
Final Exam Scheduler – FES

Ender Özcan
Dept. of Computer Engineering

Yeditepe University
Kayisdagi, Istanbul, Turkey
eozcan@cse.yeditepe.edu.tr

Ersan Ersoy
Dept. of Computer Engineering
Istanbul Technical University

Maslak, Istanbul, Turkey
eersoy@cse.yeditepe.edu.tr

Abstract- Timetabling problems are constraint
optimization problems proven to be NP complete.
Furthermore, evaluation of violations is costly, and there
is no common data format for representing timetabling
problem instances. In this paper, a framework for
designing memetic algorithms (MAs) to solve timetabling
problems is described and a tool, named Final Exam
Scheduler (FES) is introduced. FES is the first tool that
accepts Timetabling Markup Language (TTML)
documents as input. It utilizes an MA with an adaptive
violation directed hierarchical hill climbing method for
solving examination timetabling problem instances.
Experimental results on a set of benchmark data indicate
the success of MA.

1 Introduction

Timetabling problems have been studied by numerous
researchers due to its NP complete nature (Even et. al.
1976). There are varieties of timetabling problem classes on
which variety of approaches are used. Most of the
research in the area focuses on employee shift timetabling,
especially; nurse rostering, course timetabling and
examination timetabling (Werra 1985, Fang 1994, Schaerf
1996, Alkan et. al. 2003, Burke et. al. 2004, Ozcan 2005b).
The aim in examination timetabling is to produce the most
appropriate schedule for a set of examinations under a
given set of constraints.

There is almost no common standard on how to specify
a timetabling problem instance and its solution. Hence the
results obtained by researchers cannot be compared and
benchmarking becomes almost unattainable. Studies for a
common data format for timetabling are initiated by
Andrew Cumming at ICPTAT’95. Eventually, a language
named SSTL (Kingston, Burke et. al. 1997) was emerged.
For some reason, SSTL is not used by timetabling
researchers. Ozcan (2003) proposed a promising XML
based data format for timetabling problems ; Timetabling
Markup Language (TTML). TTML utilizes MathML for
extendibility and generality. Some developers have already
taken an interest in the XML standard; SchoolTool
(http://www.schooltool.org), Tablix (http://www.tablix.org).

Tabu Search (Glover 1986), Simulated Annealing
(Kirkpatrick et. al. 1983) and Genetic Algorithms (Holland
1975, Goldberg 1989) are the most common approaches

used by researchers for solving different examination
timetabling problem instances. Ross et al. (1994, 1996)
introduced a set of violation directed mutation operators
based on selecting a gene to mutate and an allele to mutate
to, for evolutionary approaches. Their tests show that
random selection of a gene, then selecting the allele by
using a tournament selection performs the best.
Usefulness of hill climbing and local search operators in
population based algorithms is emphasized by many
researchers (Moscato 1992, Raddcliffe et. al. 1994, Ozcan
et. al. 1998, 2004). Burke et al. (1996) applied a light or a
heavy mutation, randomly selecting one, followed by a hill
climbing method. Investigation of various combinations of
Constraint Satisfaction Strategies with GAs for solving
examination timetabling problems can be found in
Terashima-Marín (1998). Paquete et. al. (2001) applied a
multiobjective evolutionary algorithm (MOEA) based on
pareto ranking for solving examination timetabling problem
in the Unit of Exact and Human Sciences at University of
Algarve. Two objectives are determined as to minimize the
number of conflicts within the same group and between
groups. Wong et. al. (2002) used a GA utilizing a non-
elitist replacement strategy to solve final examination
timetabling problem at École de technologie supérieure.
After genetic operators are applied, violations are repaired.
This fixing process can be considered as a hill climbing
procedure. In their experiments, they used a single problem
instance.

Carter et. al. (1996) applied backtracking based on
different heuristic orderings. Their experimental data is one
of the benchmarks used in examination timetabling.
Gaspero and Schaerf (2000) explored tabu search approach
using graph coloring based heuristics. Merlot et al. (2003)
proposed a hybrid approach for solving the final
examination timetabling problem that generates an initial
feasible timetable using constraint programming, and then
applied simulated annealing with hill climbing to obtain a
better solution. Burke et. al. (2004b) proposed a general
and fast adaptive method that arranges the heuristic to be
used for ordering examinations to be scheduled next . Their
algorithm yields comparable results on a benchmark of
problems with the current state of the art . Petrovic et. al.
(2003) proposed a case based reasoning system to
generate initial solutions to be used by great deluge

algorithm.
In this study, we present a tool, named Final Exam

Scheduler (FES) that accepts TTML input for solving final
examination timetabling problems, often tackled by
universities. FES is the first timetabling tool supporting
TTML input. Furthermore, FES utilizes a memetic algorithm
(MA), combining genetic algorithms and a violation
directed hierarchical hill climbing method. MA, based on
the very same framework that we have proposed in Alkan
and Ozcan, is tested on a set of timetabling problem
instances in TTML.

