MLF
Raising ML to the Power of System F

Didier Le Botlan and Didier Rémy
INRIA-Rocquencourt
78153 Le Chesnay Cedex, France
{Didier.Le Botlan,Didier.Reny}@nria.fr

Abstract mained at the status of prototypes. Indeed, full type infer-
ence for System F is undecidable [Wel94]. Conversely, lan-
W\k propose a type system MLF that generalizes ML with guages with simple type inference are still limited in expres-

first-class polymorphism as in System F. e perform par- siveness; more sophisticated type inference engines, such as
tial type reconstruction. As in ML and in opposition to those with subtyping constraints or higher-order unification
System F, each typable expression admits a principal type, have not yet been proved to work well in practice.

which can be inferred. Furthermore, all expressions of ML The ML language [DM82] appears to be a surprisingly

are well-typed, with a possibly more general type than in stable point of equilibrium between those two forces: it
ML, without any need for type annotation. Only arguments combines a reasonably powerful yet simple type system and

of functions that are used polymorphically must be anno- comes with an effective type inference engine. Besides,
tated, which allows to type all expressions of System F as the ML experience made it clear that expressiveness of the
well. type system and a significant amount of type inference are

equally important.

Despite its success, ML could still be improved: in-
deed, there are real examples that require first-class poly-
morphic types; however infrequently these may occur, ML
) i . does not provide any reasonable alternative. (In fact, any
Typeinferenceand fir st-class polymor phic types tentative measure of the inconvenience can only be under-

estimated, since the lack of a full-fledged language to exper-

Programming languages considerably benefit from staticiment with first-class polymorphism insidiously keeps pro-
typechecking. In practice however, types may sometimesgrammers thinking in terms of toplevel polymorphism.) A
trammel programmers, from two opposite directions. first approach is to extend ML with first-class second-order

On the one hand, type annotations may quickly becomepolymorphism [LO94, Rém94, OL96, GR99]. However,

a burden to write; while they usefully serve as documen- the existing solutions are still limited in expressiveness and
tation for toplevel functions, they also obfuscate the code the amount of necessary type declarations keeps first-class
when every local function must be decorated. On the otherpolymorphism uneasy to use.

hand, since types are only approximations, any type system An alternative approach, initiated by Cardelli [Car93],
will reject programs that are perfectly well-behaved and that is to start with an expressive but explicitly typed language,
could be accepted by another more expressive one; hencesay F, and perform a sufficient amount of type infer-
sharp programmers may be irritated in such situations. ence, so that simple programs—ideally including all ML

Fortunately, solutions have been proposed to both of programs—would not need any type annotation at all. This
these problems: Type inference allows to elide most typelead tolocal type inference [PT98], recently improved to
annotations, which simultaneously relieves the programmercolored local type inference [0ZZ01]. These solutions are
from writing such details and lightens programs. In paral- quite impressive. In particular, they include subtyping in
lel, more expressive type systems have been developed, soombination with higher-order polymorphism. However,
that programmers are less exposed to their limitations. they fail to type all ML programs. Moreover, they also

Unfortunately, those two situations are often conflict- fail to provide an intuitive and simple specification of where
ing. Expressive type systems tend to require an unbearabld¢ype annotations are mandatory.
amount of type decorations, so that many of them only re- In this work, we follow the first approach. At least, by
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being conservative over ML, we are guaranteed to pleases; equal toV (a) id, — V(a) id,, obtained by keep-
programmers who are already quite happy with ‘MWe ing the type ofid uninstantiated, or have typs equal to
build on some previous work [GR99], called Poly-ML, V(a) (id, — id,), obtained by instantiating the type of
which has already been used to add polymorphic methodsid to the monomorphic typéd, and generalizinge only
to OCaml [LDG"02]. Here, we retain the same expressive- at the end? Indeed, both ando, are correct types for
ness goal, that is, to type all System F programs, but elimi- choose id. However, neither one is more general than
nate the need to indicate coercions from polymorphic typesthe other in System F. Indeed, the functiemto defined
to ML-types (the construdt) in Poly-ML). Our intention asfun (z : V(y) id,) = z, can be typed withr,, as
is also to provide for a simpler yet more flexible presenta- choose id, but not witheo,; otherwiseauto could be ap-
tion of Poly-ML, on top of which further extensions, such plied, for instance, to the successor function, which would
as higher-order polymorphism—a feature that is highly de- produce an error. Hence; can not be safely coercedde.
sired to inherit from classes with polymorphic methods— Conversely, however, there is a retyping function —a func-
could be built. tion whose type erasurgreduces to the identity [Mit88]—
Actually, MLF is an alternative to explicitly-typed Sys- from typeo» to typeoy, that is,fun (g : 02) fun (z :
tem F that can type the same set of untyped terms and po¥ (a) id,) fun (a) g a (z «). Actually, oy is a prin-
tentially more, but with strictly fewer type information. Pre- cipal type forchoose id in F™* (System F closed by-
cisely, all type abstractions and type applications are leftim- expansion) [Mit88].
plicit, and type annotations on arguments of lambda abstrac- In fact, the argument of the functiothoose id does
tions are optional whenever the argument is used monomornot have to be polymorphic: the function simply returns a
phically in the body of the abstraction. Moreover, every value thatis at best as polymorphic as both its argument and
term of MLF admits a principal type (which, in general, de- the identity. Conversely, the argument to the functiamo
pends on its annotations). must be at least as polymorphic @4$«) id,. We could
The paper is organized as follows. In the rest of this summarize these constraints by saying that:
section we will briefly recall the problems that arise when
combining first-class polymorphic types with first-order-
unification-based type inference, and introduce our solu-

tion, intuitively. In section 2, we will present our types. The Note that the type given tehoose id captures the intuition
core language is described in Section 3, including syntax,ihat this application has type —  for any instance- of
static and dynamic semantics. Section 4 presents some stary (v) id,. This form of quantification allows to postpone
dard results, including type soundness and type inferenceinhe decision of whether (y) id, should be instantiated as
Section 5 introduces type annotations, which are manda-goon as possible or kept polymorphic as long as possible.
tory to give the language its full power. In the last section The pound ofx can be weaken either by instantiativi¢ry)
(Section 6), we discuss language extensions, imperative fea—ldw or by replacing> by =. Hence, botfthoose id succ
tures, and related works. For the sake of readability, somegndchoose id auto are well-typed, takingnt — int or
technical parts of the formal presentation, including the uni- y (v) id, for the type ofa, respectively.

fication algorithms have been moved to the appendices. By | fact, the type? (a > V (7) id,) @ — o happens to be

lack of space all proofs are omitted. a principal type forchoose id in MLF. This type summa-
) ) ] rizes in a compact way the part of typecheckihgose id
“Monomor phic abstraction of polymor phic types’ that depends on the context in which it will be used: some
typing constraints have been resolved definitely and forgot-

Explicit F-style polymorphism and implicit ML-style  ten; others, such that‘is any instance of (y) id,”, are
polymorphism are quite different in nature, and the two important and have been kept unresolved. In shortFML
strategies enter in conflict almostimmediately: in System F, provides richer types with constraints on the bounds of vari-
the elimination of polymorphism is explicit, while in ML it aples so that instantiation of these variables can be delayed
is automatic at every occurrence of a polymorphic variable. yntil there is a principal way of instantiating them.

