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Abstract. In this paper, an empirical study on self-generating multimeme me-
metic algorithms is presented. A set of well known benchmark functions is used 
during the experiments. Moreover, a heuristic template is introduced for solv-
ing timetabling problems. The heuristics designed based on this template can 
utilize a set of constraint-based hill climbers in a cooperative manner. Two such 
adaptive heuristics are described. Memetic algorithms utilizing each one as if a 
single hill climber are experimented on a set of random nurse rostering problem 
instances. Additionally, simple genetic algorithm and two self-generating mul-
timeme memetic algorithms are compared to the proposed memetic algorithms 
and a previous study. 

1   Introduction 

Genetic Algorithms (GAs), introduced by J. Holland [27], are very promising for 
tackling complex problems [24]. Effectiveness of hill climbing methods in population 
based algorithms is underlined by many researchers [15, 38, 45, 46]. Memetic Algo-
rithms (MAs) embody a class of algorithms that combine genetic algorithms and hill 
climbing methods. A meme represents a hill climbing method and its related parame-
ters used within an MA. Ning et al. [39] concluded from their experiments that the 
meme choice in an MA influence the performance significantly. Krasnogor [31] ex-
tended the previous studies and suggested a self-generating (co-evolving) multimeme 
MA for solving problems in the existence of a set of hill climbers. Memes are evolved 
with the candidate solutions, providing a learning mechanism to fully utilize the pro-
vided hill climbers [32, 34]. 

In the first part of this study, the MA proposed by Krasnogor [33] is tested on a set 
of benchmark functions. The study aims to answer the following questions: 

• Can the suggested learning mechanism discover useful hill climbers? 
• Does a set of hill climbers generate a synergy to obtain the optimal solution? 
In the second part of this study, MAs for solving a nurse rostering problem, intro-

duced by Ozcan [41], are considered. Ozcan extended the study by Alkan et al. [5] 
and suggested templates designing a set of operators, including a self-adjusting viola-
tion-directed and constraint-based heuristics, named as VDHC, within MAs for solv-
ing timetabling problems. A new heuristic template for managing a set of constraint-



based hill climbers is introduced in this paper. Two new instances based on this tem-
plate are implemented and used as a single hill climber within MAs. Furthermore, two 
multimeme memetic algorithms (MMAs) are described. The performances of all the 
proposed algorithms, including the traditional genetic algorithm and the MA provided 
in [41] are compared. 

2   Background 

2.1   Benchmark Functions and Hill Climbing Methods 

Benchmark functions with different features, well known among the evolutionary 
algorithm researchers, are utilized during the experiments (Table 1). F1-F11 are con-
tinuous, whereas F12-F14 are discrete benchmark functions. Detailed properties of 
each function can be found in the source references presented in Table 1. Benchmark 
functions include De Jong’s test suite [17]. Only difference is that the noise compo-
nent of the Quartic function is modified as described in [53].  

Table 1. Benchmark functions used during the experiments: lb and ub indicate the lower and 
upper bound for each dimension, respectively, opt indicates the optimum  

label function name       lb     ub opt source 
F1 Sphere -5,12 5,12 0 [17] 
F2 Rosenbrock -2,048 2,048 0 [17] 
F3 Step -5,12 5,12 0 [17] 
F4 Quartic with noise -1,28 1,28 1 [53, 17] 
F5 Foxhole -65,536 65,536 0 [17] 
F6 Rastrigin -5,12 5,12 0 [47] 
F7 Schwefel -500 500 0 [50] 
F8 Griewangk -600 600 0 [27] 
F9 Ackley -32,768 32,768 0 [1] 
F10 Easom -100 100 -1 [20] 
F11 Schwefel’s Double Sum -65,536 65,536 0 [51] 
F12 Royal Road - - 0 [37] 
F13 Goldberg - - 0 [25, 26] 
F14 Whitley -  - 0 [54] 

 
Eight memes are used in the experiments: 
• Steepest Descent (MA0), [37] 
• Next Descent (MA1), [37] 
• Random Mutation Hill Climbing (MA2), [37] 
• Davis’s Bit Hill Climbing (MA3), [16] 



The remaining four memes are derived from the first two memes. The bit flip opera-
tion in MA0 and MA1 is replaced by an AND operation with 0, yielding MA4 and 
MA6, respectively. Similarly, an OR operation with 1 is employed, yielding MA5 and 
MA7, respectively. Gray and binary encodings are used to represent candidate solu-
tions during benchmark experiments for continuous and discrete functions, respec-
tively. Due to the gray encoding, the memes MA4-MA7 represent poor hill climbers 
for almost all continuous benchmark functions. 

2.2   Nurse Rostering Problem 

Timetabling problems are real-world constraint optimization problems. Due to their 
NP complete nature [20], traditional approaches might fail to generate a solution for 
an instance. Timetabling problems can be represented in terms of a three-tuple <V, D, 
C>,  where V is a finite set of variables, D is a finite set of domains of variables and 
C is a set of constraints to be satisfied: 
V={v1, v2, …, vM}, D={d1, …, di, …, dM}, C={c1, c2, …, cK} 

Solving a timetabling problem instance requires a search for finding the best as-
signment for all variables that satisfy all the constraints. Thus, a candidate solution is 
defined by an assignment of values from the domain to the variables: 
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In all timetabling problems, there is at least one domain for each variable that is for 
time. A problem instance might require other resources to be scheduled as well. For 
example, a university course timetabling problem instance might require arrangement 
of classrooms for each course meeting, as well. Then the search will be performed 
within a domain that will be a Cartesian product of time and classroom sets.  

