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Abstract. An apprenticeship-learning-based technique is used as a hyper-
heuristic to generate heuristics for an online combinatorial problem. It
observes and learns from the actions of a known-expert heuristic on small
instances, but has the advantage of producing a general heuristic that
works well on other larger instances. Specifically, we generate heuristic
policies for online bin packing problem by using expert near-optimal poli-
cies produced by a hyper-heuristic on small instances, where learning is
fast. The ”expert” is a policy matrix that defines an index policy, and the
apprenticeship learning is based on observation of the action of the ex-
pert policy together with a range of features of the bin being considered,
and then applying a k-means classification. We show that the generated
policy often performs better than the standard best-fit heuristic even
when applied to instances much larger than the training set.

Keywords: Hyper-heuristics, learning by demonstration, apprentice-
ship learning, generalization

1 Introduction and Related Work

Meta-heuristics have long been used to solve optimization problems using many
versions of neighborhood search. However, the efficiency of meta-heuristics de-
pend on the problem domain and the neighborhood operator. Thus, meta- heuris-
tics may have different performances on different problem domains or even on
different instances of the same problem. In order to overcome these dependencies,
automated search techniques have emerged [8-10], and now are often generically
called hyper-heuristics. Hyper-heuristics take the search process one level higher
to the space of heuristics. That is, there is a higher level (meta-)heuristic which
at each instance of time, chooses some low level and often simpler heuristic
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to solve the problem. According to one classification [4], hyper-heuristics, like
many machine learning problems, can be divided into three categories depend-
ing on the feedback mechanism they employ: on-line learning, off-line learning
and no learning. If the hyper-heuristic framework learns while searching, it is
an on-line learning hyper-heuristic. On the contrary, an off-line learning hyper-
heuristic learns prior to the search phase. When no feedback is acquired from the
search space, then the corresponding hyper-heuristic framework is a no learning
framework. Hyper-heuristics can also be classified into two groups: selection and
generation hyper-heuristic. The former, selects a heuristic among a set of existing
heuristics at each phase of the search. The latter, generates new heuristics from
components of the existing low level heuristics. Both selection and generation
hyper-heuristics can be further categorized into construction or perturbation
heuristics. More on hyper-heuristics can be found in [3, 13, 16]. Selection hyper-
heuristics have been well studied, and gave rise to the CHeSC 2011 competition®;
further details of this can be found in [7,12] and at the CHeSC website, and of
the winning hyper-heuristic by Misir et al. in [11].

However, this paper is about generation rather than selection hyper-heuristics,
and so rather than the neighbourhood search of CHeSC, we study the generation
of heuristics for an online problem. Specifically, we study the online bin-packing
problem and follow the policy matrix methods of Ozcan and Parkes [14]. In
those methods the goal is to produce an ‘index policy’, that assigns a score to
all potential actions and then selects the highest scoring action. This is done
by using direct search by a genetic algorithm. Earlier related work on online
bin-packing [17] had proposed a hyper-heuristic approach which learns how to
choose a heuristic based on the dynamically changing problem state after place-
ment of each item for bin packing. Subsequent work (e.g. [5,6]) used genetic
programming methods to evolve an arithmetic expression for the scoring func-
tion within the policy. Parkes, Ozcan and Hyde [15] combined previous studies
and presented a method based on policy matrices for analysing the effects of
the genetic programming mutation operator in a regular run using online bin
packing. The policy matrix methods, and the methods of this paper, differ from
that of [17], as it attempts to learn a single heuristic rather than learning how
to mix them to construct a solution.

