because it “shares more”, as explained below.

Remark that type application is not possible in our sys-
tem. Instead of explicit type application, as in System F,
second-order types are instantiated implicitly as in ML
along an instance relation, but a more elaborated one.

2.2 Type equivalence

The order of quantifiers and some other syntactical no-
tations are not always meaningful. Such syntactic artifacts
are captured by a notion of type equivalence. Type equiva-
lence is relative to a prefix that specifies the bounds of free
type variables.

A prefix, written Q, is a sequence of bindings,
(�1 �1 �1) : : : (�n �n �n) where variables�1; : : : �n are
pairwise distinct. We writedom(Q) for the setf�1 : : : �ng.
We also write8 (Q) � for 8 (�1 �1 �1) : : : (�n �n �n) �.
Variables�1 : : : �n are not�-convertible in the stand-alone
prefixQ (but they are in8 (Q) �). Since�1; : : : �n are pair-
wise distinct, we can unambiguously write(� � �) 2 Q to
mean thatQ is of the form(Q1; � � �;Q2).

2We write8� � � for types of System F so as to avoid confusion.

3

Figure 2. Type equivalence
All rules are considered symmetrically.

EQ-REFL

(Q) � � �

EQ-TRANS

(Q) �1 � �2
(Q) �2 � �3

(Q) �1 � �3

EQ-FREE

� =2 ftv(�1)

(Q) 8 (� � �) �1 � �1

EQ-COMM

�1 =2 ftv(�2) �2 =2 ftv(�1)

(Q) 8 (�1�1�1) 8 (�2�2 �2) � � 8 (�2�2�2) 8 (�1�1�1) �

EQ-VAR

(Q) 8 (� � �) � � �

EQ-CONTEXT-R
(Q;� � �) �1 � �2

(Q) 8 (� � �) �1 � 8 (� � �) �2

EQ-CONTEXT-L
(Q) �1 � �2

(Q) 8 (� � �1) � � 8 (� � �2) �

EQ-MONO

(� � �0) 2 Q (Q) �0 � �0

(Q) � � � [�0=�]

Theequivalence under prefix is a relation on triples com-
posed of a prefixQ and two types�1 and �2, written
(Q) �1 � �2. It is defined as the smallest relation that sat-
isfies the rules of Figure 2. Rule EQ-VAR says that a stand-
alone variable is only an alias for its bound and may be re-
placed accordingly. Rule EQ-MONO means that binding of
variables to monotypes can always be expanded, though it
remains a convenient notation that allows for more natural
and modular definitions. Rules EQ-CONTEXT-R and EQ-
CONTEXT-L tell that� is a congruence; Rule EQ-COMM

allows the reordering of independent binders; Rule EQ-
FREE eliminates unused bound variables.

Reasoning under prefixes allows to break up a type
scheme8 (Q) � and “look inside under prefixQ”. For in-
stance, it follows from iterations of rule EQ-CONTEXT-R
that(Q) � � �0 suffices to show(;) 8 (Q) � � 8 (Q) �0.

In the examples, we often refer to the equivalence
(Q) 8 (� � �) � � �[�=�] asEQ-MONO?, which is provable
by rules EQ-MONO, EQ-CONTEXT-R and EQ-FREE.

Notation We write�1 � �2 for (;) �1 � �2. We write
� 2 T if � � � for some monotype� . We write� 2 V if
� � � for some type variable�.

2.3 Sharing instance

The equivalence under prefix is a symmetric operation
(for a given prefix). In other words, it captures reversible

Figure 3. Sharing instance

SH-EQUIV

(Q) �1 � �2

(Q) �1 @� �2

SH-TRANS
(Q) �1 @� �2
(Q) �2 @� �3

(Q) �1 @� �3

SH-HYP

(�1 = �1) 2 Q

(Q) �1 @� �1

SH-CONTEXT-R
(Q;� � �) �1 @� �2

(Q) 8 (� � �) �1 @� 8 (� � �) �2

SH-CONTEXT-L
(Q) �1 @� �2

(Q) 8 (�= �1) � @� 8 (�= �2) �

transformations. Irreversible transformations are captured
by instance relations. However, we distinguish between
sharing instances, which can be reversed but only explic-
itly, and true instances, which are irreversible.

The sharing under prefix, is a relation on triples com-
posed of a prefixQ and two types�1 and�2, written3 @�,
and defined as the smallest relation that satisfies the rules
of Figure 3. Rules SH-CONTEXT-L and SH-CONTEXT-R
are context rules; note that Rule SH-CONTEXT-L does not
allow sharing under flexible bounds. The interesting rule
is SH-HYP, which shares a type�1 with a binding of the
prefix. This operation can also be seen ashiding the poly-
morphic type �1 under the abstract name �1.

Example 2 The judgement(� = �0) 8 (� = �0) � @� �
follows from SH-CONTEXT-L (and other inessential rules).
Unsharing can also act deeply:8 (�= 8 (�0 = �0) �) �00 @�
8 (�0 = �0) 8 (�= �) �00 holds, provided�0 =2 ftv(�00).

Remarkably, sharing two variables with the same bound
is not reversible (sharing is not symmetric), unless the
bound is equivalent to a monotype. In particular, when
(� = �) 2 Q, it is possible to derive(Q) � @� � by rule
SH-HYP, but (Q) � @� � is not derivable (unless� 2 T).
This property is essential for type inference, since it pre-
vents the inference of truly polymorphic types.

2.4 Type instance

The instance under prefix is a relation on triples com-
posed of a prefixQ and two types�1 and �2, written4

(Q) �1 v �2. It is defined as the smallest relation that
satisfies the rules of Figure 4. We write�1 v �2 for
(;) �1 v �2, as we do for equivalence.

3Read�2 is a sharing of�1, under prefixQ.
4Read�2 is an instance of �1—or �1 is more general than �2—under

prefix Q.

4

Figure 4. Type instance

I-SHARE
(Q) �1 @� �2

(Q) �1 v �2

I-TRANS
(Q) �1 v �2
(Q) �2 v �3

(Q) �1 v �3

I-BOT

(Q) ? v �

I-CONTEXT-R
(Q;� � �) �1 v �2

(Q) 8 (� � �) �1 v 8 (� � �) �2

I-CONTEXT-L
(Q) �1 v �2

(Q) 8 (�� �1) � v 8 (�� �2) �

I-HYP

(�1 � �1) 2 Q

(Q) �1 v �1

I-RIGID

(Q) 8 (�� �1) � v 8 (�= �1) �

Rule I-BOT means that? behaves as the least element
for the instance relation. Rules I-CONTEXT-L and I-RIGID

mean that flexible bounds can be instantiated and changed
into rigid bounds. Conversely, instantiation cannot occur
under rigid bounds, except when restricted to the sharing
relation@� (as described by Rule SH-CONTEXT-L).