A nurse roster is a timetable consisting of employee shift assignments and the rest 
days of nurses in a health-care institution. Some health-care institutions might be 
composed of several departments. A departmental roster is defined as a collection of 
the nurse rosters of all nurses working within the same department. Nurse Rostering 
Problems (NRPs) are timetabling problems that seek for satisfactory schedules to be 
generated for employees, employers, even customers. In a common NRP, a nurse can 
be assigned to a day or a night shift, or can stay off-duty. A variable represents the 
shift assignment of a nurse. In this paper, event and daily shift will be used to refer 
variable, interchangeably. A group of events indicates a subset of events in V and 
their assignments in a candidate solution. 

In all timetabling problems, constraints are classified as hard or soft. Hard con-
straints must be satisfied, while soft constraints represent preferences that are highly 
preferred. Furthermore, there are six different constraint categories for practical time-
tabling: edge constraints, exclusions, presets, ordering constraints, event-spread 
constraint and attribute constraints (includes capacity constraints) [42]. Edge con-
straints are the most common constraints that represent pairs of variables to be sched-
uled without a clash. A timetabling problem reduces to graph coloring problem, if the 
instance requires only edge constraints to be satisfied [35].  Exclusions determine the 
members to be excluded from the domain of variables for each variable. Presets are 



used to fix the assignment of a variable. Ordering constraints, as the name suggests, 
are used to define an ordering between a pair of variables based on the timeline. 
Event-spread constraints define how the events will be spread out in time. Attribute 
constraints deal with the restrictions that apply between the attributes of a variable 
and/or the attributes of its assignment. Numerous researchers deal with NRPs based 
on different types of constraints utilizing variety of approaches. A recent survey on 
nurse rostering can be found in [10].  

Burke et al. [8] applied variable neighborhood search using a set of different per-
turbation methods and local search algorithms on randomly generated schedules. 
Chun et al. [13] modeled nurse rostering as constraint satisfaction problem and em-
bedded it as a Rostering Engine into the Staff Rostering System for the Hong Kong 
Hospital Authority. Similarly, Li et al. [36] modeled nurse rostering as a weighted 
constraint satisfaction problem. Their algorithm consists of two phases.  In the first 
phase, forward checking, variable ordering and compulsory backjumping are used, 
whereas in the second phase descend local search and tabu search are used. Ahmad et 
al. [1] proposed a population-less cooperative genetic algorithm and experimented on 
a 3-shift problem. Kawanaka et al. [30] attempted to meet absolute and desirable 
constraints fro obtaining optimal nurse schedules. Aickelin et al. proposed a co-
evolutionary pyramidal GA and experimented an indirect representation and three 
different decoders within GA for solving NRP in [3], [4], respectively. Gendreau et 
al. [23] used TS to generate shifts of nurses at the Jewish General Hospital of Mont-
real. Berrada et al. [6] combined TS with multiobjective approach, prioritizing the 
objectives. Heuristic swaps working and rest days. Duenas et al. [19] applied interac-
tive Sequential Multiobjective Problem Solving method in conjunction with a genetic 
algorithm to produce a weekly schedule of eight nurses.  Burke et al. [7] compared 
steepest descent, traditional TS and its hybrid with two local search heuristics for 
solving nurse rostering problem in Belgian Hospitals.  

Recently, research on timetabling started to move towards finding a good hyper-
heuristic [11]; a heuristic for selecting a heuristic among a set of them to solve an 
optimization problem. Cowling et al. [14] introduced hyper-heuristics as an iterative 
search method which maintains a single candidate solution and a set of heuristics. A 
hyper-heuristic is a heuristic utilized to choose a lower level heuristics. Han et al. [29] 
compared different versions of hyper-heuristics based on GA that they were devel-
oped for solving trainer scheduling problem utilizing fourteen different lower level 
heuristics. Burke et al. [12] proposed a tabu-search based hyper-heuristic, demonstrat-
ing its success for solving a set of nurse rostering problems at a UK hospital.  

2.3   Multimeme Algorithms 

Memetic Algorithms (MAs) are population based hybrid algorithms that combine 
Genetic Algorithms and hill climbing [15, 38, 45, 46]. In MAs, a chromosome (indi-
vidual) represents a candidate solution to a problem at hand. A gene is a subsection of 
a chromosome that encodes the value of a single parameter (allele). Generally, the 
search for an optimal solution starts with a randomly generated set of individuals, 
called initial population. Then at each evolutionary step (generation) a set of opera-



tors are applied to each individual in the population. First, mates are selected for 
performing crossover, an operator that exchanges genetic material between mates. 
While selecting the mates, better ones are preferred. After the crossover, a set of new 
individuals, called offspring, is generated. Offspring are then mutated. In MAs, hill 
climbing operator is applied to the individuals, right after the crossover, or the muta-
tion or in both places. Even the initial generation can be hill climbed. Whenever the 
termination criteria are satisfied, evolution stops. The best individual in the last gen-
eration is the best candidate solution achieved. In this paper, all MAs utilize a hill 
climber after the initialization and mutation. 

Using a set of hill climbers, different MAs can be generated and compared for 
solving a problem. As another possibility, all hill climbers can be combined under a 
heuristic that selects one hill climber at a time and applies it. Such a hyper-heuristic 
schedules a hill climber in a deterministic or a non-deterministic way. For example, a 
deterministic round-robin strategy schedules the next hill climber in a queue.  A non-
deterministic strategy schedules the next hill climber randomly. These approaches 
employ blind choices. More complex and smart hyper-heuristics can be designed by 
making use of a learning mechanism that gets a feedback from the previous choices to 
select the right hill climber at each step. Different types of hyper-heuristics are dis-
cussed in [11]. 