For illustration, let us combine two simple functions, In our proposal, ML-style polymorphism, as in the type
namely apply the functionhoose defined afun (z) fun  of choose or id, can be fully inferred. (We will show
(y) if true then x else y to the identity functionid. In that all ML programs remain typable without type annota-
ML, choose andid have principal typeg (o) a = a — «a tions.) Unsurprisingly, some polymorphic functions cannot
andV (a) a — a, respectively. For conciseness, we shall pe typed without annotations. For instan¢en (z) z =
write id, for @ — . Shouldchoose id have type  cannot be typed in ML In particular, we do not infer

10n a practical level, this would also ensure upward compatibility of tyP€s for function arguments that are used polqurphically.
existing code, although translating tools could always be provided. Fortunately, such arguments can be annotated with a poly-

auto: V(a=V(y)id,) a—a
chooseid: V(a>V(y)id,) a—«a




Figure 1. Syntax of Types

Ti=algt T .. Ty Monotypes
ou=1|L|V(a>0)o|V(x=0)oc Polytypes

morphic type, as illustrated in the definition @ito given

above. Once defined, a polymorphic function can be manip-

Notation We say thaty has arigid boundin (a¢=c) and a
flexibleboundin (a>o). A particular case of flexible bound

is theunconstrained bound (« > 1), which we abbreviate
as(«). For convenience, we writex o o) for either(a=o0)

or (a>o). This acts as a meta-variable and two occurrences
of ¢ in the same context mean that they all stand=ar all
stand for>. To allow independent choices we use indices
o1 andos for unrelated occurrences.

ulated by another unannotated function, as long as the latteConversion Type schemes are considered module

does nouse polymorphism, which is then retained. This is
what we qualify ‘monomor phic abstraction of polymorphic
types’. For instance,id auto (Or choose id auto) re-
mains of type¥ (a =V () id,) a = «a, while choose and
id do not have any type annotation. Finally, polymorphic
functions can be used by implicit instantiation, much as in
ML.

It should be noted that our notion of principal types is rel-
ative to partially annotated source terms, there is a type

conversion wher€ (aoo) ¢’ bindsa in o', but notine. We
write ftv(o) the set of free type variables ef Occurrences
and free type variables are defined formally in Appendix A.

Example 1 Quantifiers may only be outermost, as in ML,
or in the bound of other bindings. Therefore, the type
Va- (V8- (r]f] = a)) — a of System E cannot be written
directly. (Here,r[3] means a type in which the variable

B occurs.) However, it could be represented by the type

that captures all possible types of any given source term,Y (a) V(8 =V (8) 7[5] = «a) #' — «. In fact, all types of
but this type may depend on the type annotations that areSystem F can easily be represented as polytypes by recur-

present. For instance, bottun (z : V(a) id,) = = and
fun (z : V(@) a) z z are typable in ME, with incompa-

sively binding all occurrences of inner polymorphic types to
fresh variables beforehand—see Appendix E for details. In

rable types. (In our sense, explicitly typed System F, whosethis translation auxiliary variables are used in a linear way.
terms have unique types, admits principal types as well butFor instance(Va - 7) — (Ya - 1) will be translated into

implicitly typed System F does not.)
2 Types
2.1 Syntax of types

The syntax of types is given in Figure 1. The syntax is
parameterized by an enumerable set of type variables}
and a family of type symbolg € G given with their arity.

To avoid degenerated cases, we assumedhaintains at
least a symbol of arity two (the infix arrow) and a symbol
of arity zero €.9. unit). We writeg™ if g is of arityn. We
also writeT for tuples of types.

We distinguish betweemonotypes, and polytypes. By
default, types refer to the more general forme, poly-
types. As in ML, monotypes do not contain quantifiers.
Polytypes generalize ML type schemes. Actually, ML type
schemes can be seen as polytypes of the fofm, > 1)
...¥ (ap, > L) 7 with outer quantifiers. Inner quantifiers as
in System F cannot be written directly inside monotypes.
However, they can be simulated with types of the form
V(e = o) o, which stands, intuitively, for the polytype
o' where all occurrences of would have been replaced by
the polytyper (our notation contains additional meaningful
sharing information). Finally, the general for{a> o) o’
intuitively stands for the collection @l polytypeso’ where
aisaninstanceof o.

V' =V(a) 7) V(" =V (a) 7) o' — . Intuitively,
V(@' =V (a) T) o' — o could also represent the same
System F type, more concisely. However, this type is not
equivalent to the previous one, but only an instance of it,
because it “shares more”, as explained below.

Remark that type application is not possible in our sys-
tem. Instead of explicit type application, as in System F,
second-order types are instantiated implicitly as in ML
along an instance relation, but a more elaborated one.

2.2 Typeequivalence

The order of quantifiers and some other syntactical no-
tations are not always meaningful. Such syntactic artifacts
are captured by a notion of type equivalence. Type equiva-
lence is relative to a prefix that specifies the bounds of free
type variables.

A prefix, written @, is a sequence of bindings,
(a1 ©1 01)...(an ©on 0,) Where variables, ... a, are
pairwise distinct. We writdom(Q) for the se{ a1 ... o, }.

We also writeV (Q) o forV (a; o1 01) ... (an on op) 0.
Variablesa; . .. a,, are nota-convertible in the stand-alone
prefix@ (butthey are ity (Q)) o). Sinceay, . . . a;, are pair-
wise distinct, we can unambiguously write ¢ o) € Q to
mean that is of the form(Q1, a ¢ 7, Q).

2We writeV « - 7 for types of System F so as to avoid confusion.



Figure 2. Type equivalence

Figure 3. Sharing instance

All rules are considered symmetrically.

EQ-TRANS
R Q) o1 = 02 EQ-FREE
(5) UEiLU (@) o2 =03 o ¢ ftv(o1)
B (Q)o1 =03 Q) V(xoo)or =0y
EQ-ComMmMm

ay ¢ ftv(o2) az ¢ ftv(or)
(Q) V(Ot1<>10'1) V(Oé2<>2 0'2) g = V(Oé2<>20'2) V(Oé1<>10'1) (ol

EQ-CONTEXT-R
(Q,a00) 01 =02

Q) V(aoo) o

EQ-VAR
Q) V(aoo)a=o

=V(aoo) o

EQ-CONTEXT-L
(Q) o1 =02
@ V(axoag)o=V(aoor) o

EQ-MONO
(aoo00) €Q (Q) oo =10
(Q) T =T[r0/]

Theequivalenceunder prefixis a relation on triples com-
posed of a prefixQ) and two typess; and o, written
(Q) o1 = 03. Itis defined as the smallest relation that sat-
isfies the rules of Figure 2. RuleggVAR says that a stand-

alone variable is only an alias for its bound and may be re-

placed accordingly. Rule & MoNoO means that binding of

SH-TRANS
SH-EQUIV (Q) o1 E 02 SH-HYP
(Q) o1 =02 (Q) o2 E 03 (a1 =01) €Q
(Q) o1 E 02 (Q) o1 E o3 (Q) o1 E ay

SH-CONTEXT-R
(Q,a¢0) 01 E 02

Q) V(xoo)o EV(xoa) og

SH-CONTEXT-L
(Q) o1 E 02
Q)V(a=01)cEV(a=03)0

transformations. Irreversible transformations are captured
by instance relations. However, we distinguish between
sharing instances, which can be reversed but only explic-
itly, and true instances, which are irreversible.