Rule I-HYP is the counter-part of rule SH-HYP. It can be
used to share variables with identical bounds. For example,
(Q) 8 (���) 8 (���) �! � v 8 (���) 8 (���) �!
� follows from rules I-CONTEXT-R, I-CONTEXT-L and I-
HYP. Note that8 (���) 8 (���) �! � is equivalent to
8 (� � �) � ! � (by EQ-MONO?).

In the examples, we refer to the following derivable rule:
(Q) 8 (�1�8 (�2 ��2) �1) � v 8 (�2 ��2) 8 (�1��1) �
asI-UP, whenever�2 is not inftv(�).

Example 3 As one would expect, the instance relation gen-
eralizes the instance relation of ML. For example,8 (�)
� [�] is more general than8 (�; �0) � [� ! �0], as shown
by the following derivation (valid under any prefix):

8 (�) � [�]
= 8 (��?) � [�] by notation
� 8 (�0; �00) 8 (��?) � [�] by EQ-FREE

v 8 (�0; �00) 8 (�� �0 ! �00) � [�] by I-CONTEXT-L,
since(�0; �00) ? v �0 ! �00

� 8 (�0; �00) � [�0 ! �00] by EQ-MONO?

= 8 (�; �0) � [� ! �0] by renaming

Example 4 Conversely,8 (�) � is not an instance of
8 (�; �0) � ! �0. Indeed,8 (�) � v 8 (�; �0) � ! �0

is a particular case of Example 3. By way of contradiction,
assume we have8 (�; �0) � ! �0 v 8 (�) �. By lemma

1, to be found below, we would have8 (�; �0) � ! �0 �
8 (�) �, which contradicts the fact that occurrences (de-
fined in Appendix A) are preserved by equivalence, since0
is an occurrence of the left-hand side but not of the right-
hand side.

Example 5 The instance relation covers an interesting case
of type isomorphism [Cos95]. In System F, type8� � � !
� 0 is isomorphic5 to � ! 8� � � 0 whenever� is not free
in � . In MLF, the two corresponding type schemes are not
equivalent but in an instance relation. Precisely,8 (�0 �
8 (�) � 0) � ! �0 is more general than8 (�) � ! � 0, as
shown by the following derivation:

8 (�0 � 8 (�) � 0) � ! �0

v 8 (�) 8 (�0 � � 0) � ! �0 by I-UP

� 8 (�) � ! � 0 by EQ-MONO?

As expected, the equivalence relation is the kernel of the
instance relation.

Lemma 1 (Equivalence) For all prefix Q and types � and
�0, we have (Q) � � �0 if and only if both (Q) � v �0 and
(Q) �0 v � hold.

ML types

Notice that ML-types can be seen as MLF types where type
schemes are restricted to have only unconstrained bounds.
Then, the instance relation is the one of ML. In particular,
8 (��) �0 v �1 if and only if �1 is of the form�0[��=��].

2.5 Operation on prefixes

Rules SH-CONTEXT-L and I-CONTEXT-L show that
two types8 (Q) � and8 (Q0) � with the same suffix can
be in an instance relation. Moreover, the suffix� does not
matter (in these cases). This suggests a notion of inequal-
ity between prefixes alone. However, because prefixes are
“open” this relation must be defined relatively to a set of
variables that represents (a superset of) the free type vari-
ables of�. In this context, a set of type variables is called
aninterface and is writtenI .

Definition 1 (Prefix instance) A prefixQ is aninstance of
a prefixQ0 under the interfaceI , and we writeQ vI Q0,
if and only if 8 (Q) � v 8 (Q0) � holds for all type�
whose free variables are included inI . We omit I in the
notation when it is equal todom(Q). We defineQ �I Q0

andQ @�I Q0 similarly.

5That is, there exists a function(�; �)-reducible to the identity that
transforms one into the other, and conversely.

5

Figure 5. Expressions of MLF

a ::= x j c j fun (x) a j a a j let x = a in a Terms

j (a : ?) Guesspoints

c ::= f j C Constants

z ::= x j c Identifiers

There exist equivalent inductive definitions for prefix in-
stance, prefix sharing, and prefix equivalence, which we
omit here by lack of space.

Prefixes can be seen as a generalization of the notion of
substitutions to polytypes. Then,Q v Q0 captures the usual
notion of (a substitution)Q being more general than (a sub-
stitution)Q0.

Unification The Appendix B defines an algorithmunify
that given a prefixQ and two types�1 and�2 returns a prefix
that is the smallest instance ofQ that unifies�1 and�2 or
fails if there is no instance ofQ that unifies�1 and�2.

Lemma 2 (Soundness of unification) If unify (Q; �; � 0)
succeeds with Q0, then we have Q v Q0 and (Q0) � � � 0.

Lemma 3 (Completeness of unification) Given a prefixQ
and two types � and � 0 closed under Q, if there exists a pre-
fix Qb such that Q vdom(Q) Qb and (Qb) � � � 0, then
unify (Q; �; � 0) succeeds with some prefix Qa such that
Qa vdom(Q) Qb.

As a corollary, for any given interfaceI , the relationvI

defines an upper semi-lattice on the set of prefixes.

3 The core language

We formalize our approach as a small extension to core
ML that is parameterized by a set of constants. Expressions
of MLFare those of ML. We also consider a variant of MLF,
called MLF?, in which some expressions have been anno-
tated (intuitively, places to call an horacle during type in-
ference). We represent annotations by an additional node
(a : ?), called a guesspoint. The syntax of expressions
of MLF?, written with lettera, is given in Figure 5 and
expressions of MLF are those that do not contain guess-
points (guesspoints may be introduced during reduction, but
source programs, for which types will be inferred, should
not contain them). We assume given a countable set of vari-
ablesx 2 V and a countable set of constantsc 2 C. Ev-
ery constantc comes with its arityjcj. A constant is either
a primitivef or a constructorC. The distinction between

constructors and primitives lies in their dynamic semantics.
We use letterz to refer to identifiers,i.e. either variables or
constants.

3.1 Static semantics

Typing contexts, written with letter� are lists of asser-
tions of the formz : �. We writez : � 2 � to mean that
z is bound in� and z : � is its rightmost binding in�.
We assume given an initial context�0 mapping constants to
closed polytypes.

Typing judgments are of the form(Q) � ` a : �.
A small difference with ML is the presence of the pre-
fix Q that must assign bounds to type variables appear-
ing free in� or �. By comparison, this prefix is left im-
plicit in ML because free variables all have the same (im-
plicit) bound?. On the contrary, we require that� and
all type schemes of� be closed with respect toQ, that is,
ftv(�) [ftv(�) � dom(Q).

Typing rules The typing rules of MLF are described in
Figure 6. They correspond to the typing rules of ML mod-
ulo the richer types, the richer instance relation, and the ex-
plicit binding of free variables in judgments. The language
MLF? requires an additional typing rule GUESS. (This rule
would have no effect in ML where sharing@� would be the
same as� in ML.)