Multimeme Algorithms (MMAs) represent a subset of self generating (co-
evolving) MAs [31-34]. An individual in a population carries a memetic material 
along with a genetic material. The materials are co-evolved. In an evolutionary cycle, 
the memes are inherited to the offspring from the parents using the Simple Inheri-
tance Mechanism (SIM) [33] during the crossover. SIM favors the meme of a mate 
with a better fitness to be transmitted to the offspring. In the case of an equal quality, 
a meme is randomly selected from the mates. Furthermore, a meme is altered to a 
random value based on a probability, called Innovation Rate (IR) during the mutation. 
MMAs, based on the SIM strategy and the mutation, allow modification of the candi-
date solutions by learning in order to obtain improved ones. This mechanism is re-
ferred as Lamarckian learning mechanism [31, 40].  

Using a similar notation as provided in [33], a meme, denoted by MhFBbInWt, 
represents the hill climbing method (M), its acceptance strategy (FB), the maximum 
number of iterations (I), and which part of the configuration to apply the selected 
method (W). An individual uses its meme to decide the hill climbing method and the 
related components to use, after the mutation takes place. Previously, Ong et al. [40] 
conducted tests on three benchmark functions using two new methods that they pro-
posed for selecting the appropriate meme within MAs. In this study, MMAs are ex-
tensively tested on a set of well known benchmark functions. Furthermore, MMAs 
are used to determine where to apply a hill climber and which hill climber to apply, 
self adaptively for solving a real-world nurse rostering problem. 

Success rate, s.r., indicates the ratio of successful runs, achieving the expected fit-
ness to the total number of runs repeated. Comparisons of MAs are based on the av-
erage number of evaluations and the success rate. Additionally, average evolutionary 
activity is considered during the assessment of MMA experiments. Evolutionary 
activity of a meme at a given generation is the total number of appearance of itself 
within each population starting from the initial generation until the given generation. 



Average evolutionary activity is obtained by taking an average of the evolutionary 
activity of a meme at each generation over the runs. The slope of the average evolu-
tionary activity versus generation curve shows how much a meme is favored. The 
steeper the slope gets for a meme, the more it is favored. 

3   Memetic Algorithms for Benchmarking 

3.1   Experimental Setup 

All runs are repeated 50 times. Pentium IV 2 GHz. machines with 256 MB RAM 
are used during the experiments. Chromosome length, l, is the product of dimensions 
and the number of bits used. All the related parameters are arbitrarily chosen with 
respect to l. The mutation rate is chosen as a factor of 1/l. The rest of the common 
parameter settings, used during the experiments are presented in Table 2. Runs are 
terminated whenever the overall CPU time exceeds 600 sec., or an expected fitness is 
achieved. All MAs use a tournament mate selection strategy with a tour size two, one 
point crossover, bit-flip mutation and a trans-generational MA with a replacement 
strategy that keeps only two best individuals from the previous generation. The IR 
rate is fixed as 0.20 during all multimeme experiments. A single acceptance strategy 
that approves only improving moves and a single value for the maximum number of 
hill climbing steps are used; b={1} and n={l}. A hill climber is applied to the whole 
individual; t={whole}. 

Table 2. Common parameter settings used during the benchmark function experiments 

label dim. 
no. of 

bits 
chrom. 
length 

pop. 
size 

max. hc 
steps 

F1 10 30 300 60 600 
F2 10 30 300 60 600 
F3 10 30 300 60 600 
F4 10 30 300 60 600 
F5 2 30 60 20 120 
F6 10 30 300 60 600 
F7 10 30 300 60 600 
F8 10 30 300 60 600 
F9 10 30 300 60 600 
F10 6 30 180 36 360 
F11 10 30 300 60 600 
F12 8 8 64 20 128 
F13 30 3 90 20 180 
F14 6 4 24 20 48 

 



During the initial set of experiments, the benchmark functions are tested using 
each meme described in Section 2.1. Experiments are also performed using a tradi-
tional Genetic Algorithm for comparison. The second set of experiments is designed 
according to the results obtained from the initial one. The best meme and two poor 
memes are fed into a multimeme algorithm. In the last set of MMA experiments, eight 
memes are used. Four hill climbing methods; h={MA0, MA1, MA2, MA3} are em-
bedded. Hill climbing is applied depending on the acceptance strategy; b={0, 1}. 0 
indicates a rejection, so hill climbing is not applied. If the meme points to the accep-
tance strategy 1, then the related hill climbing operator is applied. Hence, effectively 
there are five different memes. For short notation, each meme is referred as GA, 
MA0-MA3. 

3.2   Empirical Results for the Benchmark Functions 

Performance comparison of genetic algorithm and memetic algorithms using different 
memes are presented in Fig. 1 for selected benchmark functions based on the average 
number of evaluations. For each experiment, related bar appears in the figure, only if 
all the runs yield the expected result. MA0 is the best meme choice for F4, F13 and 
F14. MA1 is the best meme choice for F6-F8.  MA3 is the best meme choice for F2, 
F3, F5, F10, and F12. For functions F1, F9 and F11 genetic algorithm performs 
slightly better than the memetic algorithm with the meme MA1. MA2 and MA3 turn 
out to be the worst and the best meme, respectively, among MA0-MA3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The average evolutionary activity versus generation plots generated during the 

second set of experiments show that the multimeme approach successfully identifies 
useful memes. The MMA chooses the best meme and applies it more than the rest of 
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Fig. 1. Mean and the standard deviation of the number of evaluations per run, generated by each 
MA for a selected subset of benchmark functions 



the memes for all benchmark function, as illustrated in Fig. 2 for selected benchmark 
functions. The success rate for each benchmark function is 1.00. Any hill climber 
seems to attain the optimum fast for F1, F3 and F11. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Average evolutionary activity vs. generation plots of each meme utilized during the 
second set of experiments for a selected subset of benchmark functions 