The sharing under prefix, is a relation on triples com-
posed of a prefix) and two typesr; ando,, writter® £,
and defined as the smallest relation that satisfies the rules
of Figure 3. Rules 8-CONTEXT-L and SH-CONTEXT-R
are context rules; note that RuletSCONTEXT-L does not
allow sharing under flexible bounds. The interesting rule
is SH-HYP, which shares a type; with a binding of the
prefix. This operation can also be seerhafng the poly-
morphic type o; under the abstract name a; .

variables to monotypes can always be expanded, though iExample 2 The judgementa = o') V(a=0') 0 E o
remains a convenient notation that allows for more natural follows from SH-CONTEXT-L (and other inessential rules).

and modular definitions. RulesgECONTEXT-R and E-
CoNTEXT-L tell that = is a congruence; Rule@Comm
allows the reordering of independent binders; Rulg-E
FREE eliminates unused bound variables.

Unsharing can also act deeply(a=V (o' =0') 0) 0" E
V(o' =0") V(a=0) ¢ holds, providedy' ¢ ftv(c").

Remarkably, sharing two variables with the same bound

Reasoning under prefixes allows to break up a typeis not reversible (sharing is not symmetric), unless the

scheme¥ (Q) o and “look inside under prefig)”. For in-
stance, it follows from iterations of rule@ CONTEXT-R
that(Q) o = o' suffices to show() V (Q) o =V (Q) o.

In the examples, we often refer to the equivalence
(Q) Y (aoT) 0 = o[r/a] asEQ-Mono*, which is provable
by rules ©3-MONO, EQ-CONTEXT-R and K-FREE.

Notation We writeo; = o for (0) o1 = o2. We write
o € T if o = 7 for some monotype. We writeo € V if
o = « for some type variable.

2.3 Sharinginstance

The equivalence under prefix is a symmetric operation
(for a given prefix). In other words, it captures reversible

bound is equivalent to a monotype. In particular, when
(a =0) € Q, itis possible to derivéR) o £ « by rule
SH-HYP, but (Q) « E o is not derivable (unless € T).
This property is essential for type inference, since it pre-
vents the inference of truly polymorphic types.

2.4 Typeinstance

The instance under prefix is a relation on triples com-
posed of a prefix) and two typess; and o, writterft
(Q) o1 C oo. Itis defined as the smallest relation that
satisfies the rules of Figure 4. We writg C oo for
() o1 C 02, as we do for equivalence.

SReado is a sharing ofr;, under prefixQ.
4Reado isan instance of 1 —or o1 ismore general than oa—under
prefix Q.



Figure 4. Type instance

I-TRANS
I(—S;IARE EQ; o1 Coa I-BOT
Q) o1 E 02 Q) o2 Cos
@nte  @mce (DLEC
I-CONTEXT-R
(Q,a¢0) 01 E o2
Q) V(aoo)or CVY(aoo) oz
I-CONTEXT-L I-HYP
(Q) 01 C oy (a1 >01) €Q
@) V(a>01) o CEV(a>02)0 (Q) o1 Cay
I-RIGID
@ V(a>a)ocCV(a=01)0

Rule I-BoT means thatlL behaves as the least element
for the instance relation. Rules |a®ITEXT-L and I-RGID

mean that flexible bounds can be instantiated and change
into rigid bounds. Conversely, instantiation cannot occur
under rigid bounds, except when restricted to the sharing

relationE (as described by RuleHFSCONTEXT-L).
Rule I-Hyp is the counter-part of rulelfsHYP. It can be

used to share variables with identical bounds. For example,

Q)Y (B20) ¥ (a>0) o= FEVY(B>0) ¥ (a>f) a -
S follows from rules I-®ONTEXT-R, |-CONTEXT-L and I-
HYP. Note thatv (5> ) V (a > 8) a — [ is equivalent to
V(B >0o) B — B (by EQ-MONOY).

In the examples, we refer to the following derivable rule:
(Q)V (a1 >V (ago09) 01) c EV(azo09) V(ag >01) o
asl-Up, whenever, is not inftv(o).

Example 3 As one would expect, the instance relation gen-
eralizes the instance relation of ML. For examp¥e«)
T]a] is more general thaw (a, o) T[a — '], as shown
by the following derivation (valid under any prefix):

V() 7la]
= V(a>1)71]a] by notation
= V(d,a )V(a>J_) Tla ] by EQ-FREE
C V(d,a")V(a>a' — a") 7[a] byl-CONTEXT-L,

since(a’,a”) LC o' = "
by EQ-MONO*
by renaming

Example4 Conversely,V (o) « is not an instance of
V(a,a') a = o. IndeedV (o) a C V(a,a') a — o

is a particular case of Example 3. By way of contradiction,
assume we havé (a,a’) a = o/ C V(a) a. By lemma

1, to be found below, we would hav&a, o) o —
V(a) «a, which contradicts the fact that occurrences (de-
fined in Appendix A) are preserved by equivalence, sihce
is an occurrence of the left-hand side but not of the right-
hand side.

Example5 The instance relation covers an interesting case
of type isomorphism [C0s95]. In System F, type - 7 —

7' is isomonhlé tor — Va - 7' wheneverx is not free

in 7. In MLF, the two corresponding type schemes are not
equivalent but in an instance relation. Precis&lyp’ >
V(a) ') 7 — o' is more general thav («) 7 — 7', as
shown by the following derivation:

Vi >V(a)T) 1=
CVY(a) V(@ >m)T—do by I-Up
=V(a)T > 7' by EQ-MoNO*

As expected, the equivalence relation is the kernel of the
instance relation.

(lremma 1 (Equwalence) For all prefix ) and typesa and

o', wehave (Q) o = o' ifand only if both (@) o C ¢’ and
(Q) o' C o hold.

ML types

Notice that ML-types can be seen as E/tlypes where type
schemes are restricted to have only unconstrained bounds.
Then, the instance relation is the one of ML. In particular,
V(@) 1o C i if and only if 7y is of the formmo[7/a].

2.5 Operation on prefixes

Rules $-CONTEXT-L and I-CONTEXT-L show that
two typesY (Q) o andV (Q') o with the same suffix can
be in an instance relation. Moreover, the suffidoes not
matter (in these cases). This suggests a notion of inequal-
ity between prefixes alone. However, because prefixes are
“open” this relation must be defined relatively to a set of
variables that represents (a superset of) the free type vari-
ables ofs. In this context, a set of type variables is called
aninterface and is written.

Definition 1 (Prefix instance) A prefix @ is aninstance of
a prefix@' under the interfacé, and we writeQ) C! Q’,
if and only if V(Q) ¢ C VY (Q') o holds for all typeo
whose free variables are includedin We omit[ in the
notation when it is equal tdom(Q). We defineQ =" Q'
andQ 7 Q' similarly. O

5That is, there exists a functiofy, 3)-reducible to the identity that
transforms one into the other, and conversely.



constructors and primitives lies in their dynamic semantics.

Figure 5. Expressions of MLF We use lettet: to refer to identifiersi.e. either variables or
constants.
a:=z|c|fun(z)a|laa|letz=aina Terms
| (a:%) Guesspoints 3.1 Static semantics
cu=f|C Constants
_ i Typing contexts, written with lettel’ are lists of asser-
zu=z e Identifiers tions of the formz : o. We writez : o € T to mean that
z is bound inT" and z : o is its rightmost binding irnl".