As in ML, there is an important difference between rule
FUN and rule LET: while typechecking their bodies, a let-
bound variable can be assigned a type scheme, but a�-
bound variable can only be assigned a simple type in�.
Indeed, the latter must be guessed while the former can be
inferred from the type of the bound expression. This re-
striction is essential to enable type inference. Note that a
�-bound variable can be assigned a polytype indirectly, via
a type variable� bound to a type scheme� in Q. However,
this will not allow to take different instances of� while typ-
ing the body of the abstraction. Indeed, the only possible
instances of� under a prefixQ that contains the binding
(� � �) are types�0 that are equivalent to� underQ. How-
ever,� is not then equivalent to� underQ, even if the
bound of� in Q is rigid. Thus, ifx : � is in the typing
context�, the only way of typingx (modulo equivalence)
is (Q) � ` x : �, whereas(Q) � ` x : � is not derivable.

The language ML as a subset of MLF ML can be em-
bedded into MLF by restricting type schemes to those of
ML. Then, the prefixQ only records the set of free type
variables of the judgment. In particular, rules GEN and
INST are then exactly those of ML. Hence any closed pro-
gram typable in ML is also typable in MLF.

6

Figure 6. Typing rules for MLF

VAR

z : � 2 �

(Q) � ` z : �

FUN

(Q) �; x : �0 ` a : �

(Q) � ` fun (x) a : �0 ! �

APP

(Q) � ` a1 : �2 ! �1 (Q) � ` a2 : �2

(Q) � ` a1 a2 : �1

LET

(Q) � ` a1 : � (Q) �; x : � ` a2 : �

(Q) � ` let x = a1 in a2 : �

GEN

(Q;� � �) � ` a : �0 � =2 ftv(�)

(Q) � ` a : 8 (� � �) �0

INST

(Q) � ` a : �
(Q) � v �0

(Q) � ` a : �0

GUESS

(Q) � ` a : �
(Q) �0 @� �

(Q) � ` (a : ?) : �0

Example 6 This first example of typing illustrates the role
of polytype schemes in typing derivations: we consider the
simple expressionK defined byfun (y) fun (x) x and its
typing derivation as would be done in ML (we recall that
(�; �0) stands for(��?; �0 �?)):

GEN

FUN
(�; �0) y : �; x : �0 ` x : �0

FUN
(�; �0) y : � ` fun (x) x : �0 ! �0

(�; �0) ` K : �! (�0 ! �0)

` K : 8 (�; �0) �! (�0 ! �0)

We show another typing derivation that actually infers a
more general type forK in MLF. For conciseness we write
�id for 8 (�0) �0 ! �0 andQ for �; � � �id.

INST

GEN

FUN
(Q;�0) y : �; x : �0 ` x : �0

(Q;�0) y : � ` fun (x) x : �0 ! �0

(Q) y : � ` fun (x) x : �id
(Q) �id v �

FUN
(Q) y : � ` fun (x) x : �

GEN
(Q) ` K : �! �

` K : 8 (Q) �! �

In example 5, we have shown that8 (Q) � ! � is more
general than8 (�; �0) �! (�0 ! �0).

Example 7 This example illustrates how sharing in types
controls “access to polymorphism”, which is the key to hav-
ing principal types and type inference. Letf andg be two

functions of respective types�1
4
== 8 (�=�id) 8 (�0=�id)

� ! �0 and�2
4
== 8 (� = �id) � ! �. Then, the expres-

sionfun (x) f x x is typable butfun (x) g x x is not. In
the former case, we can easily derive(� = �id; �

0 = �id)
x : � ` f x : �0 (1). Hence, by rule GEN, (� = �id) x :
� ` f x : 8 (�0 =�id) �

0 since�0 is not free in the context.
We have(� = �id) 8 (�0 = �id) �

0 v � ! �, since, by
Rule EQ-VAR we have(� = �id) 8 (�0 = �id) �0 v �id
and(� = �id) �id v � ! �. Thus, by Rule INST, we get
(�= �id) x : � ` f x : � ! � and` fun (x) f x x : �id
follows. However, whenf is replaced byg, we only get
(� = �id) x : � ` f x : � instead of the judgment (1) and
we cannot apply Rule GEN.

Example 8 To pursue Example 7, letchoose be a function
of type 8 (�) � ! � ! �, which can be used to force
unification of the types of its two arguments. The type of
choose f id is then�2, which is the least common instance
of both �1 and�id (1). More precisely, we have the two
following derivations where� is (choose : 8 (�) � !
�! �; f : �1; id : �id) andQ is �� �2.

INST

(Q) � ` f : �1
(Q) �1 v � (2)

(Q) � ` f : � (4)

(Q) � ` id : �id
(Q) �id v � (3)

(Q) � ` id : � (5)
INST

Indeed, (2) and (3) follows from�1 v �2 and�id v �2
by (1) and Rule I-HYP. Then, we can easily derive� `
choose f id : �2.

3.2 Syntax directed presentation

As in ML, we can replace the typing rules by a set of
equivalent but syntax-directed rules, which are given in Fig-
ure 7. Here however, Rule GEN would also need to be ap-
plied before Rule FUN and the right-hand side of Rule APP.
Instead, we keep typing judgments generalized (vs. instan-
tiated in ML) as much as possible.

Example 9 As we claimed in the introduction, a variable
that is used polymorphically in the body of an abstraction
must be annotated. Let us check thatfun (x) x x is not
typable in MLF. By contradiction, a syntax-directed type
derivation of this expression would be of the form:

APP4

VAR4 (Q) x : �0 `
4

x : �0
(Q) �0 v �2 ! �1 (1)

(Q) x : �0 `
4

x : �0 VAR4

(Q) �0 v �2 (2)

FUN4
(Q) x : �0 `

4

x x : �1

(Q) ; ` fun (x) x x : �0 ! �1

7

Figure 7. Syntax directed typing rules

VAR4

z : � 2 �

(Q) � `
4

z : �

FUN4

(QQ0) �; x : �0 `
4

a : � dom(Q0) \ � = ;

(Q) � `
4

fun (x) a : 8 (Q0; �� �) �0 ! �

APP4

(Q) � `
4

a1 : �1 (Q) � `
4

a2 : �2
(Q) �1 v 8 (Q0) �2 ! �1 (Q) �2 v 8 (Q0) �2

(Q) � `
4

a1 a2 : 8 (Q0) �1

LET4

(Q) � `
4

a1 : �1 (Q) �; x : �1 `
4

a2 : �2

(Q) � `
4

let x = a1 in a2 : �2

GUESS4

(Q) � `
4

a : � (Q) � v �00 (Q) �0 @� �00

(Q) � `
4

(a : ?) : �0

Hence, (1) and (2) must hold simultaneously, which im-
plies (Q) �2 � �2 ! �1 (we omit the proof by lack of
space). However, this contradicts Lemma 9 to be found in
Appendix A.

This example shows the limit of type inference, which is
actually the strength of our system!i.e. to maintain princi-
pal types by rejecting examples where type inference would
need to “guess”.