Although the policy matrix approach in [14] was effective at generating
heuristics with better performance than the standard ones, it had the draw-
back of directly only applying to a specific set of values for the bin capacity and
range of item sizes. In this paper, we describe a method to take policy matrices
learned on small instances and generalise them to apply to different instances,
and with the particular aim to apply them to larger instances. We used a form of
apprenticeship learning (a.k.a learning by demonstration or imitation learning)
[1] for generalizing the demonstrations provided by an expert. Apprenticeship
learning has a wide range of applications in control and robotics and is heavily
based on Inverse Reinforcement Learning (IRL). Although we do not use IRL

3 Cross-domain Heuristic Search Challenge:
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methods directly in our approach, our study is mainly inspired by them. Our
method generates a generalized policy by classifying the actions of some expert
policies (heuristics) according to each search state, thus it also can be viewed
as a hyper-heuristic. We also note that one intention originally motivating the
work of [14] was to produce good policy matrices and then data-mine them to
learn good patterns. This work is somewhat different in that it does not learn
directly from the policy matrix, but rather by observing the decisions that it
lead to.

Our method in use is an off-line classification method, needing to be trained
on an available dataset, and so in categorization of hyper-heuristics in [4] it best
fits into the category of off-line learning generation hyper-heuristics. The study
here includes only experimental results on a single problem domain, however, we
expect the general methods it will also be applicable to other domains.

2 Policy Matrices for Online Bin Packing

2.1 Online Bin Packing Problem

The bin packing problem is known to be a combinatorial NP-hard problem which
deals with packing items of different sizes to bins of fixed capacity. The objective
is to minimize the number of bins used. Different variants of the bin packing
problem exist, one of which is the online bin packing problem. In this variant,
we are dealing with partitioning a set of integer values into subsets with the
constraint that the sum of integers within a subset does not exceed the capacity
[14]. Moreover, as a distinguishing feature, items arrive sequentially and each
item has to be assigned to a bin before the next one is disclosed. A decision
has to be made dynamically at each step based on partial information regarding
which bin should be used for placement. This is in contrast to the off-line bin
packing problem where there is a complete information on the number of items
and their sizes prior to solving a problem instance.

The bin capacity is a constant integer C' > 1 and the items can have any size
in the range [1,C]. An open bin has a remaining capacity which can accommo-
date at least one item assuming that the sizes of items are known. An empty
new bin is always available and it is opened if the size of the current item is
bigger than the remaining capacity of all open bins. In such a case, the new bin
is opened and the item is placed into this new bin. A bin is closed if its remaining
space is smaller than the minimum item size. The uniform bin packing instances
are represented by the formalism: UBP(C, Smin, Smaz, IN) (adopted from [14])
where C' is the bin capacity, Spyn and s;q; are minimum and maximum item
sizes and N is the number of total items. The item sizes at each step are cho-
sen uniformly and independently random from the range [Smin, Smaz]- Also, we
have the assumption S;,;, > 0 and spa: < C. The fitness measure for each
experiment on N items is computed according to the following equation.

1
fzggjft (1)
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where B is the number of bins used and f; is the fullness of bin ¢.

2.2 Matrix Representation of Policies

As discussed earlier, in our framework we need a set of initial policies which work
fine in their own domains (a specific U BP here). Our methodology then utilizes
these expert policies to form a generalized model over the problem domain. This
generalized model is independent of the underlying policy and a framework which
generates expert policies on a given instance is sufficient for the task. Due to
its simple implementation, ease of use and high performance, we chose to utilize
the work in [14] to generate our expert policies. A description of this method is
given below.

Ozcan and Parkes [14] proposed a hyper-heuristic method to generate matrix
policies to solve instances of online bin packing problem. In their method, policy
matrix evolution for generation of heuristics, a policy is represented by a matrix
of scores (policy matrix). Each row in this matrix represents the remaining bin
capacity () prior to the item assignment and each column represents the current
item size (s) to be assigned to a bin. The values of each matrix element are either
—1 for inactive elements (irrelevant (r, s) pairs which never occur) or W4 which
is the score associated with assigning item of size s to a bin of remaining capacity
r. The value for W,.; is chosen from the range [Wmin, Wmaz]- In our experiments
we chose Wy = 1 and Wpme, = 2 for simplicity. The policy matrix is then
optimized using an off-line learning GA for a given problem instance (a specific
UBP as described in Section.2). Each individual is consisted of the values of the
active members of the policy matrix. A generation of these individuals is then
generated which goes through selection, recombination, mutation and evaluation.
Please note that, since a single policy matrix is a heuristic, then the GA is a
hyper-heuristic which searches in the space of heuristics. Further detail on this
method can be found on [14]. The experimental results show that this method
produces reliable policies which solve a given U BP with a high performance.