2 Examination Timetabling Problem

Examination timetabling problems (ETPs) can be
represented as a constraint optimization problem by a 3-
tuple (V, D, C), where V is a finite set of examinations,
possibly examination of courses in a department, faculty or
university, D is a finite set of domains of variables and C is
a set of constraints to be satisfied:
V={v1, v2, …, vM}
D={d1, …, di, …, dM}
C={c1, c2, …, cK}

Let G={t1, t2, …, tN} represent a set of examination start
times, then a possible domain of each variable can be
di⊆G. Domain of a variable can be a product of sets, each
representing a different resource. For example, di⊆GxS can
be a domain of a variable, where S represents the set of
classrooms. In this paper, resources other than time will be
ignored. ETP can be described as a search for finding the
best assignment (vi, tj) for each variable vi∈V, such that, all
the constraints are satisfied. The assignment implies that
the examination represented by vi starts at tj. The search
space size is enormous; MN, causing the failure of
traditional methods.

2.1 Constraints
Constraints can be categorized into two groups; hard and
soft. Hard constraints are the ones that are required to be
satisfied, whereas, soft ones represent preferences. Similar
to the rest of the timetabling problem instances six
different constraint types can be identified for ETPs:
exclusions, presets, edge constraints, ordering
constraints, event-spread constraints and attribute
constraints.

Exclusions represent the excluded domain members of
the variables. For example, “CSE 211 exam should not be
scheduled on Tuesday(s)”, or “ES 112 exam should not be
scheduled in the afternoons”. Presets represent the
predetermined assignments for some variables. For
example, “CSE 311 exam must on Friday (in the first week)
at 14:00-17:00”. Edge constraints are the most common
constraint types, representing a pair of course exams that
should be scheduled without a clash. Assuming a single
timeslot assignment for each course meeting, an edge
constraint might require a pair of course meetings vi and vk
to be assigned to (vi, tj) and (vk, tl), respectively, such that,

tj≠tl. Ordering constraints represent an ordering between
examinations. For example, “Exams CSE 252 and CSE 416
should start at the same time”, or “CSE 311 exam must be
scheduled after CSE 103 exam”. Event-spread constraints
deal with the way how the exams are spread out in time.
For example, “Exams of the courses in the last term of a
departmental curriculum must be arranged earlier than rest
of the courses”. Attribute constraints represent
restrictions that apply between the attributes of a course
and/or the attributes of its assignment. For example,
assuming an attribute for a course is the total number of
students entering the exam for that course, and an
attribute for a classroom is its capacity, a possible
constraint would be “Total number of students entering
the exam should not exceed the capacity of the
classroom”. Attribute constraints are ignored, since only
G is assumed as a domain of a variable.

2.2 Final Exam Timetabling Problem of Faculty of
Engineering and Architecture at Yeditepe
University

Students in the Faculty of Engineering and Architecture
(FEA) at Yeditepe University choose their courses based
on a curriculum. A curriculum consists of 8 terms and 7
courses per term on average. According to the regulations,
irregular students with low cumulative grade point
averages are enforced to register less than the number of
term courses. In the first year (2 terms), almost all the
courses are common. In the following terms , there are
approximately 20 more courses that are taken in common.
Although a course might be offered in more than one
section, generally, final examinations are held in common.
Sections are merged. All the final examinations must be
completed at most in two weeks during fall (1) and spring
semesters (2), in one week during summer semesters (3).
Each day, 3 hour time slots (9:00-12:00, 13:00-16:00, 16:00-
19:00) are allocated for the examinations, hence at most 3
consecutive final examinations can take place in a day.
FEA is a growing faculty. Recently, 2 more departments
are joined. Arranging final examinations based on the
constraints started to become a burden, taking a week or
so. Constraints required by FEA is similar to the ones
described in Carter et. al. (1996) and Burke et. al. (1996).
Ignoring presets and exclusions, we consider the following
constraints:

1) No student should be scheduled to two final
examinations at the same time.

2) No student should be scheduled to two final
examinations in adjacent periods in a day. There must
be a free slot between them.

3) During a period, a maximum seat capacity must not be
exceeded.

Due to the second constraint, students can attend at
most two final examinations per day. FEA requires all the
constraints to be satisfied.