Example 10 Let us recover typability by introducing a
guesspoint infun (x) (x : ?) x. Taking (� = �id) for
Q and� for �0, we obtain the following derivation:

APP4

GUESS4

VAR4 (Q) x : � `
4

x : �
(Q) �id @� � (1)

(Q) x : � `
4

(x : ?) : �id

(Q) �id v �! �

(Q) x : � `
4

x : � VAR4

FUN4
(Q) x : � `

4

(x : ?) x : �

` fun (x) (x : ?) x : 8 (�= �id) �! �

The crucial role of the annotation is to allow the use of (1)
to enrich the typing ofx: while (1) implies(Q) �id v �,
this relation cannot be inverted, so rule INST cannot be used
to replace� by its bound�id. The guesspoint allows such
going backward, but only along the@� relation—replacing
@� byv in rule GUESSwould be unsound.

Section 5 shows how type annotations can be used to infer
a type forfun (x : �) x x when� is given explicitly.

3.3 Dynamic semantics

The semantics of MLF? is the standard call-by-value se-
mantics of ML. We present it as a small-step reduction se-
mantics. Values and call-by-value evaluation contexts are
described below.

v ::= w j (w : ?)
w ::= fun (x) a

j f v1 : : : vn n < jf j
j C v1 : : : vn n � jCj

E ::= [] j E a j v E j (E : ?) j let x = E in a

The reduction relation�! is parameterized by a set ofÆ-
rules of the form:

f v1 : : : vn �! a whenjf j = n (Æ)

Constantsc are given with their (closed) types by an initial
typing environment�0.

(fun (x) a) v �! v[a=x] (�v)
let x = v in a �! v[a=x] (�let)

(v1 : ?) v2 �! (v1 v2 : ?) (?)
((v : ?) : ?) �! (v : ?) (??)

The main reduction is the�-reduction rule that takes two
forms�v and�let. The two?-rules deal with guesspoints.
Guesspoints are maintained during the reduction to which
they do not contribute. They are simply pushed out of ap-
plications and collapse when they meet.

Finally, the reduction is the smallest relation containing
Æ, �v , �let, and the two?-rules and closed by congruence:

E[a] �! E[a0] if a �! a0 (CONTEXT)

4 Formal properties

We state a few standard properties of MLF in appendix C.
Below, we verify type soundness and we address type infer-
ence. By lack of space, all proofs are omitted.

4.1 Type soundness

As usual, type soundness is shown by a combination of
subject reduction, which ensures that typings are preserved
by reduction, andprogress, which ensures that well-typed
programs that are not values can be further reduced.

To ease the presentation, we introduce a relation� be-
tween programs: we writea � a0 if and only if every typing
of a, i.e. a triple (Q;�; �) such that(Q) � ` a : � holds,
is also a typing ofa0. A relationR on programs preserves
typings whenever it is a sub-relation of�.

Of course type soundness cannot hold without some as-
sumptions on the semantics of constants.

8

Hypotheses We assume that the following three proper-
ties hold for constants.

(H0) (Arity) Each constantc 2 dom(�0) has a closed type
�0(c) of the form8 (Q) �1 ! : : : �jcj ! � and such
that the top symbol of� (i.e. (8 (Q) �)=� as defined
in the appendix A) is not inf!;?g wheneverc is a
constructor.

(H1) (Subject-Reduction) All Æ-rules preserve typings.

(H2) (Progress) Any expressiona of the formf v1 : : : vjf j,
such that(Q) �0 ` a : � is in the domain of(Æ)

Theorem 1 (Subject reduction) Reduction preserves typ-
ings.

Theorem 2 (Progress) Any expression a such that (Q)
�0 ` a : � is a value or can be further reduced.

4.2 Type inference

Type inference is similar to type inference for ML: it fol-
lows the syntax-directed typing rules and reduces to (prefix)
unification.

Namely, atype inference problem is a triple (Q;�; a),
where all free type variables in� are bound inQ. A pair
(Q0; �) is a solution to this problem ifQ v Q0 and (Q0)
� ` a : �. A pair (Q0; �0) is aninstance of a pair(Q; �) if
Q v Q0 and(Q0) � v �0. A solution of a type inference
problem isprincipal if all other solutions are instances of
the given one. Figure 9 in the Appendix D defines a type
inference algorithm for MLF.

Theorem 3 (Type inference) The set of solutions of a solv-
able type inference problem admits a principal solution.
Given any type inference problem, the algorithm WF either
returns a principal solution or fails if no solution exists.

5 Type annotations

Although MLF has richer types than ML, nude-MLF, i.e.
MLF without constants cannot type more programs than
ML. This is stated precisely by the following lemma (the
inverse inclusion has already been stated in Section 3.1):

Lemma 4 If the judgment (Q) � ` a : � holds in MLF

where the typing context � contains only ML types and Q
contains only type variables with unconstrained bounds,
then there exists a derivation of � ` a : 8 (��) � in ML
where 8 (��) � is obtained from � by moving all inner quan-
tifiers ahead.

In particular, closed expressions without constants that can
be typed in MLF can always be typed in the empty environ-
ment and under the empty prefix, and therefore can also be
typed in ML.

This is not the case with MLF?, in which the expression
fun (x) (x : ?) x is typable. As we shall see below all
terms of System F can be typed in MLF?. Fortunately, there
is an interesting wrapping around nude-MLF that provides
the same expressiveness as MLF? while retaining type infer-
ence. Precisely, we provide type annotations as a collection
of coercion primitives,i.e. functions that change the type of
expressions without changing their meaning. The following
example, which describes the case of a single annotation,
should provide intuition for the general case.

Example 11 Let �id be the type of the identity function
8 (�) �! � and assume given a constantid of type8 (�=
�id; �

0 � �id) � ! �0 with theÆ-reductionid v �! (v :
?). Then, the expressiona defined asfun (x) let x =
id x in x x is well-typed (see Example 7), also of type
8 (�=�id; �

0��id) �! �0. The effect ofid is to remove
sharing between the type of the argument of the coercion,
and the type returned by the coercion. Of course, since the
connection between the argument and the result is lost, we
must force the argument to be at least as polymorphic as
the return type, hence the use of a rigid bound on the left.
Indeed, it would not be correct to applyid to a value of type
int! int, since the result would not have type�id.

5.1 Annotation primitives

We call annotations the following denumerable collec-
tion of primitives:

(9 (Q) �) : 8 (Q) 8 (�= �) 8 (� = �) �! � 2 �0

for all prefixesQ and type schemes� such that8 (Q) � is
closed. We identify annotation primitives up to the equiva-
lence of their type. We write(a : 9 (Q) �) for (9 (Q) �) a.
We also abbreviate(9 (Q) �) as(�) when all bounds inQ
are unconstrained.

While annotations are introduced as primitives, for sim-
plicity of presentation, they are meant to be applied. The
type of the annotation primitive may be instantiated, but the
unsharing effect of the annotation still applies. This is de-
scribed by the following technical lemma, which has simi-
larities with the Rule ANNOT of Poly-ML [GR99].