We assume given an initial contd mapping constants to

There exist equivalent inductive definitions for prefix in- closed polytypes.

stance, prefix sharing, and prefix equivalence, which we  1YPiNg judgments are of the for@) I' F a : o.
omit here by lack of space. A small difference with ML is the presence of the pre-

Prefixes can be seen as a generalization of the notion of!X & that must assign bounds to type variables appear-

substitutions to polytypes. Thef), C @’ captures the usual N9 free inT" or . By comparison, this prefix is left im-

notion of (a substitution)) being more general than (asub- Plicit in ML because free variables all have the same (im-
stitution) Q' plicit) bound L. On the contrary, we require that and

all type schemes df be closed with respect t@, that is,

Unification The Appendix B defines an algorithomify ftv(I') Uftv(o) € dom(Q).

that given a prefix) and two types; andr, returns a prefix

thfe\t !s the smalle;t instance 6f that l.J.nifieSﬁ andr, or Typing rules The typing rules of MF are described in
fails if there is no instance @ that unifiesr; andr;. Figure 6. They correspond to the typing rules of ML mod-

Lemma 2 (Soundness of unification) If unify (Q,r,7") ulo the richer types, the richer instance relation, and the ex-

succeedswith Q', thenwe have Q C Q' and (Q') 7 = 7. plicit binding of free variables in judgments. The language
- MLF* requires an additional typing ruleu&ss (This rule

o ) ) would have no effect in ML where sharirg would be the
Lemma 3 (Completeness of unification) Givenaprefix Q same as= in ML)

and two types T and 7' closed under Q, if there exists a pre-
fix Qp such that Q C9°™@ @, and (Q;) T = 7', then
unify (@, r,7") succeeds with some prefix @, such that

As in ML, there is an important difference between rule
FuN and rule LET: while typechecking their bodies, a let-
Q. oM@ bound variable can be assigned a type scheme, but a

e = b: bound variable can only be assigned a simple typ€.in
Indeed, the latter must be guessed while the former can be
inferred from the type of the bound expression. This re-
striction is essential to enable type inference. Note that a
A-bound variable can be assigned a polytype indirectly, via
a type variablex bound to a type schemein ). However,
this will not allow to take different instances efwhile typ-

We formalize our approach as a small extension to corejng the body of the abstraction. Indeed, the only possible

called MLF*, in which some expressions have been anno- ever, o is not then equivalent te- under@, even if the

tated (intuitively, places to call an horacle during type in- pound ofa in Q is rigid. Thus, ifz : « is in the typing
ference). We represent annotations by an additional nodecgntextr, the only way of typingz (modulo equivalence)
(a : %), called a guesspoint. The syntax of expressionsig (Q)T F z : a, whereagQ) T I z : o is not derivable.

of MLF*, written with lettera, is given in Figure 5 and

expressions of ME are those that do not contain guess-

points (guesspoints may be introduced during reduction, butThe language ML as a subset of M LF ML can be em-
source programs, for which types will be inferred, should bedded into ME by restricting type schemes to those of
not contain them). We assume given a countable set of vari-ML. Then, the prefixQ only records the set of free type
ablesz € V and a countable set of constantg C. Ev- variables of the judgment. In particular, rulesK s and
ery constant comes with its arityjc|. A constantis either  INST are then exactly those of ML. Hence any closed pro-
a primitive f or a constructo. The distinction between gram typable in ML is also typable in ML

As a corollary, for any given interfacg, the relationC’
defines an upper semi-lattice on the set of prefixes.

3 Thecorelanguage



Figure 6. Typing rules for MLF

VAR FUN
z:0€l @QT,z:moFa:T
@QTFkz:0 @TFHfun(z)a:m—>71
APP

(Q)Fl_allTQ—)Tl (Q)F"GQZTQ
(Q)F}_alagi’ﬁ

LET

@QTtas:o @QUL,xz:0kag:r
(@QTFletx=ayinas: 7

GEN

(Q,ao0)TFa:o a ¢ ftv(T)
(QTrFa:V(aoo)o

INST GUESS
@QTra:o @QTka:o
(QoCd Qo' Ec
(@TFa:do (QTF(a:x):0

Example 6 This first example of typing illustrates the role

of polytype schemes in typing derivations: we consider the

simple expressiofX defined byfun (y) fun (z) z and its
typing derivation as would be done in ML (we recall that
(o, ') stands fola > L,a’ > 1)):

(a,)y:a,r:a Fz:d

';UN (,aYy:alk fun (z) z:ad = o

UN

G (a,a/) FK:a— (a/ = a')
EN

FK:V(a,a)a— (o = a')

We show another typing derivation that actually infers a
more general type foK in MLF. For conciseness we write
oiq forv (o) o — o' and@ for a, 8 > 0.

(Q,d)y:a,z:a Fax:d

C':UN (Q,a)Yy:akfun (z)z:a — o
= (Q)y:al fun (z) z: 0ia

I (Q)osa B

NST

Q) y:akfun(z)z:p
Q) FK:a— g4
FK:V(Q)a—p

FuN
GEN

In example 5, we have shown thd({@) o — /3 is more
general thaW (o, ') a — (&' — ).

Example 7 This example illustrates how sharing in types
controls “access to polymorphism”, which is the key to hav-
ing principal types and type inference. Lgtndg be two
functions of respective types 2y (a=0iq) V(' =03a)

a — o andos £ V(e =014) @« = a. Then, the expres-
sionfun (z) f z z is typable butfun (z) g z x is not. In
the former case, we can easily derive= 0iq4, @' = 0i4)
z:ak fx:a (1). Hence, by rule N, (a = 0i4) z :
at fz:V(a =0i4) o sincea’ is notfree in the context.
We have(a = 0i4) V(o' =014) ¢ C a — a, since, by
Rule EQ-VAR we have(a = 0gi4) V(o = 014) @' C 0ig
and(a =0i4) 01a C @ — «a. Thus, by Rule NsT, we get
(a=0w)z:ak fr:a— aand-fun (z) fxx: 04
follows. However, whery is replaced by, we only get
(a =0i4) ¢ : a F f z : ainstead of the judgment (1) and
we cannot apply Rule .

Example 8 To pursue Example 7, lehoose be a function

of typeV (a) @« - a — «a, which can be used to force
unification of the types of its two arguments. The type of
choose f idistheno,y, which is the least common instance
of bothoy; andoiy (1). More precisely, we have the two
following derivations wherd" is (choose : V(a) a —
a—a,f:o1;id: oiq) andQ is a > o0s.

(@TFEf:on

N (Q) o1 Ca(2)
(@QTFf:a(4)
Indeed, (2) and (3) follows fromr; T o5 andoig C oo

by (1) and Rule I-HP. Then, we can easily derivié +

choose f id : 03.

(Q) T'Fid: Jid
(Q) 034 € a (3)

@QTrid:a(

INS

3.2 Syntax directed presentation

As in ML, we can replace the typing rules by a set of
equivalent but syntax-directed rules, which are given in Fig-
ure 7. Here however, Rule&8! would also need to be ap-
plied before Rule BN and the right-hand side of Rulepf.
Instead, we keep typing judgments generalized ihstan-
tiated in ML) as much as possible.