3 A Framework for Designing Operators for
Solving Timetabling Problems

In most of the timetabling problems, it is possible to
identify a hierarchical arrangement of events and
resources to be scheduled. Generally, such arrangements
are static. Dynamic arrangements can be also produced by
taking the timetable structure and the assignments into
account while searching for an optimal solution. For
example, all the events scheduled at each day in a
timetable constitute a dynamic arrangement of events.
During the search, each new candidate or neighboring
solution might generate different groupings in the
arrangement. Obviously, more than one such
arrangements can be identified for a given timetabling
problem instance. These are useful especially, while
defining the constraints. For example, Figure 1 illustrates
static arrangements arising due to the curriculum based
university (faculty) course timetabling problem instance as
described in Alkan and Ozcan 2003 at FEA. An example
constraint is that no clashes should occur among the
courses in a term. We should emphasize that at a level in
the hierarchy, although it is possible, a subset does not
have to be a partition. For example, the real data contains
common technical elective courses in terms 6, 7 and 8.

Figure 1. An example of two different arrangements of events
(courses) to be scheduled

Structured problem instances as explained above allow
the design of a rich set of genetic and hill climbing
operators:

• A classifier (subset of variables) at any level of an
arrangement can be considered as a single unit.
Operators can be applied on or within all classifiers at
a selected hierarchy level in a selected arrangement.

• Operators can be applied only within the selected
regions in a selected classifier.

There are many selection mechanisms to be employed.
A fixed arrangement and/or a hierarchy level can be
utilized (predetermined selection) during the design of an
operator. An arrangement and/or a hierarchy level and/or a

classifier and/or a region can be selected randomly. Using
a biased selection mechanism based on overall violations
(cost/fitness), or violations due to a specific constraint
type seems to be promising. Hence, ranking, tournament
and rhoulette wheel selection methods become useful. As
another alternative, a different method can be utilized at
any point of selection. Some of the suggested genetic
operators, exploiting the structure of data, are already
experimented by Alkan et. al. (2003) and Ozcan (2005b). In
Alkan et. al. (2003), operators are designed based on a
fixed arrangement with id#1 as shown in Figure 1. Results
indicate that traditional crossover and mutation operators
perform the best. Yet, the rest of the operators are still
promising. Choosing the appropriate operator dynamically
or adaptively and discovering arrangements of events
automatically is left as a further study. Ignoring the rest of
the constraints, assuming there are only edge constraints,
then a timetabling problem reduces to a graph coloring
problem (Leighton 1979). A clique is defined as a strongly
connected subgraph. Terashima-Marín et. al. (1999)
investigated some promising clique-based crossover
operators for solving timetabling problems. Similarity
between these operators and the proposed operators are
that classifiers are cliques in a structured data. Clique-
based crossover awaits for further attention. Burke et. al.
(2003b) applied variable neighborhood search using a set
of different perturbation methods and local search
algorithms on randomly generated schedules. Lewis et. al.
(2004) tested several crossover operators for solving
university course timetabling problems. According to the
results conflicts-based crossover (uses a dynamic
arrangement) performs better than sector-based (Enzhe et.
al. 2002), day-based and student-based crossover. Most of
these operators use the framework described above. A
hyper-heuristic is a method for selecting a heuristic among
a set of heuristics to solve an optimization problem (Burke
et. al. 2003b). Recently, timetabling researchers started to
investigate different types of hyper-heuristics. Our
framework might be useful in designing more heuristics
and even hyper-heuristics.

In some timetabling problems, it is not possible to build
static arrangements of events. For example, there is a
single arrangement of events in most of the examination
timetabling problem instances due to the students as
shown in Figure 2. We propose a modified version of
violation directed hierarchical hill climbing method (Alkan
et. al. 2003) to be applied to timetabling problems
discarding any arrangements of events.

Figure 2. Arrangement of events (exams) for an examination
timetabling problem instance

MATH151 CSE 112 HUM 101

id#1

Student 1 Student L

Dept. 1 Dept. D

Courses Offered by a Faculty

Dept. 2

Term R

Courses Offered by a Dept.

CSE 211

Instructor 1 Instructor K

id#1

id#2

Term 1 Term 5

ES 223 MATH241

4 Memetic Algorithms for Solving Examination
Timetabling Problems

Memetic Algorithms (MAs) combine Genetic Algorithms
and hill climbing. A memetic algorithm with a violation
directed hierarchical hill climbing (VDHC) is designed to
solve examination timetabling problems.

4.1 Representation and Initialization
Direct representation is used to encode a candidate
solution. Each gene receives an allele, indicating when the
examination for a specific course will start. For example,
assume that the first gene of a chromosome represents the
variable for MATH151 as shown in Figure 3. Then (3, 2)
can be a possible allele assignment for that specific locus,
indicating MATH151 exam starts in the third day, second
timetable slot. The chromosome length corresponds to the
number of exams.