Lemma 5 The judgment (Q0) � ` (a : 9 (Q) �) : �0
is valid if and only if there exist two types 8 (Q0) �01 and
8 (Q0) �00 such that the judgement (Q0) � ` a : 8 (Q0) �01
holds together with the following relations:

Q0Q v Q0Q
0 (Q0Q

0) � @� �01

(Q0Q
0) � @� �00 (Q0) 8 (Q0) �00 v �0

9

Corollary 6 The judgment (Q0) � ` (a : ?) : �0 holds if
and only if there exists an annotation (9 (Q) �) such that
(Q0) � ` (a : 9 (Q) �) : �0 holds.

Corollary 7 A term is typable in MLF if and only if it is ty-
pable in MLF? after replacement of all applications of an-
notations by guesspoints around their arguments.

Reduction of annotations The Æ-reduction for annota-
tions just replaces explicit type information by guesspoints.

(v : 9 (Q) �) �! (v : ?)

Lemma 8 (Soundness of type annotations) The three hy-
potheses (H0, arity), (H1, subject-reduction), and (H2,
progress) hold when primitives are the set of simple anno-
tations, alone.

Syntactic sugar In practice, annotations are rather put on
abstractions than on use sites. Indeed, the annotation should
then work for all use sites. Annotations on abstractionsfun

(x : �) a can be seen as syntactic sugar forfun (x) let

x = (x : �) in a. The derived typing rule is:

FUN*
(Q) �; x : � ` a : �0 Q0

v Q

(Q) � ` fun (x : 9 (Q0) �) a : 8 (�= �) 8 (�0

� �0) �! �0

This rule is actually simpler than the derived annotation rule
suggested by lemma 5, because instantiation is left to each
occurrence of the annotated program variablex in a.

The derived reduction is(fun (x : 9 (Q) �) a) v
�0

�!
let x = (v : 9 (Q) �) in a and the expressions of the
form fun (x : 9 (Q) �) a are values, indeed.

5.2 Expressiveness of annotations

We have seen that all ML programs can be written in
MLF without any annotation at all. Annotations allows for
typing in MLF all programs that are typable in System F,
modulo a straightforward translation of types and terms.
The encoding is given in Appendix E.

6 Discussion

6.1 Subsystems of MLF (Conjectures)

Note: Claims of this section have only been sketched
informally—their formal verification is planned as future
work. The conjectures made at the end of the section are
really open questions.

Types whose flexible bounds are always? are called F-
types (they are the translation of types of System F, as de-
fined in Appendix E). Types with restricted flexible bounds,
i.e. of the form 8 (� � �) � where � is not equiva-
lent to a monotype nor to?, have been introduced to fac-
tor out choices during type inference. Such types are in-
deed used in a derivation oflet f = choose id in

(f auto) (f succ). However, should these also be al-
lowed as annotations? A term of MLF is shallow if it only
contains F-type annotations. A type of MLF is shallow if
its rigid bounds are F-types. More generally, a prefix (resp.
typing context, judgment, or derivation) is shallow when-
ever it contains only shallow types and terms. Actually, any
valid shallow judgment(Q) � ` a : � has a shallow deriva-
tion. (The same property holds for instance and sharing
relations judgments.) This suggests a restriction Shallow-
MLF of MLF composed of shallow terms that admit shal-
low typing judgments. Moreover, subject reduction holds
for Shallow-MLF.

Expressiveness of MLF with and without let-bindings
are equivalent, because all types can be used as annota-
tions. However, this is no longer true for Shallow-MLF,
since shallow-types that are not F-types cannot be used as
annotations. Therefore, we also consider the restriction
of Shallow-MLF to programs without let-bindings, called
Shallow-F.

The encoding of System-F into MLF is actually an
encoding into Shallow-F. Conversely, all programs ty-
pable into Shallow-F are also typable in System-F. Hence
Shallow-F and System-F have the same expressiveness.
Terms of Shallow-F still require fewer type annotations.
As a consequence terms of ML can of course be typed in
Shallow-F. However, this may require annotations. Fortu-
nately, all terms of ML can be typed in Shallow-MLF with-
out any annotation at all.

We conjecture that there exists a term of Shallow-
MLF that cannot be typed in Shallow-F even after remov-
ing or inserting any number of F-type annotations. Still,
Shallow-MLF remains a second-order system and in that
sense should not besignificantly more expressive that Sys-
tem F. In particular, we conjecture that the term(fun (y)
z (y I) (y K)) (fun (x) x x) that is typable in F! but not
in F [GR88] is not typable in Shallow-MLF (nor in MLF).

As in ML, reducing all let-bindings in a term of Shallow-
MLF produces a term of Shallow-F. Hence, terms of
Shallow-MLF are strongly normalizable. We conjecture
that this is also the case for MLF.

6.2 Simple language extensions

Because the language is parameterized by constants,
which can be used either as constructors or primitive op-
erations, the language can import foreign functions de-

10

fined via appropriateÆ-rules. These could include primitive
types (such as integers, strings,etc.) and operations over
them. More generally, sums and products, as well as pre-
defined data-types can also be treated in this manner, but
some (easy) extension is required to declare new data-types
within the language itself.

The value restriction of polymorphism [Wri95] that al-
lows for safe mutable data-structures in ML should carry
over to MLF by allowing only rigid bounds that appear in
the type of expansive expressions to be generalized. How-
ever, this solution is likely to be disappointing in MLF, as
it is in Poly-ML, which uses polymorphism extensively. A
relaxation of the value-only restriction has been recentlty
proposed [Gar02]. It gave satisfactory results in the context
of Poly-ML and we can expect similar benefits for MLF.

6.3 Related works

Our work is related to all other works that aim at some
form of type inference in the presence of higher-order types,
at least in their goals. The closest of them is unquestionably
Poly-ML [GR99], with which close connections have al-
ready been made. Poly-ML also subsumes previous propos-
als that encapsulate first-class polymorphic values within
datatypes [Rém94]. The proposal [OL96] also falls into
this category; however, a side mechanism simultaneously
allows a form of toplevel rank-2 quantification, which is not
covered by Poly-ML but is, we think, subsumed by MLF.

Rank-2 polymorphism actually allows for full type infer-
ence [KW94, Jim95]. However, the algorithm is defined by
reduction on source terms and is not very intuitive. Rank-
2 polymorphism has also been incorporated in the Hugs
implementation of Haskell [Mar02], but with explicit type
annotations. The GHC implementation of Haskell has re-
cently been released with second-order polymorphism at ar-
bitrary ranks [GHC02]; however, types at rank 2 or higher
must be given explicitly and the interaction of annotations
with implicit types remains unclear. Furthermore, to the
best of our knowledge, this has not yet been formalized.
Indeed, type inference is undecidable as soon as universal
quantifiers may appear at rank 3 [KW99].