3 The Proposed Approach

One of the major contributions of this study is to show that each search state
can be seen and described as a feature set with which a generalized model can
be constructed. Thus, the feature set is a crucial part of our framework since
it affects the performance of our method which benefits from classification al-
gorithms (namely k-means). In order to achieve a desirable performance, the
extracted features should be instance independent. That is, they should not be
dependent on the absolute values of the item size (s), bin capacity (C) and min-
imum or maximum item size (Syin OT Smasz), but rather to depend on relative
sizes. Table 1 shows the list of considered features along with their formal and
verbal descriptions. The features in Table 1 are extracted for each open bin on
the arrival of each new item. The last two features of the feature vector described



Generalizing Hyper-heuristics via Apprenticeship Learning 5

in Table 1, are designed to increase the prediction power of the generalized pol-
icy. In other words, regardless of the decision of the expert policy on selecting
or rejecting the current bin, we have assumed that the item has been assigned
to the bin (if it’s size does not exceed the bin’s remaining capacity) to see what
changes such an assignment makes in the search state. The new remaining ca-
pacity of such a hypothetical assignment is noted by the symbol ' = r — s in
Table 1.

Table 1. Features of the search state. Note that the UBP instance defines the constants
C, Smin, and Smaez Whereas the variables are s the current item size, and r the remaining
capacity in the bin considered, and 7’ is simply r — s.

feature description
(S — smm)/(smam — Smin) normalized current item size

T'/C normalized remaining capacity of the current bin

S/C ratio of item size to bin capacity

S/T ratio of item size to the current bin’s remaining capacity

T’I/C normalized remaining capacity of the current bin after a feasible as-
signment

(T//Smax) — Smin ratio of remaining capacity of the current bin after a feasible assign-

ment to the range of item size

In classical machine learning techniques, each row of features in the dataset
determines a certain class label. In this work we chose to use the action which the
expert policy prefers for each bin, as the label for each row of features (records).
Typically, what is being done by the policy matrices, or any other policy in fact,
is to either open a new bin or to choose an open bin and assign the item to that
bin. Thus, in our work the label determines if the bin is selected (label 1) or
rejected (label 0).

Having determined the necessary features for our method, we can now use
our expert policies to extract features and their corresponding labels for each
search state. That is, we assume that we are in possession of a set of n expert
policies {m},...,7"} in one dimensional on-line bin packing problem domain.
These expert policies are obtained by the policy generation method discussed
in Section.2.2. Each expert policy corresponds to a certain UBP. We run each
expert policy once, on it’s corresponding UBP for a certain and fixed number
of items N = 10°. While running, expert features, ¢!, are extracted for each
state of the search (¢). Here, ¢! is a r dimensional vector of features where r is
the number of features representing a search state. At the end of each run for a
policy 7! we will have a set of demonstrations like:

Dys = {(¢%, ar)|me} (2)
where a; is the action at step ¢. The demonstration sets for all training policies
are then merged together to form a dataset.
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p—| ), 3)
=1

Having the feature vectors and their associated labels, we employ a k-means
clustering algorithm to cluster the feature vectors of each class. The k-means
algorithm is a semi-parametric method which uses a mixture of densities to
estimate the input sample [2]. The distance metric in use (d) is one minus cosine
similarity (Eq.6). The clustering process is designed to generate 8 cluster centroid
coordinates, 4 of which labeled as selected bins (feature vectors labeled 1) and
the rest as rejected bins (feature vectors labeled 0). The number of clusters for
each class has been determined experimentally.

bo, = ni S 6t o~ E(glla; eD), dtea;, Jistolen  (4)
7 otex;