Example9 As we claimed in the introduction, a variable
that is used polymorphically in the body of an abstraction
must be annotated. Let us check tiah (z) = = is not
typable in MLF. By contradiction, a syntax-directed type
derivation of this expression would be of the form:

VAR® (Q)z: 7o F z:7p (Q)x:7mF° x: 719 VAR®
(Q)mCm—m(l) (Q) o C 12 (2)
(Q)SE:T[)FA.TSE:Tl

Q@ OFfun(z)zz:70 > 1

App2

Funs




Figure 7. Syntax directed typing rules

VAR®
z:o€el

(QTF z:0

Fun&

(QQI) F,l'i‘l'()|“A a:o dom(Q’)ﬂF:@

(Q)TF fun (z) a:V(Q',a>0) 19 = a

ApPpPA

(Q)Fléalﬁfl (Q)FI—A@:UQ
Q) CY(Q) 2 > 7 (Q) 02 TV (Q") 7
(QTF aay:Y(Q)n

LET®

(Q)I‘I—Aal:al (Q)I‘,x:all—Aag:ag
(Q)Fl—A letz =aq inas : 09

GUESS®
VaN

@Q@QTrF a:0o
(@)

Q) C U”

Q)oC Q) o' E "
LF (a:%)

!
o

Hence, (1) and (2) must hold simultaneously, which im-

plies (Q) = = = — 71 (we omit the proof by lack of

3.3 Dynamic semantics

The semantics of MC* is the standard call-by-value se-
mantics of ML. We present it as a small-step reduction se-
mantics. Values and call-by-value evaluation contexts are
described below.

vi=w| (w:*)
w == fun (z) a
[ for ... op n < |f]
|C v ...vp n < |C|
E:=[]|Ea|vE|(E:x)|letz=Fina

The reduction relation— is parameterized by a set &f
rules of the form:

fu (5)

Constants: are given with their (closed) types by an initial
typing environmenty.

...vp —a  when|f|=n

(fun (z) a) v — v]a/z] (Bv)
let z = v ina — v[a/z] (Bret)
(v1 2 %) vg — (V1 V2 @ %) (%)
((v:x) %) — (v:*) (%)

The main reduction is thg-reduction rule that takes two
forms 3, and8;.;. The twox-rules deal with guesspoints.
Guesspoints are maintained during the reduction to which

space). However, this contradicts Lemma 9 to be found in they do not contribute. They are simply pushed out of ap-

Appendix A.

This example shows the limit of type inference, which is
actually the strength of our systerné. to maintain princi-

pal types by rejecting examples where type inference would

need to “guess”.

Example 10 Let us recover typability by introducing a
guesspoint infun (z) (z : %) z. Taking (a = 04) for
@ anda for ry, we obtain the following derivation:

VARY (Q)z:al z:a

GUESS® @) glz Ea(l) (@) 014 Ca—a
@) z:aF (z:%):0:a (Q)z:alF z:aVArR®
AppA -
FUNA Q@ z:aF (z:%)z:«

Ffun (z) (z:%)z:V(a=0wu) a > a

The crucial role of the annotation is to allow the use of (1)
to enrich the typing of:: while (1) implies(Q) 0:4 C «,
this relation cannot be inverted, so rulesit cannot be used
to replacex by its boundr;4. The guesspoint allows such
going backward, but only along tte relation—replacing

E by C in rule GuEsswould be unsound.

Section 5 shows how type annotations can be used to infer

atype forfun (x : o) z x wheno is given explicitly.

plications and collapse when they meet.
Finally, the reduction is the smallest relation containing
0, By, Biet, and the twok-rules and closed by congruence:

Ela] — Eld']if a — d (CONTEXT)

4 Formal properties

We state a few standard properties offvih appendix C.
Below, we verify type soundness and we address type infer-
ence. By lack of space, all proofs are omitted.

4.1 Typesoundness

As usual, type soundness is shown by a combination of
subject reduction, which ensures that typings are preserved
by reduction, angbrogress, which ensures that well-typed
programs that are not values can be further reduced.

To ease the presentation, we introduce a relatione-
tween programs: we write C o' if and only if every typing
of a,i.e atriple(Q,T,0) suchthat@) ' F a : ¢ holds,
is also a typing ofi’. A relation R on programs preserves
typings whenever it is a sub-relation @f
Of course type soundness cannot hold without some as-
sumptions on the semantics of constants.



Hypotheses We assume that the following three proper- In particular, closed expressions without constants that can
ties hold for constants. be typed in MIF can always be typed in the empty environ-
ment and under the empty prefix, and therefore can also be
typed in ML.

This is not the case with Mr*, in which the expression
fun (z) (z : %) z is typable. As we shall see below all
terms of System F can be typed in L Fortunately, there

(HO) (Arity) Each constant € dom(Ty) has a closed type
[o(c) of the formV (Q) 7 — ... 7 — 7 and such
that the top symbol of (i.e. (V(Q) 7)/e as defined
in the appendix A) is not if—, L} whenever is a

constructor.
(H1) (Subject-Reduction) All §-rules preserve typings.
(H2) (Progress) Any expressiom of the formf vy ... v ¢,
such tha{@) 'y F a : o is in the domain ofd)
Theorem 1 (Subject reduction) Reduction preserves typ-

ings.

Theorem 2 (Progress) Any expression a such that (Q)
I'g F a: o isavalueor can befurther reduced.

4.2 Typeinference

Type inference is similar to type inference for ML: it fol-

is an interesting wrapping around nude-Mihat provides

the same expressiveness as¥while retaining type infer-
ence. Precisely, we provide type annotations as a collection
of coercion primitivesi.e. functions that change the type of
expressions without changing their meaning. The following
example, which describes the case of a single annotation,
should provide intuition for the general case.

Example 11 Let 034 be the type of the identity function

V (a) a — « and assume given a constantof typeV (o=
0ia, @ > 014) @ — o with thed-reductionid v — (v :

x). Then, the expressiom defined asfun (z) let z =

id = in z z is well-typed (see Example 7), also of type
V(a=014,0a' >014) @ — o'. The effect ofid is to remove
sharing between the type of the argument of the coercion,
and the type returned by the coercion. Of course, since the
connection between the argument and the result is lost, we

lows the syntax-directed typing rules and reduces to (prefix) Must force the argument to be at least as polymorphic as

unification.
Namely, atype inference problem is a triple (Q, T, a),

where all free type variables ifi are bound inQ). A pair

(Q',0) is asolution to this problem ifQ C Q' and (Q’)
't a:o. Apair(Q',¢') is aninstance of a pair(Q, o) if

Q C Q' and(Q') o C o'. A solution of a type inference
problem isprincipal if all other solutions are instances of
the given one. Figure 9 in the Appendix D defines a type

inference algorithm for ME.
Theorem 3 (Typeinference) The set of solutionsof a solv-
able type inference problem admits a principal solution.

Given any type inference problem, the algorithm WF either
returnsa principal solution or failsif no solution exists.

5 Typeannotations

Although MLF has richer types than ML, nude-NLi.e.

the return type, hence the use of a rigid bound on the left.
Indeed, it would not be correct to apply to a value of type
int — int, since the result would not have type;.