Figure 3. A sample individual

Initial population is generated randomly. A random
allele value is chosen within the discrete domain of a
corresponding variable for the gene in question.
Population size is a factor of the chromosome length.

4.2 Genetic Operators
As a crossover operator traditional one point crossover
(1PTX) is used. Two different mutation operators are
implemented. As a traditional mutation operator, RAND
randomly assigns a time slot for an exam. A modified
version of RAND is also utilized. SWAP operator swaps
two alleles if the values are within the domains of related
variables, otherwise RAND is invoked.

4.3 Fitness Function
An optimum timetable is the one satisfying all the
constraints. Fitness function is defined as follows:

{ }

1
()

1 ()j j i
j i i j

f T
w p g T

∀ ∀ ∈

=
+ ∑

 (Eq. 1),

where pj is the penalty associated with the constraint ci∈C
belonging to the constraint type j, gi(T) is the number
violations in the timetable T due to the constraint ci, and wj
is the weight applied to the constraint type j.

MA attempts to satisfy constraints with higher
penalties with respect to lower ones and/or constraints
that cause more violations. Unless it is mentioned pj is set
to 1 in all the experiments.

4.4 Selection
As a mate selection method, ranking (RANK) and
tournament (TOUR) strategies are implemented. Steady
state and transgenerational strategies based on weak
elitism are utilized as a replacement strategy. Steady state
(SSMA) strategy requires two offspring to be produced.
Then the parents are replaced by the best individuals
among parents and offpsring. Trans-generational (TGMA)
approach requires creation of an offspring pool of size
(population_size-2). During the replacement, 2 best
individuals from the old generation are kept; the rest is
replaced by offspring.

4.5 Violation Directed Hierarchical Hill Climbing
The idea behind our hill climbing approach is to create a
hill climbing method for each type of constraint and
combine them under a single hill climbing method, denoted
as VDHC. Starting from a high resolution, as long as the
fitness improves, VDHC stays at that level, otherwise,
VDHC lowers the resolution, restricting the aim. In Alkan
et. al. (2003) and Ozcan (2005b), the number of hill climbing
steps depends on the hierarchy levels in an arrangement.
Since there is almost no arrangement for the examination
timetabling problem instances, 3 improvement steps are
identified, representing 3 hierarchical levels of resolution
as presented in Figure 4. In the second step, part of the
chromosome is selected randomly. In the third step, an
event pair is marked for hill climbing, since we do not have
any unary constraints.

Figure 4. Violation directed hierarchical hill climbing method used
in the MA

As a constraint type selection method tournament with
tour size 2 is used. Three types of constraints should be
satisfied; hence, three hill climbing methods are
implemented corresponding to each constraint as
described in Section 2.2: HC1, HC2 and HC3. HC1 captures
overlapping pair of examinations and reschedules one of
them using its domain information. If scheduling fails for
the selected examination, HC1 reschedules the second one
in the same way. HC2 attempts to schedule adjacent
examinations using one of the patterns based on
predetermined probabilities. Either examinations are
assigned to the first and the third slot in the same day, or
they are randomly rescheduled in a similar fashion to HC1.

CSE 112 HUM 101

3 2 4 6

Chromosome

1 2

4 1

Locus

MATH151

VDHC_HILL_CLIMB
Step1. Select a constraint type. Apply the related hill
climbing function to the whole chromosome (all
events). If individual is improved go to Step1.
Step2. Select a constraint type. Apply the related hill
climbing function to a part of a chromosome (some of
the events). If individual is improved go to Step2.
Step3. Select a constraint type. Apply the related hill
climbing function to a single gene of a chromosome
(single event or a pair of events). If the individual is
improved go to Step3.

M

Given a period, if the maximum seat capacity is exceeded,
HC3 reschedules an examination to a random period. In all
hill climbing methods, maximum number of unsuccessful
attempts is bounded. Constraint type selection provides
adaptivity. Hill climbing method corresponding to a
constraint type producing higher number of violations
within the range is more likely to be selected.

Timetabling problems are considered as multi-criteria
optimization problems. While reducing the violations due
to a constraint, overall fitness of an individual can be
worsen. Hill climbing attempts to move an individual to a
local optimum. Applying a hill climbing seems to be
computationally expensive in timetabling problems due to
fitness calculations. Yet, if the total computation time
reduces and/or the quality of solution increases, a hill
climbing approach becomes preferable. Furthermore,
depending on the constraints, it might be possible to
calculate the fitness of an individual faster by considering
the changes within itself, after an operator is applied (Ross
et. al. 1994a).