In the third and the last set of experiments, results similar to the previous one are 
obtained. The MMA can still identify the best meme or a meme that does not perform 
significantly better than the best meme for almost each benchmark function, as illus-
trated in Fig. 3 for selected benchmark functions. Furthermore, in all runs full success 
is achieved for all cases. Unfortunately, a synergy between hill climbers is not ob-
served. Comparing the experimental results obtained using the MMA and the MA 
with the best meme for each benchmark indicate that the MA with the best meme is 
superior based on the average number of evaluations, except for F1, F3 and F11 
(Table 3). 
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Fig. 3. Average evolutionary activity vs. generation plots of each meme utilized during the 
third set of experiments for a selected subset of benchmark functions 

Table 3.  Average number of evaluations and standard deviations generated by a Memetic 
Algorithm for each benchmark function: MA0-MA3 denotes the Memetic Algorithm using 
only the corresponding meme and MMA denotes the Multimeme Algorithm using all of them 

label type 
  avr. no. of  

evals.      st.dev. label type 
avr. no. of 

evals.     st.dev. 
MMA 17,580 2,226 MMA 5,215,787 9,658,230 F1 
MA1 92,256 0

F8 
MA1 1,906,134 6,646,991 

MMA 23,605,004 24,364,979 MMA 43,871 12,193 F2 
MA3 8,455,507 3,803,504

F9 
MA1 180,783 12,647 

MMA 72,252 11,772 MMA 3,100,515 4,565,736 F3 
MA3 82,769 16,512

F10 
MA3 1,340,811 988,971 

MMA 12,926,879 11,435,876 MMA 17,580 2,226 F4 
MA0 9,494,844 10,332,574

F11 
MA1 36,060 0 

MMA 46,975 79,394 MMA 31,297 14,961 F5 
MA3 11,619 2,293

F12 
MA3 29,246 4,936 

MMA 553,306 231,124 MMA 7,667,352 2,832,376 F6 
MA1 525,398 262,055

F13 
MA0 4,348,896 1,617,951 

MMA 349,250 324,544 MMA 3,674,932 2,623,300 F7 
MA1 167,799 60,577

F14 
MA0 1,072,117 1,111,825 

4   Memetic Algorithms for Nurse Rostering 

4.1   Nurse Rostering Problem at the Memorial Hospital (NRPmh) 

An analysis is performed on the Nurse Rostering Problem at the Memorial Hospital 
(NRPmh), located in İstanbul, Turkey. There are three types of daily shifts: day, night 
and off-duty. The timetable size is known in advance. Although a biweekly schedule 
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is preferred, the hospital authorities produce a weekly schedule manually, in order to 
simplify the timetabling process. Since the preferences of nurses are essential and 
might change in time, schedules are acyclic.  

The hospital consists of three departments. Cross duty between the departments 
does not occur frequently. Hence, each nurse can be considered to be independent 
belonging to a specific department. Nurses are categorized into three ranks according 
to their experiences. Ranks {0, 1, 2} indicate the level of experience from lowest to 
highest. There are not many experienced nurses with rank 2, but there is at least one 
such nurse at each department. The constraints of this problem include;  
Excludes: 
1) Exclude Night Shifts Constraint (ENC): Night shifts can not be assigned to an 

experienced nurse with rank 2. 
Event-spread constraints: 
2) Off-duty Constraint (RDC): Nurses can define at most 4 rest day preferences. 
3) Shift Constraint (SHC): At a department, during each shift there must be at least 

one nurse.  
4) Successive Night Shifts Constraint (SNC):  A nurse can not be assigned to more 

than two successive night shifts. 
5) Successive Day Shifts Constraint (SDC):  A nurse can not be assigned to more 

than three successive day shifts.  
6) Successive Shifts Constraint (SSC): A nurse can not be assigned to two succes-

sive shifts. A day shift in one day and a night shift in the following day are con-
sidered as successive shifts. 

7) On-duty Constraint (ODC): Each nurse can not be assigned less than eight shifts 
per two weeks. 

RDC is considered as a soft constraint, while the rest are hard constraints.  

4.2   Constraint-based Violation-directed Heuristics 

Ozcan [41] proposed a violation directed hierarchical hill climbing (VDHC) heuristic 
template to be used within MAs for solving timetabling problems and implemented 
an instance for solving a real-world nurse rostering problem. Experimental results 
show that it is a promising operator. In this study, a violation type directed hill climb-
ing (VTDHC) heuristic template is presented as illustrated in Fig. 4.  The VTDHC 
supports adaptation and cooperation of operators. It is a more general template than 
the VDHC.  

The VTDHC template is designed to organize a set of hill climbers where each one 
improves a corresponding constraint type in a given timetabling problem. A set of 
events among several ones is selected based on the violations. The mechanism for 
selecting those events is up to the user. The number of violations caused by each 
constraint type within the selected set is used as a guide to select a hill climber. Fi-
nally, the selected hill climber is applied onto the selected events to resolve the viola-
tions due to the related constraint type.  
 



 
Fig. 4. Pseudo-code of the VTDHC  

An event arrangement indicates a structured organization of events in a timetabling 
problem. An event arrangement will be referred as arrangement in short from this 
point forward. For example, in Fig. 5, an arrangement for the NRPmh is provided.  It 
is possible to identify more than one arrangement of events for a timetabling problem. 
Arrangements can be categorized as static, dynamic and mixed. An arrangement is 
labeled as static, if the members in a group do not change during the search process. 
In static arrangements, events can be hierarchically organized. Variables are logically 
grouped either as partitions or overlapping subsets at each hierarchy level of an ar-
rangement. Static arrangement(s) can be obtained by analyzing the timetabling prob-
lem instance at hand. For example, according to the Nurse Rostering Problem de-
scribed in the previous section, a static arrangement of variables can be derived as 
illustrated in Fig. 5. There are four hierarchical levels within the arrangement: Hospi-
tal, Department, Nurse and Variable. Hospital is a group including all variables, while 
a group in the Nurse level is a partition, where each indicates the roster of a nurse for 
two weeks.  In this study, the static arrangement of daily nurse shifts (events) is used 
as shown in Fig. 5. Dynamic arrangements are based on the structure of the timetable 
and the assignment of events. Hence, members of a group might change during the 
search for an optimal solution, as the assignments of events might also change. For 
example, all the events (nurse shifts) scheduled at each day in a timetable constitute a 
dynamic arrangement of events. Mixed arrangements are a combination of both static 
and dynamic arrangements. For example, events scheduled at each day in a specific 
department represent a mixed arrangement.  
 