5.1 Annotation primitives

We call annotations the following denumerable collec-
tion of primitives:

3@ 0): V(@) V(a=0)V(B=0)a—=5 €T

for all prefixes@ and type schemas such thatV (Q) o is
closed. We identify annotation primitives up to the equiva-
lence of their type. We writéa : 3(Q) o) for (3(Q) o) a.
We also abbreviatéd (Q) o) as(o) when all bounds i)
are unconstrained.

While annotations are introduced as primitives, for sim-
plicity of presentation, they are meant to be applied. The
type of the annotation primitive may be instantiated, but the
unsharing effect of the annotation still applies. This is de-

|\/||_F without constants cannot type more programs than scribed by the following technical lemma, which has simi-
ML. This is stated precisely by the following lemma (the larities with the Rule ANOT of Poly-ML [GR99].

inverse inclusion has already been stated in Section 3.1):

Lemma4 If the judgment (Q) T + a : o holdsin MLF
where the typing context " contains only ML types and @
contains only type variables with unconstrained bounds,
then there exists a derivation of '  a : V(a) 7 in ML
whereV (&) 7 is obtained from o by moving all inner quan-
tifiers ahead.

Lemma5 The judgment (Qo) T' F (a : 3(Q) o) : o9
is valid if and only if there exist two types V (Q') o} and
V(Q') of, such that the judgement (Qo) T' + a : ¥V (Q') o}
holds together with the following relations:

QoQ C QoQ’ (QoQ") o E 0}
(QoQ") 0 E 0y (Qo) V(Q') 0y E 0o



Corollary 6 The judgment (Qo) ' F (a : *) : o holds if
and only if there exists an annotation (3 (@) o) such that
(Qo) T F (a:3(Q) o) : g holds.

Corollary 7 Atermistypablein MLF if and onlyifitisty-
pablein MLF* after replacement of all applications of an-
notations by guesspoints around their arguments.

Reduction of annotations The d-reduction for annota-
tions just replaces explicit type information by guesspoints.

(v:3(Q) o) — (v:x)

Lemma 8 (Soundness of type annotations) The three hy-
potheses (HO, arity), (H1, subject-reduction), and (H2,
progress) hold when primitives are the set of simple anno-
tations, alone.

Syntacticsugar In practice, annotations are rather put on

Types whose flexible bounds are alwaysre called F-
types (they are the translation of types of System F, as de-
fined in Appendix E). Types with restricted flexible bounds,
i.e. of the formV(a > o) 7 whereo is not equiva-
lent to a monotype nor td., have been introduced to fac-
tor out choices during type inference. Such types are in-
deed used in a derivation dfet f = choose id in
(f auto) (f succ). However, should these also be al-
lowed as annotations? A term of Nilis shallow if it only
contains F-type annotations. A type of Ris shallow if
its rigid bounds are F-types. More generally, a prefix (resp.
typing context, judgment, or derivation) is shallow when-
ever it contains only shallow types and terms. Actually, any
valid shallow judgment@) I" F a : 7 has a shallow deriva-
tion. (The same property holds for instance and sharing
relations judgments.) This suggests a restriction Shallow-
MLF of MLF composed of shallow terms that admit shal-
low typing judgments. Moreover, subject reduction holds
for Shallow-MLF.

Expressiveness of ML with and without let-bindings
are equivalent, because all types can be used as annota-

abstractions than on use sites. Indeed, the annotation shoultlons. However, this is no longer true for Shallow-E/IL

then work for all use sites. Annotations on abstractitus
(z : o) a can be seen as syntactic sugarfan (z) let
x = (z : o) in a. The derived typing rule is:

FUN*
(QT,z:0kFa:o

(Q)TFfun(z:3(Q)0)a:V(x

QCQ
:g’) !

V' >0)a—d

This rule is actually simpler than the derived annotation rule

since shallow-types that are not F-types cannot be used as
annotations. Therefore, we also consider the restriction
of Shallow-MLF to programs without let-bindings, called
Shallow-F.

The encoding of System-F into NTLis actually an
encoding into Shallow-F. Conversely, all programs ty-
pable into Shallow-F are also typable in System-F. Hence
Shallow-F and System-F have the same expressiveness.

suggested by lemma 5, because instantiation is left to eachferms of Shallow-F still require fewer type annotations.

occurrence of the annotated program variabie a.

The derived reduction i§fun (z : 3(Q) o) a) v Z,
let z = (v : 3(Q) o) in a and the expressions of the
form fun (z : 3(Q) o) a are values, indeed.

5.2 Expressivenessof annotations

We have seen that all ML programs can be written in
MLF without any annotation at all. Annotations allows for
typing in MLF all programs that are typable in System F,
modulo a straightforward translation of types and terms.
The encoding is given in Appendix E.

6 Discussion
6.1 Subsystemsof MLF (Conjectures)

Note: Claims of this section have only been sketched
informally—their formal verification is planned as future
work. The conjectures made at the end of the section are
really open questions.
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As a consequence terms of ML can of course be typed in
Shallow-F. However, this may require annotations. Fortu-
nately, all terms of ML can be typed in Shallow-Kllwith-

out any annotation at all.

We conjecture that there exists a term of Shallow-
MLF that cannot be typed in Shallow-F even after remov-
ing or inserting any number of F-type annotations. Still,
Shallow-MLF remains a second-order system and in that
sense should not kegnificantly more expressive that Sys-
tem F. In particular, we conjecture that the teffun (y)

z (yI) (y K)) (fun (x) z z) that is typable in F but not
in F [GR88] is not typable in Shallow-Mt(nor in MLF).

As in ML, reducing all let-bindings in a term of Shallow-
mLF produces a term of Shallow-F. Hence, terms of
Shallow-MLF are strongly normalizable. We conjecture
that this is also the case for NTL

6.2 Simplelanguage extensions

Because the language is parameterized by constants,
which can be used either as constructors or primitive op-
erations, the language can import foreign functions de-



fined via appropriaté-rules. These could include primitive Several people have considered partial type inference for
types (such as integers, stringg;.) and operations over System F [JWOG89, Boe85, Pfe93] and stated undecid-
them. More generally, sums and products, as well as pre-ability results for some particular variants that in all cases
defined data-types can also be treated in this manner, buamount—directly or indirectly—to permit (and so force) in-
some (easy) extension is required to declare new data-typegerence of the type of at least one variable that can be used
within the language itself. in a polymorphic manner, which we avoid.