5 Final Exam Scheduler (FES)

The details of Timetabling Markup Language (TTML) can
be found in Ozcan (2005). Final exam scheduler (FES) is a
TTML processor, embodying a parser, problem solver
and a solution interpreter as shown in Figure 5. As a
programming language Java is used to implement FES. FES
accepts an examination timetabling problem instance in
TTML format and attempts to solve it. As a problem
solver, an MA as described in Section 4 is embedded. FES
allows the same input document to be modified to include
a proposed solution by the solver. Various parameters of
the MA can be also set via the graphical user interface of
FES.

Figure 5. A TTML processor for solving timetabling problem
instances

Solution interpreter component represents the utility
for viewing the results. During the evolution, pausing is
supported by FES at any time. After the execution is

paused, any candidate solution (chromosome) within the
population can be selected to be viewed. Total number of
violations (cost) and violations due to each constraint
type for a candidate solution are also provided. Depending
on the classifiers defined in the TTML document used as
input, FES supports generation of different timetables for
viewing (Figure 6). For example, defining student
classifiers in a TTML document, where each subset
represents courses registered by a student; final
examination timetable of each student can be displayed.
Additionally, a user might prefer to prepare a TTML
document with curriculum term classifiers, grouping
courses for a department for each curriculum term and
lecturer classifiers, grouping courses offered by each
lecturer. By that way, a user is enabled to define
constraints using these classifiers, and display different
final examination timetables. Then, timetables containing
the assignments of courses for a selected curriculum term
or a selected lecturer can be displayed. Output can be
viewed as either a list or a table. Users are allowed to save
a selected solution embedding it into the input document
in TTML format. Furthermore, generated timetables can be
saved in HTML format as well.

Figure 6. A snapshot of the FES graphical user interface during
execution

We are hoping for a single problem solver for solving
different types of timetabling problems and we have taken
some serious steps towards achieving this . Ultimately, our
aim is to design such a system that would accept TTML
input and solve it, without any data and problem type
dependency. Developing an XML based standard, namely
TTML and FES was the first step. Currently, we are
working on the framework of the problem solver. It is
important to emphasize that feeding TTML input into the
TTML processor does not have to be a local process.
TTML processor can be designed as a web service.

6 Experiments

Experiments are performed in two stages on Pentium 4,
2.6GHz Win2000 machines with 256 Mb memories. In the
first stage, best configuration is obtained, while in the

TTML processor

<ttml>
TTML

Document
</ttml>

-<time-tabling>
 +<input-data>
 +<output>
 +<test-results>

Parser Problem
Solver

Solution
Interpreter

<output>
<test-

results>

<input-data>

second stage the MA using the best configuration VDHC
is tested on more data.

6.1 Parameter Settings
Each experiment is repeated 50 times. A run is terminated if
all the constraints are satisfied or maximum number of
generations is exceeded that is a factor of the chromosome
length. Crossover and mutation rates are chosen as 1.0
and 1/chromosome_length, respectively. Population size is
selected as half of the chromosome length. Maximum
number of unsuccessful hill climbing (HC1, HC2 and HC3)
steps is fixed as 5. Maximum number of successful VDHC
attempts is also fixed as the chromosome length. In all the
experiments, the virility for RANK and the tour size for
TOUR are set to 4.

6.2 Experimental Data
Two problem instance sets are used during the
experiments. The first set is a reduced form of student
course registrations of in FEA at YU during 2001/2002 and
2002/2003 educational years. YU data is labeled as
yue#educational year#semesterid. Data reduction is
performed by eliminating sections. Most of the existing
final examination timetabling data consists of two files.
One file includes a list of students and the courses they
are assigned and the other includes a list of classrooms
and their capacity. Constraints are generally provided in
the context of related publications. Using TTML, we have
combined the input data and the constraints in a single file
for each problem instance. The second problem instance
set is retrieved from Carter’s benchmark (Carter et. al.
1996). Similar problem instances staf83 and utes92 are
used during the experiments. It is known that there is at
least one solution for all the examination problem
instances used during the experiments.

Characteristics of the experimental data are summarized
in Table 1, including constraint related parameters. Number
of days in the timetables used for YU data is based on the
FEA requirements.

Data
Label

No. of
exams

No. of
st.