 
 
 
 
 
 
 

Fig. 5. Static arrangement of events (shifts) for NRPmh  

Combining the arrangements and VTDHC yields the design of useful hyper-

1. while (termination criteria are not satisfied) do 
a. Select a group (or groups) of events based on vio-

lations 
b. Select a constraint type based on contribution of 

each constraint type within the selected group (or 
groups) 

c. Apply hill climbing  for the selected  constraint 
type (without considering the other constraints) 
within the selected group of events 

2. end while 
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heuristics. For example, VDHC represents a subset of VTDHC heuristics, using a 
static arrangement of events. It is an iterative heuristic that applies a selected hill 
climber to a selected group of daily shifts. The hill climber selection is constraint 
violation-driven and based on a predetermined arrangement. First, hierarchy levels of 
an arrangement to be used in the VDHC are decided. The top level is the starting 
level to operate on. As the candidate solution improves, it stays at a level. A selected 
hill climbing method is applied to a selected group of nurse shifts at a level, evaluat-
ing violations due to the each constraint type. The VDHC restricts the area of concern 
to the nurse shifts at one level down in the hierarchy in the case of a relapse and the 
same steps are repeated. It terminates whenever no improvement is provided in none 
of the levels or a maximum number of steps is exceeded.  

A hill climber is selected using an implicit feedback from the evolutionary process, 
hence the VDHC is adaptive and in a way self-adjusting. During the traversal of an 
arrangement downwards in the hierarchy levels, the VDHC switches from individual 
level adaptation to component level adaptation [52]. In this study, two other hyper-
heuristics are proposed based on the VTDHC template and used within MAs.  

The VTDHC template can be extended and used for solving other multiobjective 
problems. Moreover, heuristics based on the VTDHC can be hybridized with other 
hyper-heuristics. In the current implementation, a single hill climber is designed for 
each objective. In the case of multiple hill climbers for each objective, the VTDHC 
instance can act as a decision mechanism for determining which objective to improve. 
Then, for the improvement of a selected objective, a traditional hyper-heuristic can be 
utilized to choose the hill climber to employ. This is a research direction beyond the 
scope of this paper. 

4.3   MAs for Solving NRPmh  

For solving the NRPmh described in Section 4.1, MAs are proposed. If there are T 
nurses in a hospital, then the total number of biweekly shifts to be arranged is l=T*14, 
where l is chromosome length. The search space size for finding the optimal schedule 
becomes immense; 3l. The traditional approaches fail to obtain a solution, making 
MAs an appropriate choice. In all MAs, an allele in a chromosome represents a daily 
shift assignment of a nurse. Furthermore, each chromosome in the population is struc-
tured as illustrated in Fig. 5.  

Seven hill climbing (HC) operators are designed to be used in the MAs: ENC_HC, 
RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC, and ODC_HC. Each constraint 
based HC operator attempts to resolve the conflicts due to the related constraint for a 
given variable in an individual by random rescheduling. Details of the hill climbing 
operators can be found in [41]. In this study, five sets of experiments are performed. 
In each set, a different MA is used.  

In the first set of experiments, a multimeme strategy for selecting which region to 
apply a selected hill climber is tested. The strategy also decides how many hill 
climbing steps should be used. Twelve different meme values are utilized. For all 
problem instances used during the experiments a single acceptance strategy is used; 



b={1} and n changes from one problem instance to another. The values in n are fixed 
during the start of a run as {2l/4, 3l/4, l, 2l}. The values of t are {whole, department, 
nurse}. A meme acting as a scheduler determines whether a hill climber will be 
applied to the whole individual, or to a departmental roster or to a nurse roster. Then, 
a constrained type is determined to be improved for the group of shifts pointed by the 
meme. Using a tournament selection method with tour size of two, the constraint 
causing more violations within the group of shifts is favored among two randomly 
selected constraint types. Afterwards, the appropriate hill climber based on the 
selected constraint is applied to the group of shifts for a number of steps determined 
by the same meme. The MMA experiments using this operator are performed for 
three different IR values.   

During the second set of experiments, hierarchical traversal of groups is reversed 
in the VDHC. The new hill climbing scheduler will be referred as rVDHC. Hill 
climbing starts from the bottom level; nurse level.  As the candidate solution im-
proves, the rVDHC stays at the nurse level. A selected hill climbing method is ap-
plied in the same way as the VDHC as described in Section 4.2. The rVDHC broad-
ens the area of concern to nurse shifts in a whole department, which is one level up in 
the hierarchy, in the case of deterioration. Then the same steps are repeated. The 
termination criteria are the same as the VDHC.  

In the third set of experiments a new scheduler is used. The worst nurse roster 
among a randomly selected two nurse rosters goes under a hill climbing process. This 
new scheduler is labeled as NHC. Notice that rVDHC and NHC are hyper-heuristics 
that are instances of VTDHC. 

In the fourth set of experiments, a multimeme algorithm is implemented. MMA 
uses 7 memes; h={ ENC_HC, RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC, 
ODC_HC }. All the rest of the parameters are fixed; b={1}, t={whole}, and n={2l}. 
Co-evolution determines which hill climber to apply. This version of the MMA is 
labeled as MMA7. The traditional GA is used during the last set of experiments in 
order to evaluate the role of hill climbers. 