The value restriction of polymorphism [Wri95] that al-
lows for safe mutable data-structures in ML should carry . X )
over to MLF by allowing only rigid bounds that appear in C|dable,_has been used to explore the practical (_effectlveness
the type of expansive expressions to be generalized. How-Of tYpe mft_arence fo_r System F [Pfe88]. Despite our op-
ever, this solution is likely to be disappointing in fLas Pos'te choice, that is not to SUprrt second-order un!f|ca-
it is in Poly-ML, which uses polymorphism extensively. A tlon, there are at least two comparisons to be made. Firstly,
relaxation of the value-only restriction has been recentlty their proposal does npt cover t.he .Ianguage P se, but )
proposed [Gar02]. It gave satisfactory results in the contextOnly the A-calculus, since let-bindings are expanded prior

of Poly-ML and we can expect similar benefits for ML o type inference. _Indeed, ML is not thg simply—typled
calculus and type inference in ML cannat, practice, be

reduced to type inference in the simply-typgetalculus
after expansion of let-bindings. Secondly, one proposal
seems to require annotations exactly where the other can

Our work is related to all other works that aim at some skip them: in [Pfe88], markers (but no type) annotations
form of type inference in the presence of higher-order types, must replace type-abstraction and type-application nodes;
at least in their goals. The closest of them is unquestionablyconversely, this information is omitted in Nfl_but instead,

Poly-ML [GR99], with which close connections have al- explicit type information must remain for (some) arguments
ready been made. Poly-ML also subsumes previous proposof \-abstractions.

als that encapsulate first-class polymorphic values within o _ _
datatypes [Rém94]. The proposal [OL96] also falls into ~ Our proposal is implicitly parameterized by the type in-
this category; however, a side mechanism simultaneouslystance relation and its cor_respond|.ng unification algorithm.
allows a form of toplevel rank-2 quantification, which is not  Thus, most of the technical details can be encapsulated
covered by Poly-ML but is, we think, subsumed by KL within the instance relation and its properties. We would
Rank-2 polymorphism actually allows for full type infer- like to understand our unification algorithm as a particular
ence [KW94, Jim95]. However, the algorithm is defined by €as€ of second-order_ unification. One step_ in this direc-
reduction on source terms and is not very intuitive. Rank- tion would be to consider a modular constraint-based pre-
2 polymorphism has also been incorporated in the HugsSeéntation of second-order unification such as [DHKP96].
implementation of Haskell [Mar02], but with explicit type Flexible bounds might capture, within principal types, what
annotations. The GHC implementation of Haskell has re- constraint-based algorithms capture as partially unresolved
cently been released with second-order polymorphism at ar-multi-sets of unification constraints. Another example of
bitrary ranks [GHCO02]; however, types at rank 2 or higher restricted unification within second-order terms is unifica-
must be given explicitly and the interaction of annotations tion under a mixed prefix [Mil92]. However, the notion of
with implicit types remains unclear. Furthermore, to the preﬂxl in their work is rather different and does not express
best of our knowledge, this has not yet been formalized. “sharing”.
Indeed, type inference is undecidable as soon as universal Actually, none of the above works did consider subtyp-

quantifiers may appear at rank 3 [KW99). _ . ing atall. This is a significant difference with proposals
Although our proposal relies on the ML let-binding paseq on local type inference [Car93, PT98, 0ZZ01] where

mechanism to introduce implicit polymorphism—even for g ning is a prerequisite. The addition of subtyping to our
annotations—and flexible bounds in types to factorize all ¢, mework remains to be explored.

ways of obtaining type instances, rather than on intersec-

tion types, there may still be some connection with inter-  Furthermore, beyond its treatment of subtyping, local
section types [Jim96], which we would like to explore. Our type inference also brings the idea that explicit type an-
treatment of annotations as “unsharing” primitives also re- notations can be propagated up and down the source tree
sembles retyping functions (functions whose type-erasureaccording to fixed well-defined rules, which, at least intu-
n-reduces to the identity) [Mit88]. However, our annota- itively, could be understood as a preprocessing of the source
tions are explicit and contain only certain forms of retyp- term. Such a mechanism is being used in the GHC Haskell
ing functions.  Type inference for System F moduto compiler, and could in principle be added on top offviis
expansion is known to be undecidable as well [Wel96]. well.

Second-order unification, although known to be unde-

6.3 Related works
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Conclusions [Gar02]

We have proposed an integration of ML and System F
that combines the convenience of type inference as present
in ML and the expressiveness of second-order polymor- [GHCO2]
phism. Type information is only required for arguments
of functions that are used polymorphically in their bodies.
This specification should be intuitive to the user. Besides, it
is modular, since annotations depend more on the behavio[GR88]
of the code than on the context in which the code is placed;
in particular, functions that only carry polymorphism with-
out using it can be left unannotated.

The obvious potential application of our work is to ex-
tend ML-like languages with second-order polymorphism [GR99]
while keeping full type inference for a large subset of the
language, containing at least all ML programs. However,
further investigations are needed beforehand, in particular
regarding the syntactic-value polymorphism restriction.

Furthermore, on the theoretical side, we wish to better
understand the concept of “first-order unification of second-
order terms”, and, if possible, to confine it to an instance of
second-order unification. We would also like to give log-
ical meaning to our types and to the sharing and instance
relations.

[Jim95]
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A Occurrences

Occurrences and free variables An occurrence is a se-
guence of natural numbers. We wrié for the sequence
k,...,koflengthn (and, in particulark® is €). Theprojec-
tion is a function mapping pairs/u composed of a type
and an occurrenceto { L } U¥ UG and defined inductively
as follows:

Lje=1 T)/e=g

o1/ur #

(V(QOO'Q) 0'1)/U1 = 0'1/U1

afe=a (g" 11 -
1<i<n

(g" 11 .. ™) iu=T;/u

o1fur =«

(V (a<>0'2) 0'1)/U1U2 = 02/U2

We writes / the functionu — o /u. We calloccurrences of
a type scheme o the domain of the function/, which we
abbreviate adom(o).

Freetypevariables A type variablex isfreein o if there
exists an occurrenaesuch that /u is «. We writeftv(o)
the set offree type variables of o. A type scheme islosed
if it has no free type variable. When(Q) o is closed, we
also say that is closed undef).

Occurrences—and therefore free type variables—are stable

under equivalence, as stated by the following lemma.

Lemma9 If (Q) o =
(V(Q) ')/ areequal.

o' holds, then (V(Q) o)/ and



Given a seta of variables, we define the typ€; as The algorithm is described in Figure 8. For the sake of com-

a; — ... & a, — unit. By extension, we not&/q parison with ML, lines marked witl could be removed in

for Vaom(q)- the absence of polytypes. Two steps at the end of subcase
(a1, a9) use an auxiliary algorithni@) o # ¢’ to check,

Domain of prefixes As seen earlier, ifQ is (a; o1 given @Q,o and¢’ such that(QQ) ¢ C o' holds, whether

O1,. .. 0y op 0y), then its domain, writtedom(Q), is the  (Q) o £ o' holds.
set{ay,...a,}. In some proofs, we need to capture the -
notion of useful domain of a prefiQ. If I is a set of type ~ Lemma 10 (Completeness of unification) Assume

variables, we defindom(Q/I) as follows: ftv(r,7') C I. If there exists Q, such that Q; C' @» and
A A (Q2) 7 = 7' hold, then unify (Q1, , ") succeeds with Q'
dom(0/I) =0 dom((ao0,Q)/T) = and we have Q! C! Q».
{Ol} U dom(Q/I) Whena. € ftv(V (Q) V]) C Standard propertles
dom(Q/I) otherwise
We also writedom (/o) to meandom(Q/ ftv(c)). Intu- The following lemma states two standard properties of

itively, this corresponds to the domain @f which is use-  typing judgments.

ful for 0. As an example, ifY’ corresponds td@), where _ o

all bindings not indom(Q /o) have been removed, then we Lemma 1l Thefollowing rules are admissible:
haveV (Q) o =V (Q') o.