Here, x; is the jth centroid and n; is the number of samples which belong
to the centroid j. For an unseen problem instance (a UBP), at each state of
the search, say, on the arrival of each new item, for each open bin, the state
features are extracted ((i)t') and the closest matching centroid to the current
feature vector in terms of cosine similarity is found. In case the centroid has a
label 1 the bin is selected for the item assignment according to a probability.
The probability is chosen to be 0.99 and is considered to introduce randomness
to the decision making process. Eq.5 illustrates the decision making mechanism
of the generalized policy, given a feature vector for a bin and a set of centroids.

g = {az, € {0,1} | argmind(¢s,, ¢") . ¢a, € D} (5)
J

Here, w4 is the generalized policy, the subscript x; indicates the jth centroid
obtained by the k-means clustering algorithm, a,, is the action (label) which is
associated to the centroid j and d is the distance metric which is given in Eq.6.

S, ba, B
JE 00,7 /5, 0

The summations in Eq.6 are over r, the dimension of the feature vector
which is not shown as index in the equation in order to reduce the complexity
of notations.

(6)

d(¢$j7¢t,) =1-

4 Experiments

Since we have used the policy matrices generated by the method in [14], a first
round of training has been performed to obtain a set of expert policies using
the hyper-heuristic in [14]. Then each policy matrix is run on it’s corresponding
instance to obtain a set of features for search states and form a data set (D in
Eq. 3). However, since the underlying machine which performs the clustering is
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an Ubuntu 10.10 with 3GB of RAM, it only can handle small datasets. In order
to keep the dataset small enough to be processed by the computer, the actions of
the expert on each instance is sampled randomly. That is, not all the states are
considered for feature extraction. Instead, a feature vector is extracted for each
state according to a uniformly random distribution with a probability of 0.15.
The dataset is then clustered which represents the expected feature vector of the
expert. For unseen instances of the one dimensional bin packing problem, the
feature vector for each open bin is extracted and it is determined if the feature
vector of the bin belongs to selected or rejected bins (a choice performed by the
expert).

4.1 Experimental Design

In order to obtain expert policies a GA framework as in [14] has been used for
which the parameter setting is given in Table 2. Except the values of w,,;, and
Win, basically, the entries of Table 2 are the settings which were used in [14]
and are given here for convenience. It should be noted that these values were
suitable for small instances, but tend not to converge for larger instances. The
‘expert policies’ obtained can sometimes be significantly sub-optimal, due to the
large computational resources needed to learn policies in some cases.

Table 2. GA parameter setting

No. of iterations 200 pop. size [<]
Selection Tournament Tour size 2
Crossover Uniform |Crossover Probability| 1.0
Mutation Traditional Mutation Rate 0.1

No. of trials 1000 No. of Items 10°
Wmin 1 Wmaz 2

The problem instances under consideration are a total of 10 instances. We
assume that we have the expert policy corresponding to each instance. That
is, we used the GA to obtain an expert policy matrix corresponding to each
instance. As a consequence, we know the performance of each expert policy on
it’s corresponding instance, which is used for comparison in later stages of our
experiments. However, in order to train and construct the generalized policy (),
we utilize only 3 instances to form the dataset and construct our model. We use
the k-means algorithm to construct a generalized model of the choices of expert
policies on their corresponding instances. The generalized policy then uses the
resulting data set and the model to solve the remaining 7 instances. For feature
extraction in the training phase the expert policy is run on it’s corresponding
instance for a single run which contains 10° items. For testing purposes, the
generalized policy is tested on each problem instance in the test fold for 100
runs, each including 10° items. The instances used to train the 4 and form the
dataset are UBP(15,5,10,10%),UBP(30,4,20,10%) and UBP(40, 10,20, 10°).
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4.2 Experimental Results

As mentioned earlier, in our experiments, the expert policy performs a single run
on its corresponding instance, resulting in the training feature set. Subsequently,
the test instances, are used to test the generalized policy. The results of this
experiment is shown in Table 3. In order to have a better understanding of the
results, also the results of the best fit (BF) heuristic is given as a lower bound.
Please note that the reported results in Table 3 for 7,7, and best fit are obtained
by running each policy for 100 runs on each problem instance.