5   Nurse Rostering Experiments 

5.1   Experimental Data and Common Settings 

Runs are terminated whenever the overall CPU time exceeds 600 sec., or all the con-
straints are satisfied. The maximum number of hill climbing steps is fixed as 2l. All 
MAs for nurse rostering use ranking as a mate selection method, giving four times 
higher chance to the best individual to be selected than the worst one, one point cross-
over and a trans-generational memetic algorithm with a replacement strategy that 
keeps only two best individuals from the previous generation. The mutation operator 
is based on the traditional approach. A shift of a nurse is randomly perturbed with a 
mutation probability of 1/l. Based on the analysis of the NRPmh, six random problem 
instances are generated; rnd1-rnd6 and they are used during the experiments [41]. 



The characteristics of the problem instances are summarized in Table 4. The data set 
is publicly available at http://cse.yeditepe.edu.tr/~eozcan/research/TTML.  

Table 4. Experimental data set, where the number of departments and nurses are denoted as 
ndep and nnur, respectively. Percentage of nurses from each rank and average number of off-
duty preferences of each nurse are denoted as pnr and avrpr, respectively. 

Label ndep nnur pnr0 pnr1 pnr2 avrpr 
rnd1 3 21 0.42 0.32 0.28 1.95 
rnd2 3 21 0.18 0.51 0.32 0.67 
rnd3 3 21 0.28 0.42 0.32 2.19 
rnd4 4 21 0.14 0.47 0.42 1.67 
rnd5 4 21 0.19 0.46 0.37 2.33 
rnd6 4 21 0.13 0.47 0.42 0.95 

5.2   Empirical Results for the NRP Experiments 

Detailed experimental results of the MA with the VDHC are presented in [41]. The 
results obtained from the first set of experiments indicate the viability of the MMA if 
used as a self adaptive method for selecting the region where to apply a hill climber. 
Yet, the MA with the VDHC performs better. Experiments are repeated for different 
values of IR around 0.20. The results are summarized in Table 5 for the experimental 
data. No IR value is significant. Considering the average success rates, all IR values 
yield almost the same performance. An interesting result of the first set of experi-
ments is that MMA selects mostly a nurse roster and then applies a hill climber to it, 
as illustrated in Fig. 6 for IR=0.20. The rest of the experiments are performed on 
Pentium IV 3 GHz. machines with 2 GB RAM.  

Table 5. MMA experiments using IR={0.15, 0.20, 0.25} with the random data set, where the 
first row denotes the success rate, the second row denotes the average number of generations 
per run for each IR value 

IR rnd1 rnd2 rnd3 rnd4 rnd5 rnd6
0.90 0.98 1.00 0.96 0.92 1.000.15 

1,145.96 217.74 77.54 697.28 667.58 234.08
0.94 0.98 1.00 0.94 0.94 1.000.20 

889.70 316.10 83.78 651.76 722.48 271.52
0.96 0.98 1.00 0.96 0.98 0.960.25 

921.12 317.62 92.20 750.18 371.34 422.90
 



0

5000

10000

15000

20000

25000

30000

35000

40000

rnd1 rnd2 rnd3 rnd4 rnd5 rnd6

av
r.

 n
o.

 o
f. 

hi
ll 

cl
im

bi
ng

 st
ep

s

whole
department
nurse

 

Fig. 6. Average number of hill climbing steps that are executed to improve the whole set of 
daily shifts, a departmental roster and a nurse roster for each problem instance during the first 
set of experiments, where IR=0.20 

During the preceding sets of experiments, the MAs with rVDHC, NHC, the simple 
genetic algorithm and the MMA7 are tested on the problem instances. The success 
rate of each algorithm for each problem instance is presented in Table 6. Obviously, 
hill climbing boosts the performance GAs. Simple genetic algorithm turns out to be 
the worst algorithm for solving the problem instances. Almost; in none of the runs a 
violation free schedule is obtained. Empirical results yield the success of MAs with 
the following hill climbers from the best towards the worst: VDHC, rVDHC and 
NHC, respectively. The average performance of MMA7 is comparable to the per-
formance of NHC. Results show that letting the multimeme algorithm to choose the 
region where to apply a constraint based hill climber based on a static hierarchical 
arrangement of events performs better than to let it to choose which meme to use for 
solving nurse rostering problem instances.  

Table 6. The success rates of different algorithms for solving random problem instances 

 

Label VDHC rVDHC NHC MMA7 Simple GA 
rnd1 0.96 0.94 0.68 0.86 0.00 
rnd2 1.00 0.98 0.88 0.96 0.04 
rnd3 1.00 1.00 0.98 1.00 0.00 
rnd4 0.98 0.94 0.28 0.18 0.00 
rnd5 1.00 0.86 0.26 0.30 0.00 
rnd6 1.00 1.00 0.68 0.50 0.00 

6   Conclusions 

Memetic algorithms, including the self-generating multimeme memetic algorithm 
proposed by Krasnogor [33] are investigated. Different MAs are experimented using 
a set of benchmark functions and nurse rostering problem instances, generated ran-
domly by Ozcan [41] based on NRPmh.  Some common empirical results are ob-



tained from both investigations. As expected, the performance of a genetic algorithm 
improves if a hill climbing operator is also utilized. Lamarckian learning mechanism 
employed by the MMAs yields appealing results for selecting a meme among a set of 
memes during the evolutionary process. Yet, the MAs with a good meme choice 
perform better. Different memes yield different performances. In the benchmark ex-
periments, the MMAs identify the useful memes for all functions, but unfortunately, a 
synergy between hill climbers is not observed during the search. The average per-
formance of the Davis’s Bit Hill Climbing is the best on the benchmark functions.  