Avr.
neps dcm

msc,
days

yue20011 140 559 6,24 0,14 500,10
yue20012 158 591 6,27 0,14 500,10
yue20013 30 234 1,91 0,19 500,4
yue20021 168 826 6,97 0,16 800,12
yue20022 187 896 6,54 0,16 800,12
yue20023 40 420 1,88 0,19 800,4
yue20031 177 1125 5,97 0,15 800,12
yue20032 210 1185 5,77 0,14 800,12

staf83 139 611 9,41 0,14 500,10
utes92 184 2749 4,29 0,08 500,10

Table 1. Characteristics of experimental data, where neps is the
number of examinations per student, dcm is the density of the
conflict matrix and msc is the maximum seat capacity

Both problem instance sets are converted into TTML
format, using a java parser, named as CONFETI (a

converter for examination timetabling textual data).
CONFETI applet and the timetabling data repository can
be freely reached at:

http://cse.yeditepe.edu.tr/~eozcan/research/TTML

6.3 Experimental Results
In the first stage, eight experiments are conducted using
each data; yue20011, yue20012, yue20013, yue20023,
staf83 and utes92. MAs are tested utilizing RANK and
TOUR, SSMA and TGMA, RAND and SWAP operators
as mate selection, replacement and mutation operators,
respectively. Define success rate (s.r.) as percentage of the
successful runs. Considering the success rate, in all cases
tournament mate selection performed better than ranking
strategy as presented in Table 2.

In order to compare the replacement strategies utilized,
yue20022 is added to the test cases. According to the
results of the four experiments for each data in which
TOUR is fixed as a mate selection method, TGMA
performs better than SSMA as a replacement strategy in all
cases. Outcomes are presented in Table 3. TGMA visits
less number of states as compared to SSMA on average.

TOUR RANK
Data
Label

Avr. No. of
States Vis.

Avr.
s.r.

Avr. No. of
States Vis.

Avr.
s.r.

yue20011 967.909 0,99 829.507 0,99
yue20012 4.358.394 0,94 4.952.054 0,57
yue20013 1.851 1,00 734 1,00
yue20023 3.621 1,00 2.697 1,00

staf83 1.255.874 0,99 1.459.840 0,91
utes92 89.537 1,00 144.780 1,00

Avr. 1.112.864 0,99 1.231.602 0,91

Table 2. Comparison of mate selection methods; TOUR and
RANK, based on average number of states visited per run and
average success rate for each problem instance, considering all
runs

SSMA TGMA

Data
Label

Avr. No. of
States Vis.

Avr.
s.r.

Avr. No. of
States Vis.

Avr.
s.r.

yue20011 1.904.463 0,98 31.354 1,00
yue20012 8.516.845 0,89 199.942 0,99
yue20013 3.422 1,00 279 1,00
yue20022 18.364.709 0,84 521.309 0,88
yue20023 6.442 1,00 801 1,00

staf83 2.472.994 0,98 38.755 1,00
utes92 170.020 1,00 9.053 1,00

Avr. 4.491.271 0,96 114.499 0,98

Table 3. Comparison of replacement strategies; SSMA and
TGMA, based on average number of states visited per run and
average success rate for each problem instance, considering all
runs where TOUR is used as a mate selection method

MA experimental results, in which TOUR and TGMA
are utilized, indicate that traditional mutation operator
RAND performs almost the same as SWAP with respect to
the average success rate. In five out of seven test cases
MA runs using RAND perform slightly better than SWAP
considering average number of generations. Hence, RAND
is favored during further experiments.

In the second stage experiments, yue20031, yue20032
and yue20033 are added to the test cases. The best MA
configuration is experimented on the additional problem
instances. Experimental results with the best MA (vMA)
utilizing TOUR, RAND and TGMA operators are
summarized in Table 4. The vMA utilizing VDHC discovers
optimal solutions in all cases with high success rates.

Furthermore, experiments are performed for observing
the influences of hill climbing and crossover. Maximum
number of generations is trippled during Genetic
Algorithm runs without hill climbing (sGA) for a fair
comparison. The same MA settings are used for the rest
of the parameters. When the hill climbing operator (VDHC)
is disabled, the performance of sGA deteriorates
significantly in almost all cases as shown in Table 4.
Moreover, the average number of states visited per run
increases for the problem instances yue20013 and utes92,
unless VDHC is used. When the crossover operator is
disabled (xMA), performance of the MA worsens for the
problem instances yue20021 and yue20022 (Table 4). As a
result, we can safely conclude that hill climbing and
crossover operators together are very useful during the
search for an optimal solution.