Although our proposal relies on the ML let-binding
mechanism to introduce implicit polymorphism—even for
annotations—and flexible bounds in types to factorize all
ways of obtaining type instances, rather than on intersec-
tion types, there may still be some connection with inter-
section types [Jim96], which we would like to explore. Our
treatment of annotations as “unsharing” primitives also re-
sembles retyping functions (functions whose type-erasure
�-reduces to the identity) [Mit88]. However, our annota-
tions are explicit and contain only certain forms of retyp-
ing functions. Type inference for System F modulo�-
expansion is known to be undecidable as well [Wel96].

Several people have considered partial type inference for
System F [JWOG89, Boe85, Pfe93] and stated undecid-
ability results for some particular variants that in all cases
amount—directly or indirectly—to permit (and so force) in-
ference of the type of at least one variable that can be used
in a polymorphic manner, which we avoid.

Second-order unification, although known to be unde-
cidable, has been used to explore the practical effectiveness
of type inference for System F [Pfe88]. Despite our op-
posite choice, that is not to support second-order unifica-
tion, there are at least two comparisons to be made. Firstly,
their proposal does not cover the language MLper se, but
only the�-calculus, since let-bindings are expanded prior
to type inference. Indeed, ML is not the simply-typed�-
calculus and type inference in ML cannot,in practice, be
reduced to type inference in the simply-typed�-calculus
after expansion of let-bindings. Secondly, one proposal
seems to require annotations exactly where the other can
skip them: in [Pfe88], markers (but no type) annotations
must replace type-abstraction and type-application nodes;
conversely, this information is omitted in MLF, but instead,
explicit type information must remain for (some) arguments
of �-abstractions.

Our proposal is implicitly parameterized by the type in-
stance relation and its corresponding unification algorithm.
Thus, most of the technical details can be encapsulated
within the instance relation and its properties. We would
like to understand our unification algorithm as a particular
case of second-order unification. One step in this direc-
tion would be to consider a modular constraint-based pre-
sentation of second-order unification such as [DHKP96].
Flexible bounds might capture, within principal types, what
constraint-based algorithms capture as partially unresolved
multi-sets of unification constraints. Another example of
restricted unification within second-order terms is unifica-
tion under a mixed prefix [Mil92]. However, the notion of
prefix in their work is rather different and does not express
“sharing”.

Actually, none of the above works did consider subtyp-
ing at all. This is a significant difference with proposals
based on local type inference [Car93, PT98, OZZ01] where
subtyping is a prerequisite. The addition of subtyping to our
framework remains to be explored.

Furthermore, beyond its treatment of subtyping, local
type inference also brings the idea that explicit type an-
notations can be propagated up and down the source tree
according to fixed well-defined rules, which, at least intu-
itively, could be understood as a preprocessing of the source
term. Such a mechanism is being used in the GHC Haskell
compiler, and could in principle be added on top of MLF as
well.

11

Conclusions

We have proposed an integration of ML and System F
that combines the convenience of type inference as present
in ML and the expressiveness of second-order polymor-
phism. Type information is only required for arguments
of functions that are used polymorphically in their bodies.
This specification should be intuitive to the user. Besides, it
is modular, since annotations depend more on the behavior
of the code than on the context in which the code is placed;
in particular, functions that only carry polymorphism with-
out using it can be left unannotated.

The obvious potential application of our work is to ex-
tend ML-like languages with second-order polymorphism
while keeping full type inference for a large subset of the
language, containing at least all ML programs. However,
further investigations are needed beforehand, in particular
regarding the syntactic-value polymorphism restriction.

Furthermore, on the theoretical side, we wish to better
understand the concept of “first-order unification of second-
order terms”, and, if possible, to confine it to an instance of
second-order unification. We would also like to give log-
ical meaning to our types and to the sharing and instance
relations.

References

[Boe85] H.-J. Boehm. Partial polymorphic type in-
ference is undecidable. In26th Annual Sym-
posium on Foundations of Computer Science,
pages 339–345, Los Angeles, Ca., USA, Octo-
ber 1985. IEEE Computer Society Press.

[Car93] Luca Cardelli. An implementation of FSub.
Research Report 97, Digital Equipment Corpo-
ration Systems Research Center, 1993.

[Cos95] Roberto Di Cosmo.Isomorphisms of Types:
from lambda-calculus to information retrieval
and language design. Birkhauser, 1995.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirch-
ner, and Frank Pfenning. Higher-order uni-
fication via explicit substitutions: the case of
higher-order patterns. In M. Maher, editor,
Joint international conference and symposium
on logic programming, pages 259–273, 1996.

[DM82] Luis Damas and Robin Milner. Principal type-
schemes for functional programs. InProceed-
ings of the Ninth ACM Conference on Prin-
ciples of Programming Langages, pages 207–
212, 1982.

[Gar02] Jacques Garrigue. Relaxing the value-
restriction. Presented at the third Asian work-
shop on Programmaming Llanguages and Sys-
tems (APLAS), 2002.

[GHC02] The GHC Team.The Glasgow Haskell Com-
piler User’s Guide, Version 5.04, 2002. Chap-
ter Arbitrary-rank polymorphism.

[GR88] P. Giannini and S. Ronchi Della Rocca. Char-
acterization of typings in polymorphic type dis-
cipline. InThird annual Symposium on Logic in
Computer Science, pages 61–70. IEEE, 1988.

[GR99] Jacques Garrigue and Didier Rémy. Extending
ML with semi-explicit higher-order polymor-
phism. Journal of Functional Programming,
155(1/2):134–169, 1999. A preliminary ver-
sion appeared in TACS’97.

[Jim95] Trevor Jim. Rank-2 type systems and recursive
definitions. Technical Report MIT/LCS/TM-
531, Massachusetts Institute of Technology,
Laboratory for Computer Science, November
1995.

[Jim96] Trevor Jim. What are principal typings and
what are they good for? In ACM, edi-
tor, ACM Symposium on Principles of Pro-
gramming Languages (POPL), St. Petersburg
Beach, Florida, pages 42–53, 1996.

[JWOG89] Jr. James William O’Toole and David K. Gif-
ford. Type reconstruction with first-class poly-
morphic values. InSIGPLAN ’89 Conference
on Programming Language Design and Imple-
mentation, Portland, Oregon, June 1989. ACM.
also in ACM SIGPLAN Notices 24(7), July
1989.

[KW94] Assaf J. Kfoury and Joe B. Wells. A direct al-
gorithm for type inference in the rank-2 frag-
ment of the second-order lambda -calculus. In
ACM Conference on LISP and Functional Pro-
gramming, pages 196–207, 1994.

[KW99] Assaf J. Kfoury and Joe B. Wells. Principality
and decidable type inference for finite-rank in-
tersection types. InACM Symposium on Princi-
ples of Programming Languages (POPL), San
Antonio, Texas, pages 161–174, New York, NY,
January 1999. ACM.