Table 3. A comparison between the performances of the expert policy (), generalized
policy (mg) and the best fit heuristic(BF) on various unseen instances. Numbers are
average bin fullness percentages.

Average Performance||Max. Performance||Min. Performance
Instance Te | Tg BF Te Ty BF Te Ty BF

UBP(20,5,10,10°) [98.42[94.32] 91.55 [|98.47[94.41] 91.66 [|94.33[94.21] 91.46
UBP(30,4,25,10°) [99.68[97.69] 98.38 [[99.76[97.92[ 98.49 [[99.52[97.36] 98.30
UBP(50,10,25,10°) [99.20[93.32] 93.31 [[99.31]93.41] 93.41 [[99.08]93.25[ 93.26
UBP(60,15,25,10°) [99.75/93.83] 92.54 [[99.91[94.80| 92.65 [[99.45[92.91] 92.42
UBP(75,10,50,10%) [98.45(98.50] 96.08 [[98.51]98.54] 96.13 [[98.37|98.44] 96.04

)

5

UBP(80, 10,50, 10°) [98.86/98.17] 96.39 [[98.91(98.21| 96.44 [[98.74]98.13] 96.34
UBP(150,20, 100, 10°)|97.56(98.32| 95.81 ||97.66|98.37| 95.87 ||97.49|98.26| 95.76

r\s 12345686 123456
1:
2: .2 .2
3: .12 .22
4: .21 .21
5: .
6: 2 2 .22

Fig. 1. The optimal and generalised matrix policies for UBP(6,2, 3,10°%)

The generalized policy (7,) does not generate optimal policies for the test
instances, however 7, follows the expert policy (7.) in terms of performance as
summarized in Table 3. Figure 1 illustrates the optimal policy along with a near
optimal generalized policy yielding 96.45% mean bin fullness for the instance
UBP(6,2,3,10°) while BF generates a performance significantly worse than
7y with a mean bin fullness of 92.25%. The generalized policy is 1 Hamming-
distance away from the known optimal, differing at W5 . In the case of the
instance UBP(30,4,25,10°) BF performs slightly better than the generalized
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policy, but in all other instances the generalized policy outperforms the BF.
The performance differences are statistically significant for U BP(20, 5, 10, 10°),
UBP(60,15,25,10°) and the rest of the instances. It is observed that 7, is capa-
ble of generalizing the expert policies to larger problem instances. All problem
instances in the training phase of 7,4, are smaller in terms of bin capacity, min-
imum and maximum item size as compared to the instances in the test set.
Applying the generalized policy to larger unseen problem instances still results
with a performance similar to that of the expert policy. This achievement is
important since by demonstrating expert actions on simple problem instances,
our generalized method was able to perform well on larger instances without
undergoing the time consuming cycle of genetic evolution.

5 Conclusion and Future Work

In this study, we have used the idea of apprenticeship learning to construct a
generalized model of the problem domain using a set of expert policies derived by
a hyper-heuristic. We have described each state of the search by a feature vector
and used the feature vector to construct the generalized model. Our experiments
show that without a need to re-construct new policies for new instances of the
problem domain, our model is able to generalize some existing policies to the
problem domain. Our conclusion is that this method can be generalized to a
cross-domain level. However, in order to achieve such a level of generality, one
has to first determine a common feature set which can be exploited in a domain-
independent fashion. Our future work is to have an investigation on automatic
feature extraction and selection methods for this purpose. Finally, one could
complete the loop’ and use the generalized policy to generate a policy matrix;
which could be used to initialize the GA used in [14]. Such an initialization
approach, instead of a randomized initialization scheme, may well be expected
to reduce the total number of generations to generate a true expert policy on an
unseen problem instance.
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