Data
Label vMA xMA sGA

yue20011 1,00 1,00 0,86
yue20012 0,96 0,96 0,36
yue20013 1,00 1,00 1,00
yue20021 1,00 0,00 0,00
yue20022 0,90 0,88 0,32
yue20023 1,00 1,00 0,98
yue20031 0,98 1,00 0,70
yue20032 1,00 1,00 0,74

staf83 1,00 1,00 0,96
utes92 1,00 1,00 1,00

Table 4. Success rates for the MA with TOUR, RAND, TGMA
and VDHC (vMA), the MA without crossover (xMA) and
without VDHC (sGA)

7 Conclusions and Future Work

Final examination timetabling problem at the Faculty of
Engineering and Architecture is described. The only
difference between the problem and other available
problem instances is that all the constraints are hard
constraints. A tool is introduced for solving examination

timetabling problems, named Final Examination Scheduler
(FES). The major components of the tool are its document
parser, timetable viewer and an MA problem solver.
Timetabling Markup Language documents are accepted as
input by FES. Output viewer generates and displays a
timetable for a subset of variables as defined in the TTML
document. Any view can be saved as an HTML file. The
MA solver with VDHC is tested using different operators
on a set of benchmark data. The best MA configuration is
achieved by combining one point crossover, tournament
mate selection, elitist transgenerational replacement
strategy and traditional mutation. In almost all cases, the
MA successfully produces optimal timetables, satisfying
all the imposed constraints. Modified violation directed
hierarchical hill climbing operator utilizes a framework
proposed in a previous study (Alkan et. al. 2003). VDHC
turns out to be a promising hill climbing method, even if no
arrangements or logical groupings of data are available
before the runs.

More MA operators will be considered within the
framework described to improve the GA solver. First
operator to be tested next is the uniform crossover. A
robust solver with a high success rate and low average
number of generations (evaluations) for solving a problem
instance is the goal. In most of the recent publications,
importance of initialization is emphasized for solving
timetabling problem instances. Hence, heuristics for
initializing a population will be considered. VDHC is an
adaptive operator based on the cooperation of different
hill climbing methods. As a next step, its performance will
be compared to a multimeme strategy (Krasnogor 2002).
More benchmark problems and larger instances will be
attacked with the methods devised.

Bibliography

Alkan, A. and Ozcan, E. (2003) “Memetic Algorithms for
Timetabling”, Proc. of 2003 IEEE Congress on
Evolutionary Computation, pp. 1796-1802.
Burke, E., Elliman, D., Ford, P., Weare, B. (1996a)
“Examination Timetabling in British Universities- A
Survey”, The Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 1153,
pages 76–90. Springer-Verlag.
Burke, E., Newall, J.P., and Weare, R.F. (1996b) “A
Memetic Algorithm for University Exam Timetabling”,
Lecture Notes in Computer Science, 1153:241-250,
Springer.
Burke, E. K., Pepper, P. A. and Kingston, J. H. (1997) “A
Standard Data Format for Timetabling Instances”, Springer
Lecture Notes in Computer Science, 1408:213-222.
Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden
Berghe G. (2003a) “Variable Neighbourhood Search for
Nurse Rostering Problems”, in Metaheuristics: Computer
Decision-Making (edited by Mauricio G.C. Resende and
Jorge Pinho de Sousa), chapter 7, Kluwer, pp. 153-172.
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and
Schulenburg, S. (2003b) “Hyper-heuristics: an emerging