[LDG+02] Xavier Leroy, Damien Doligez, Jacques Gar-
rigue, Didier Rémy, and Jérôme Vouillon. The
Objective Caml system, documentation and

12

user’s manual - release 3.05. Technical report,
INRIA, July 2002. Documentation distributed
with the Objective Caml system.

[LO94] Konstantin Läufer and Martin Odersky. Poly-
morphic type inference and abstract data
types. ACM Transactions on Programming
Languages and Systems, 16(5):1411–1430,
September 1994.

[Mar02] Mark P Jones, Alastair Reid, the Yale Haskell
Group, and the OGI School of Science & Engi-
neering at OHSU. An overview of hugs exten-
sions. Available electronically, 1994-2002.

[Mil92] Dale Miller. Unification under a mixed pre-
fix. Journal of Symbolic Computation, 14:321–
358, 1992.

[Mit88] John C. Mitchell. Polymorphic type inference
and containment.Information and Computa-
tion, 2/3(76):211–249, 1988.

[OL96] Martin Odersky and Konstantin Läufer. Putting
type annotations to work. InProceedings of
the 23rd ACM Conference on Principles of Pro-
gramming Languages, pages 54–67, January
1996.

[OZZ01] Martin Odersky, Christoph Zenger, and
Matthias Zenger. Colored local type inference.
ACM SIGPLAN Notices, 36(3):41–53, March
2001.

[Pfe88] Frank Pfenning. Partial polymorphic type
inference and higher-order unification. In
Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 153–163,
Snowbird, Utah, July 1988. ACM Press.

[Pfe93] Frank Pfenning. On the undecidability of par-
tial polymorphic type reconstruction.Fun-
damenta Informaticae, 19(1,2):185–199, 1993.
Preliminary version available as Technical Re-
port CMU-CS-92-105, School of Computer
Science, Carnegie Mellon University, January
1992.

[PT98] Benjamin C. Pierce and David N. Turner. Lo-
cal type inference. InProceedings of the
25th ACM Conference on Principles of Pro-
gramming Languages, 1998. Full version
in ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 22(1), January
2000, pp. 1–44.

[Rém94] Didier Rémy. Programming objects with ML-
ART: An extension to ML with abstract and
record types. In Masami Hagiya and John C.
Mitchell, editors,Theoretical Aspects of Com-
puter Software, volume 789 ofLecture Notes in
Computer Science, pages 321–346. Springer-
Verlag, April 1994.

[Wel94] J. B. Wells. Typability and type checking in
the second order�-calculus are equivalent and
undecidable. InNinth annual IEEE Symposium
on Logic in Computer Science, pages 176–185,
Paris, France, July 1994.

[Wel96] Joe B. Wells.Type Inference for System F with
and without the Eta Rule. PhD thesis, Boston
University, 1996.

[Wri95] Andrew K. Wright. Simple imperative poly-
morphism. Lisp and Symbolic Computation,
8(4):343–355, 1995.

A Occurrences

Occurrences and free variables An occurrence is a se-
quence of natural numbers. We writekn for the sequence
k; : : : ; k of lengthn (and, in particular,k0 is �). Theprojec-
tion is a function mapping pairs�=u composed of a type�
and an occurrenceu to f?g[#[G and defined inductively
as follows:

?=� = ? �=� = � (gn �1 :: �n)=� = g

1 6 i 6 n

(gn �1 :: �n)=iu = �i=u

�1=u1 6= �

(8 (� � �2) �1)=u1 = �1=u1

�1=u1 = �

(8 (� � �2) �1)=u1u2 = �2=u2

We write�= the functionu 7! �=u. We calloccurrences of
a type scheme � the domain of the function�=, which we
abbreviate asdom(�).

Free type variables A type variable� is free in � if there
exists an occurrenceu such that�=u is �. We writeftv(�)
the set offree type variables of �. A type scheme isclosed
if it has no free type variable. When8 (Q) � is closed, we
also say that� is closed underQ.

Occurrences—and therefore free type variables—are stable
under equivalence, as stated by the following lemma.

Lemma 9 If (Q) � � �0 holds, then (8 (Q) �)= and
(8 (Q) �0)= are equal.

13

Given a set�� of variables, we define the typer�� as
�1 ! : : : ! �n ! unit. By extension, we noterQ

for rdom(Q).

Domain of prefixes As seen earlier, ifQ is (�1 �1
�1; : : : �n �n �n), then its domain, writtendom(Q), is the
setf�1; : : : �ng. In some proofs, we need to capture the
notion of useful domain of a prefixQ. If I is a set of type
variables, we definedom(Q=I) as follows:

dom(;=I)
4
== ; dom((� � �;Q)=I)

4
==(

f�g [dom(Q=I) when� 2 ftv(8 (Q) rI)

dom(Q=I) otherwise

We also writedom(Q=�) to meandom(Q= ftv(�)). Intu-
itively, this corresponds to the domain ofQ which is use-
ful for �. As an example, ifQ0 corresponds toQ, where
all bindings not indom(Q=�) have been removed, then we
have8 (Q) � � 8 (Q0) �.

B Unification algorithm

Interestingly, the unification algorithm follows the struc-
ture of first-order unification, despite the presence of poly-
types. Indeed, the computation of the unifying substitution
is replaced by the computation of a unifying prefix. While
in the first-order case, bounds of the prefix could only be?
or monotypes, they can, in the general case, also be poly-
types. One consequence is that the algorithm must consider
a few more cases. Another consequence is that a polytype
bound of a variable may have to be instantiated to a mono-
type. This requires to extend the prefix with more bind-
ings. For instance, instantiating the bound8 (Q0) � in the
prefix(Q;��8 (Q0) �) leads to the prefix(QQ0; �� �)—
applying a rule similar to Rule I-UPbut for prefixes. Arigid
prefixQ is a prefix with only rigid bounds. Two auxiliary
operators are used to ease such manipulation of prefixes.
The binary operatorQ"�� performs only commutations of
binders inQ and returns a pair of prefixes(Q1; Q2) such
thatQ1Q2 is equivalent toQ and differ only by reordering
of bindings,�� � dom(Q1), anddom(Q1=��) = dom(Q1).

Definition 2 Theupdate of a prefixQ by a binding(� ��)
such that� 2 dom(Q), writtenQ ((� � �), is a prefix
(Q0; � � �;Q1) such that(Q0; � �1 �1; Q1) is a reorder-
ing of toplevel bindings ofQ that preserves equivalence,
dom(Q1) \ ftv(�) = ; andQ1 is as small as possible. It is
undefined ifftv(�) \ dom(Q1) 6= ; in all such decomposi-
tions.

The unification algorithmunify (Q; �; � 0) takes as input
a prefixQ and two types and either returns a prefix that uni-
fies these types (as described by lemmas 2 and 3) or fails.

The algorithm is described in Figure 8. For the sake of com-
parison with ML, lines marked with� could be removed in
the absence of polytypes. Two steps at the end of subcase
(�1; �2) use an auxiliary algorithm(Q) � 6@� �0 to check,
givenQ; � and�0 such that(Q) � v �0 holds, whether
(Q) � @� �0 holds.