STRENGTHEN
@Tta:o QICrT
B Unification algorithm QT ra:o
Interestingly, the unification algorithm follows the struc- WEAKEN
ture of first-order unification, despite the presence of poly- @Tra:o QCQ
types. Indeed, the computation of the unifying substitution (Q)Tra:o

is replaced by the computation of a unifying prefix. While

in the first-order case, bounds of the prefix could onlylbe |n a judgment(Q) T + a : o, the type scheme

or monotypes, they can, in the general case, also be polytan be weakened as described by Rule1. Conversely,
types. One consequence is that the algorithm must considethe contextl’ can be strengthened, as described by Rule
a few more cases. Another consequence is that a polytypestreNc THEN This rule uses the instance relation between

bound of a variable may have to be instantiated to a mono-typing context§Q) ' C I, which is an abbreviation for:
type. This requires to extend the prefix with more bind-

ings. For instance, instantiating the boun(t)’) = in the Vz € dom(T), z € dom(T") A (Q) T'(2) C T'(2)
prefix (Q,a >V (Q') 7) leads to the prefixQQ’, a > 7)—
applying a rule similar to Rule I-Bbut for prefixes. Aigid In addition to weakening the type or strengthening the con-

prefix @ is a prefix with only rigid bounds. Two auxiliary  text, the whole judgment can be instantiated. In ML, this
operators are used to ease such manipulation of prefixesis expressed by stability of typing judgments by substitu-
The binary operato€ta performs only commutations of tions. Here, this is modeled by instantiating the prefix of
binders in@) and returns a pair of prefixg§), @2) such the typing judgment, as described by rul&EWKEN, which
thatQ1 Q- is equivalent ta) and differ only by reordering  is consistent with viewing prefixes as a generalization of
of bindings,a@ C dom(Q;), anddom(Q;/a) = dom(Q1). substitutions.

Definition 2 Theupdate of a prefix@ by a binding(a ¢ o) The substitutivity lemma is key to subject reduction.
such thate € dom(Q), written @ < (a ¢ o), is a prefix
(Qo, @ ¢ 0,Q1) such that(Qo, @ o1 01,Q1) is a reorder-
ing of toplevel bindings ofY that preserves equivalence,
dom(Q1) N ftv(c) = @ and@Q; is as small as possible. Itis
undefined ifftv(c) Ndom(Q;) # 0 in all such decomposi-
tions. O

The unification algorithmunify (Q, , ') takes as input ~ Lemma 13 The judgment (Q) I' F a : o hold if and only
a prefixQ and two types and either returns a prefix that uni- if there exists o such that both judgments (Q) I' = a : o’
fies these types (as described by lemmas 2 and 3) or fails@nd (@) ¢’ C o hold.

Lemma 12 (Substitutivity) If (Q) ',z : o F ag : 09 and
if(@QTFa:o, then(Q)T F apla/z] : 09.

Finally, we state the equivalence between the syntax-
directed and original presentations of the typing rules.

14



D Typeinferencealgorithm

E Encoding System F into M LF

The types, terms, and typing contexts of systEnare

Figure 8. Unification algorithm

given below:

tr=al|t—>t|Va-t
M=z |MM]|fun(z:t) M |Fun (o) M | Mt
Au=0Az:t| A«

The translation of types of System F into ﬁIILypes uses
auxiliary rigid bindings for arrow types. This ensures
that there are no inner polytypes left in the result of the
translation—which would otherwise be ill-formed. Quan-
tifiers that are present in the original type are translated to
unconstrained bounds.

[Va-t] =V (o) [1]

[o] =«
Htl — tg]] = V(Oél = [[tl]]) Y (042 = [[tg]]) a1 — Q2

In order to state the correspondence between typing judg
ments, we must also translate typing environments. We
write A - M : t to mean thafl/ has type in environment

A in System F. The translation of, written [A], returns

a pair(Q) T of a prefix and a typing environment and is
defined inductively as follows:

B [Al=@T
1=009 [Az:]=QT:[1
[Al=(@Q)T  «a¢dom(Q)
[4,0] =(@Q,0) T

The translation of System F terms into RMterms forgets
type abstraction and type applications, and translates type
in term-abstractions.

[Fun () M] = [M]  [M#]=[M] [z]==
[M M) = [M] [M]
[fun (2 : t) M] = fun (2 : [£]) [M]
Finally, we can state the following lemma:

Lemma 14 For any closed typing environment A (that does
not bind the same type variable twice), term M and type ¢
of system F' such that A - M : ¢, there exists a derivation

(Q) T+ [M] : 7 suchthat (Q) T = [A] and [t] & 7.

The recursive algorithnunify (Q,r",7"") first rewrites
all bounds of) in normal form and proceeds by case af
ysis on(7", 7'"):
Case (a,q): return Q.
Case (g7 .., g 79 .. T9):
o letQ! beQ;
o letQ*! beunify (Q, i, i) for1 <i < n;
o return Q"+,
Case (g1 71 .- 71,92 T4 .. 7)) with g1 # go: falil.
Case (a,7) or (1,a) when(a o ') € Q:
return unify (Q,,7").
Case (a,7) or (1,a) when(a ¢ o) € Q
andr ¢ dom(Q) ando ¢ T
if (a=1) € @, thenfail.
if 0is L thenreturn @ < (a=r1).
letV (Q") " beo with dom(Q), dom(Q') disjoint;
if o is =, check that)’ is rigid, otherwisdail.
let@Q" be(QQ') < (a=1');
return unify (Q", a, 7).
Case (aq,as) whena; # a2 and(a; 01 01) € @ and
(a2 03 02) € Q
andoy, o5 are not in7 .
o leto be either>, if botho; ando, are>,
and= otherwise
if o1 andos areL then
return Q < (ag o 1) < (a2 = ay);
if o; is L ando; is = thenfail;
if oy is L thenreturn @ < (a1 = as);
if o is L thenreturn @ < (a2 = ay);
letV (Q1) 1 beo; andV (Q2) ™2 beos
with dom(@), dom(Q1), dom(Q-) disjoint;
let Qo beunify (QQ1Q2, 11, T2);
let (@3, Q") beQoTdom(Q);
if o1 is=and(Q3) o1 # V(Q') m thenfail;
if o2 is=and(Q3) o2 # V(Q') 7, thenfail;
letos beV (Q') ;

nal-

return (Q3) <= (011 <>0'3) = (042 :Oél).

Note that translated terms contain strictly fewer annotations
than original terms—a property that was not true in Poly-

ML. Moreover, some annotations provided by the transla-
tion are superfluous.
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Figure 9. Algorithm a

The algorithminfer (Q,T, a) is defined by cases on ex-

pressioru:
Casez :return @Q,T'(z)
Casefun (z) a :

—let @1 = (Q,a > L) witha ¢ dom(Q) in

— let (Q2,0) = infer (Q1,T,x : a,a) in

— let § ¢ dom(Q2) and(Qs, Q1) = Q21 dom(Q) in
—return Q3,Y(Q4) V(B>0) a—

Casead :
— let (Q1,0,) = infer(Q,T,a) in
— let (Q2,0p) = infer (Q1,T,b) in
— let ag, ap, 5 ¢ dom(Q2) in
- let Q3 = Unify((QQ:aa > 0q,0p > 0p, 8> J—):
aq,0p = B)1In
— let (Q4,Q5) = Q@31dom(Q) in
—return (Q4,V (Q5) B)

Caselet z = ajinas :

— let (Q1,01) = infer(Q,T,a;) in
— returninfer (Q1, (T, x : 01), as)
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