The MAs are very promising approaches for tackling nurse rostering problems. 
Proposed heuristic template combined with a prior knowledge about a timetabling 
problem, such as a static arrangement, provides a promising guide for designing 
adaptive heuristics. The MAs, each containing such an instance as a single hill 
climber are compared to the MMAs, with different memetic materials. The empirical 
results indicate the success of the MA with VDHC [41] over the rest of the MAs 
presented in this paper. The VDHC using tournament selection provides a better 
cooperation among constraint-based memes.  The hierarchical traversal over the 
groups based on a static arrangement during the hill climbing seems to work as well.  
Applying a constraint-based meme to a larger group of events first and then narrow-
ing the area of concern generates better results than the reverse traversal. Still, the 
rVDHC shows potential.  
 
Acknowledgement 

 
This research is supported by TUBITAK (The Scientific and Technological Research 
Council of Turkey) under grant number 105E027. 

References 

1. Ackley, D.: An empirical study of bit vector function optimization. Genetic Algorithms and 
Simulated Annealing, (1987) 170-215 

2. Ahmad, J., Yamamoto, M., and Ohuchi, A.: Evolutionary Algorithms for Nurse Scheduling 
Problem. Proc. of IEEE Congress on Evolutionary Computation (2000) 196-203. 

3. Aickelin, U., and Bull, L.: On the Application of Hierarchical Coevolutionary Genetic 
Algorithms: Recombination and Evaluation Partners. JASS, 4(2) (2003) 2-17 

4. Aickelin, U., and Dowsland, K.: An Indirect Genetic Algorithm for a Nurse Scheduling 
Problem. Computers & Operations Research, 31(5) (2003) 761-778 

5. Alkan, A., and Ozcan, E.: Memetic Algorithms for Timetabling. Proc. of  IEEE Congress 
on Evolutionary Computation (2003) 1796-1802 

6. Berrada, I., Ferland, J., and Michelon, P.: A Multi-Objective Approach to Nurse Schedul-
ing with both Hard and Soft Constraints. Socio-Economic Planning Science. vl. 
30(1996)183-193 

7. Burke, E.K., Cowling, P.I., De Causmaecker, P., and Vanden Berghe, G.: A Memetic 
Approach to the Nurse Rostering Problem, Applied Intelligence, vol 15 (2001) 199-214 

8. Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden Berghe G.: Variable Neighbour-
hood Search for Nurse Rostering Problems, in Metaheuristics: Computer Decision-Making 
(edited by M.G.C. Resende and J. P. de Sousa), Chapter 7, Kluwer (2003) 153-172 



9. Burke, E.K., De Causmaecker, P., and Vanden Berghe, G.: A Hybrid Tabu Search Algo-
rithm For the Nurse Rostering Problem, Proc. of the Second Asia-Pasific Conference on 
Simulated Evolution and Learning, vol. 1, Applications IV (1998) 187-194 

10. Burke, E.K., De Causmaecker, P., and Vanden Berghe, G., Van Landeghem, H.: The State 
of the Art of Nurse Rostering, Journal of Scheduling, 7 (2004) 441-499 

11. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S.: Handbook of 
metaheuristics, chapter 16, Hyper-heuristics: an emerging direction in modern search tech-
nology, Kluwer Academic Publisher (2003) 457-474 

12. Burke, E., and Soubeiga, E.: Scheduling Nurses Using a Tabu-Search Hyper-heuristic, 
Proc. of the 1st MISTA, vol. 1 (2003) 197-218 

13. Chun, A.H.W., Chan, S.H.C., Lam, G.P.S., Tsang, F.M.F., Wong, J., and Yeung, D.W.M.: 
Nurse Rostering at the Hospital Authority of Hong Kong, Proc. of 17th National Confer-
ence on AAAI and 12th Conference on IAAI (2000) 951-956 

14. Cowling P., Kendall G., and Soubeiga E.: A Hyper-heuristic Approach to Scheduling a 
Sales Summit. Proceedings of In LNCS 2079, Practice and Theory of Automated Time-
tabling III : Third International Conference, PATAT 2000, Konstanz, Germany, selected 
papers (eds Burke E.K. and Erben W) (2000) 176-190 

15. Davis, L.: The handbook of Genetic Algorithms, Van Nostrand Reingold, NY (1991) 
16. Davis, L.: Bit Climbing, Representational Bias, and Test Suite Design, Proceeding of the 

4th International conference on Genetic Algorithms (1991) 18-23 
17. De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems. PhD 

thesis, University of Michigan (1975) 
18. Downsland, K.: Nurse Scheduling with Tabu Search and Strategic Oscillation, European 

Journal of Operations Research. Vol. 106, 1198 (1998) 393-407 
19. Duenas, A., Mort, N., Reeves, C., and Petrovic, D.: Handling Preferences Using Genetic 

Algorithms for the Nurse Scheduling Problem, Proc.of the 1st MISTA, vol.1(2003)180-196 
20. Easom, E. E.: A survey of global optimization techniques. M. Eng. thesis, Univ. Louisville, 

Louisville, KY (1990) 
21. Even, S., Itai, A., and Shamir, A.: On the Complexity of Timetable and Multicommodity 

Flow Problems, SIAM J. Comput., 5(4) (1976) 691-703 
22. Fang, H.L. Genetic Algorithms in Timetabling and Scheduling, PhD thesis, Department of 

Artificial Intelligence, University of Edinburgh, Scotland (1994) 
23. Gendrau, M., Buzon, I., Lapierre, S., Sadr, J., and Soriano, P.: A Tabu Search Heuristic to 

Generate Shift Schedules, Proc. of the 1st MISTA, vol.2 (2003) 526-528 
24. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 