Lemma 10 (Completeness of unification) Assume
ftv(�; � 0) � I . If there exists Q2 such that Q1 vI Q2 and
(Q2) � � � 0 hold, then unify (Q1; �; �

0) succeeds with Q0
1

and we have Q0
1 v

I Q2.

C Standard properties

The following lemma states two standard properties of
typing judgments.

Lemma 11 The following rules are admissible:

STRENGTHEN

(Q) � ` a : � (Q) �0 v �

(Q) �0 ` a : �

WEAKEN

(Q) � ` a : � Q v Q0

(Q0) � ` a : �

In a judgment(Q) � ` a : �, the type scheme�
can be weakened as described by Rule INST. Conversely,
the context� can be strengthened, as described by Rule
STRENGTHEN. This rule uses the instance relation between
typing contexts(Q) � v �0, which is an abbreviation for:

8z 2 dom(�); z 2 dom(�0) ^ (Q) �(z) v �0(z)

In addition to weakening the type or strengthening the con-
text, the whole judgment can be instantiated. In ML, this
is expressed by stability of typing judgments by substitu-
tions. Here, this is modeled by instantiating the prefix of
the typing judgment, as described by rule WEAKEN, which
is consistent with viewing prefixes as a generalization of
substitutions.

The substitutivity lemma is key to subject reduction.

Lemma 12 (Substitutivity) If (Q) �; x : � ` a0 : �0 and
if (Q) � ` a : �, then (Q) � ` a0[a=x] : �0.

Finally, we state the equivalence between the syntax-
directed and original presentations of the typing rules.

Lemma 13 The judgment (Q) � ` a : � hold if and only
if there exists �0 such that both judgments (Q) � `

4

a : �0

and (Q) �0 v � hold.

14

D Type inference algorithm

E Encoding System F into MLF

The types, terms, and typing contexts of systemF are
given below:

t ::= � j t! t j 8� � t
M ::= x jM M j fun (x : t) M j Fun (�) M jM t
A ::= ; j A; x : t j A;�

The translation of types of System F into MLF types uses
auxiliary rigid bindings for arrow types. This ensures
that there are no inner polytypes left in the result of the
translation—which would otherwise be ill-formed. Quan-
tifiers that are present in the original type are translated to
unconstrained bounds.

[[�]] = � [[8� � t]] = 8 (�) [[t]]

[[t1 ! t2]] = 8 (�1 = [[t1]]) 8 (�2 = [[t2]]) �1 ! �2

In order to state the correspondence between typing judg-
ments, we must also translate typing environments. We
writeA `M : t to mean thatM has typet in environment
A in System F. The translation ofA, written [[A]], returns
a pair (Q) � of a prefix and a typing environment and is
defined inductively as follows:

[[;]] = () ;
[[A]] = (Q) �

[[A; x : t]] = (Q) �; x : [[t]]

[[A]] = (Q) � � =2 dom(Q)

[[A;�]] = (Q;�) �

The translation of System F terms into MLF terms forgets
type abstraction and type applications, and translates types
in term-abstractions.

[[Fun (�) M]] = [[M]] [[M t]] = [[M]] [[x]] = x

[[M M 0]] = [[M]] [[M 0]]

[[fun (x : t) M]] = fun (x : [[t]]) [[M]]

Finally, we can state the following lemma:

Lemma 14 For any closed typing environmentA (that does
not bind the same type variable twice), term M and type t
of system F such that A ` M : t, there exists a derivation
(Q) � ` [[M]] : � such that (Q) � = [[A]] and [[t]] @� � .

Note that translated terms contain strictly fewer annotations
than original terms—a property that was not true in Poly-
ML. Moreover, some annotations provided by the transla-
tion are superfluous.

Figure 8. Unification algorithm
The recursive algorithmunify (Q; � 00; � 000) first rewrites
all bounds ofQ in normal form and proceeds by case anal-
ysis on(� 00; � 000):

Case (�; �): return Q.

Case (g �11 :: �n1 ; g �
1
2 :: �n2):

Æ letQ1 beQ;

Æ letQi+1 beunify (Qi; � i1; �
i
2) for 1 6 i 6 n;

Æ return Qn+1.

Case (g1 �
1
1 :: �p1 ; g2 �

1
2 :: �q2) with g1 6= g2: fail.

Case (�; �) or (�; �) when(� � � 0) 2 Q:

return unify (Q; �; � 0).

Case (�; �) or (�; �) when(� � �) 2 Q
and� =2 dom(Q) and� =2 T

� if (�=?) 2 Q, thenfail.
Æ if � is? thenreturn Q((�= �).

Æ let 8 (Q0) � 0 be� with dom(Q), dom(Q0) disjoint;

� if � is =, check thatQ0 is rigid, otherwisefail.
Æ letQ00 be(QQ0) ((�= � 0);

Æ return unify (Q00; �; �).

Case (�1; �2) when�1 6= �2 and(�1 �1 �1) 2 Q and
(�2 �2 �2) 2 Q

and�1, �2 are not inT .

Æ let � be either>, if both�1 and�2 are>,
and= otherwise;

Æ if �1 and�2 are? then
return Q((�1 � ?)((�2 = �1);

� if �i is? and�i is = thenfail;
� if �1 is? thenreturn Q((�1 = �2);

� if �2 is? thenreturn Q((�2 = �1);

� let 8 (Q1) �1 be�1 and8 (Q2) �2 be�2
with dom(Q), dom(Q1), dom(Q2) disjoint;

� letQ0 beunify (QQ1Q2; �1; �2);

� let (Q3; Q
0) beQ0" dom(Q);

� if �1 is = and(Q3) �1 6@� 8 (Q0) �1 thenfail;
� if �2 is = and(Q3) �2 6@� 8 (Q0) �2, thenfail;
� let �3 be8 (Q0) �1;

� return (Q3) ((�1 � �3) ((�2 = �1).

15

Figure 9. Algorithm WF

The algorithminfer (Q;�; a) is defined by cases on ex-
pressiona:

Case x : return Q;�(x)

Case fun (x) a :

– let Q1 = (Q;� > ?) with � =2 dom(Q) in
– let (Q2; �) = infer (Q1;�; x : �; a) in
– let � =2 dom(Q2) and(Q3; Q4) = Q2" dom(Q) in
– return Q3;8 (Q4) 8 (� � �) �! �

Case a b :

– let (Q1; �a) = infer (Q;�; a) in
– let (Q2; �b) = infer (Q1;�; b) in
– let �a; �b; � =2 dom(Q2) in
– let Q3 = unify ((Q2; �a � �a; �b � �b; � �?);

�a; �b ! �) in
– let (Q4; Q5) = Q3" dom(Q) in
– return (Q4;8 (Q5) �)

Case let x = a1in a2 :

– let (Q1; �1) = infer (Q;�; a1) in
– return infer (Q1; (�; x : �1); a2)

16