Addison-Wesley, Reading (MA) (1989) 
25. Goldberg, D. E.: Genetic algorithms and Walsh functions: part I, a gentle introduction, 

Complex Systems (1989) 129-152  
26. Goldberg, D. E.: Genetic algorithms and Walsh functions: part II, deception and its analy-

sis, Complex Systems (1989) 153-171 
27. Griewangk, A.O.: Generalized descent of global optimization. Journal of Optimization 

Theory and Applications (1981) 34: 11.39 
28. Holland, J. H.: Adaptation in Natural and Artificial Systems, Univ. Mich. Press (1975) 
29. Han, L., and Kendall, G.: Application of Genetic Algorithm Based Hyper-heuristic to 

Personnel Scheduling Problems, Proc. of the 1st MISTA, vol.2 (2003) 528-537 
30. Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T., and Tsuruoka, S.: Genetic 

Algorithms with the Constraints for Nurse Scheduling Problem, Proc. of IEEE Congress on 
Evolutionary Computation (CEC), Seoul (2001) 1123-1130 

31. Krasnogor, N.: Studies on the Theory and Design Space of Memetic Algorithms, PhD 
Thesis, University of the West of England, Bristol, United Kingdom (2002) 



32. Krasnogor, N. and Smith, J.E.: Multimeme Algorithms for the Structure Prediction and 
Structure Comparison of Proteins. In Proc. of the Bird of a Feather Workshops, GECCO 
(2002) 42-44 

33. Krasnogor, N. and Smith, J.E.: Emergence of Profitable Search strategies Based on a Sim-
ple Inheritance Mechanism. In Proc. of the Genetic and Evolutionary Computation Confer-
ence, GECCO (2001) 432-439.  

34. Krasnogor, N. and Smith, J.E.: A Memetic Algorithm With Self-Adaptive Local Search: 
TSP as a case study. In Proc. of the Genetic and Evolutionary Computation Conference, 
GECCO (2000) 987-994. 

35. Leighton, F. T.: A graph coloring algorithm for large scheduling problems. Journal of 
Research of the National Bureau of Standards, 84:489 (1979) 

36. Li, H., Lim, A., and Rodrigues, B.: A Hybrid AI Approach for Nurse Rostering Problem, 
Proc. of the 2003 ACM Symposium on Applied Computing (2003) 730-735 

37. Mitchell M., Forrest S.: Fitness Landscapes: Royal Road Functions, Handbook of Evolu-
tionary Computation, Baeck T, Fogel D, Michalewicz Z (Ed.), Institute of Physics Publish-
ing and Oxford Univers (1997) 

38. Moscato, P., and Norman, M. G.: A Memetic Approach for the Traveling Salesman Prob-
lem Implementation of a Computational Ecology for Combinatorial Optimization on Mes-
sage-Passing Systems, Parallel Computing and Transputer Applications (1992) 177-186 

39. Ning, Z., Ong, Y. S., Wong, K. W. and Lim, M. H.: Choice of Memes In Memetic Algo-
rithm, Proc. of the 2nd International Conference on Computational Intelligence, Robotics 
and Autonomous Systems (2003) 

40. Ong, Y.S. and Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms. IEEE 
Trans. Evolutionary Computation, vol. 8, no. 2 (2004) 99-110 

41. Ozcan, E.: Memetic Algorithms for Nurse Rostering. Lecture Notes in Computer Science. 
Springer-Verlag, The 20th ISCIS (2005) 482-492 

42. Ozcan, E.: Towards an XML based standard for Timetabling Problems: TTML, Multidisci-
plinary Scheduling: Theory and Applications, Springer Verlag (2005) 163 (24) 

43. Ozcan, E., and Alkan, A.: Timetabling using a Steady State Genetic Algorithm, Proceed-
ings of the 4th PATAT (2002) 104-107 

44. Ozcan, E., Ersoy, E.: Final Exam Scheduler - FES, Proc. of 2005 IEEE Congress on Evolu-
tionary Computation, vol. 2, (2005) 1356-1363 

45. Ozcan, E., and Onbasioglu E.: Genetic Algorithms for Parallel Code Optimization, Proc. of 
2004 IEEE Congress on Evolutionary Computation, vol. 2 (2004) 1775-1781 

46. Radcliffe, N. J., and Surry, P.D.: Formal memetic algorithms, Evolutionary Computing: 
AISB Workshop, LNCS, vol. 865, Springer Verlag (1994) 1-16 

47. Rastrigin L. A.: Extremal control systems. In Theoretical Foundations of Engineering 
Cybernetics Series. Moscow: Nauka, Russia. (1974) 

48. Ross, P., Corne, D., and Fang, H-L.: Improving Evolutionary Timetabling with Delta 
Evaluation and Directed Mutation, Proc. of PPSN III (1994) 556-565 

49. Ross, P., Corne, D., and Fang, H-L.: Fast Practical Evolutionary Timetabling, Proc. of 
AISB Workshop on Evolutionary Computation (1994) 250-263 

50. Schwefel, H.-P.: Numerical optimization of computer models. Chichester: Wiley & Sons. 
(1981) 

51. Schwefel, H. P.:  Evolution and Optimum Seeking. John Wiley & Sons. (1995) 
52. Smith, J. and Fogarty, T. C.:Operator and parameter adaptation in genetic algorithms. Soft 

Computing 1(2): 81-87 (1997) 
53. Tasoulis D., Pavlidis N., Plagianakos V, Vrahatis M.: Parallel Differential Evolution. Proc. 

of 2004 IEEE Congress on Evolutionary Computation (2004) 2023-2029 
54. Whitley, D.: Fundemental principles of deception in genetic search. In G.J.E. Rawlins 

(Ed.), Foundations of Genetic Algorithms. Morgan Kaufmann, San Matco, CA (1991) 