direction in modern search technology”, Handbook of
metaheuristics, chapter 16, pp. 457-474. Kluwer Academic
Publishers.
Burke, E.K., De Causmaecker, P. and Vanden Berghe, G.,
Van Landeghem, H. (2004a) “The State of the Art of Nurse
Rostering”, Journal of Scheduling, 7:441-499.
Burke, E. and Newall, J. P. (2004b) “Solving Examination
Timetabling Problems through Adaption of Heuristic
Orderings: Models and Algorithms for Planning and
Scheduling Problems ”, (Editors: Philippe Baptiste, Jacques
Carlier, Alix Munier, Andreas S. Schulz) Annals of
Operations Research, vol. 129, no. 1-4, pp. 107-134(28).
Carter, M. W, Laporte, G. and Lee, S.T. (1996) "Examination
timetabling: algorithmic strategies and applications.",
Journal of the Operational Research Society , 47:373-383.
Enzhe, Y. and Sung, K. (2002) “A Genetic Algorithm for a
University Weekly Courses Timetabling Problem”,
International Transactions in Operational Research, 9:703-
717.
Even, S., Itai, A. and Shamir, A. (1976) “On the Complexity
of Timetable and Multicommodity Flow Problems ”, SIAM
J. Comput., 5(4):691-703.
Fang, H. L. (1994) “Genetic Algorithms in Timetabling and
Scheduling”, PhD thesis , Department of Artificial
Intelligence, University of Edinburgh, Scotland.
Glover, F. “Tabu search - Part I”. ORSA Journal on
Computing, 1(3):190-206, 1989.
Gaspero, L. Di and Schaerf, A. (2000) “Tabu Search
Techniques for Examination Timetabling”, LCNS archive
Selected papers from the Third International Conference
on Practice and Theory of Automated Timetabling, pp. 104
- 117.
Goldberg, D. E. (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading (MA).
Holland, J. H. (1975) Adaptation in Natural and Artificial
Systems, Univ. Mich. Press.
Kingston, J.H. (2001) “Modeling timetabling problems with
STTL”, Springer LCNS, 2079:309.
Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983).
“Optimization by simulated annealing”, Science, vol. 220,
no. 4598, pp. 671-680.
Krasnogor, N. (2002) “Studies on the Theory and Design
Space of Memetic Algorithms”, PhD Thesis, University of
the West of England, Bristol, United Kingdom.
Leighton, F. T. (1979) “A graph coloring algorithm for large
scheduling problems”, Journal of Reasearch of the
National Bureau of Standards, 84:489.
Lewis, R. and Paechter, B. (2004) “New Crossover
Operators for Timetabling with Evolutionary Algorithms”,
5th International Conference on Recent Advances in Soft
Computing (RASC 2004), vol. 5, pp 189-195.
Merlot, L., Boland, N., Hughes, B. and Stuckey P. (2003)
“A hybrid algorithm for the examination timetabling
problem”, Lecture Notes in Computer Science, vol. 2740,
Gent, Belgium, Springer-Verlag, pp. 207-231.
Moscato, P. and Norman, M. G. (1992) “A Memetic
Approach for the Traveling Salesman Problem

Implementation of a Computational Ecology for
Combinatorial Optimization on Message-Passing
Systems ”, Parallel Computing and Transputer
Applications, pp. 177-186.
Ozcan, E. and Mohan, C. K. (1998) “Steady State Memetic
Algorithm for Partial Shape Matching”, LNCS,
Evolutionary Programming VII, 7th International
Conference, EP98, San Diego, CA, USA, Springer, Berlin,
vol. 1447, pp. 527-536.
Ozcan, E. and Alkan, A., (2002) “Solving Time Tabling
Problem using Genetic Algorithms”, Proceedings of the
4th International Conference on the Practice and Theory of
Automated Timetabling, pp.104-107.
Ozcan, E. and Onbasioglu, E. (2004) “Genetic Algorithms
for Parallel Code Optimization”, Proc. of 2004 IEEE
Congress on Evolutionary Comp ., vol. 2, pp. 1775-1781.
Ozcan, E. (2005a) “Towards an XML based standard for
Timetabling Problems: TTML”, Multidisciplinary
Scheduling: Theory and Applications, 2005, Selected
Volume of the 1st MISTA (2003), to appear.
Ozcan, E. (2005b) “Memetic Algorithms for Nurse
Rostering”, The 20th International Symposium on
Computer and Information Sciences, in review.
Petrovic, S., Yang, Y., Dror, M. (2003) “Case-Based
Initialisation of Metaheuristics for Examination
Timetabling”, pp. 137-154., Proc. of 1st Multidisciplinary
International Conference on Scheduling: Theory and
Applications (MISTA 2003), pp. 137-154.
Paquete, L. F. and Fonseca C. M. (2001) “A Study of
Examination Timetabling with Multiobjective Evolutionary
Algorithms”, Proc. of the 4th Metaheuristics International
Conference (MIC 2001), pp. 149-154, Porto.
Radcliffe, N. J. and Surry, P.D. (1994) “Formal memetic
algorithms ”, Evolutionary Computing: AISB Workshop,
Springer Verlag, LNCS 865, pp. 1-16.
Ross, P., Corne, D. and Fang, H-L. (1994a) “Improving
Evolutionary Timetabling with Delta Evaluation and
Directed Mutation”, Proc. of PPSN III, pp. 556-565.
Ross, P., Corne, D. and Fang, H-L. (1994b) “Fast Practical
Evolutionary Timetabling”, Proc. of AISBWorkshop on
Evolutionary Computation.
Schaerf, A. (1999) “A survey of automated timetabling”,
Artificial Intelligence Review, 13(2):87-127.
Terashima-Marín, H. (1998) “Combinations of GAs and
CSP Strategies for Solving the Examination Timetabling
Problem”, PhD thesis, Computer Systems Engineering,
Tecnológico Monterrey, Mexico.
Terashima-Marín, H., Ross, P. and Valenzuela-Rendón, M.
(1999) “Clique-Based Crossover for Solving the
Timetabling Problem with Gas”, Proc. of the Congress on
Evolutionary Computation, pp. 1200-1206.
Werra, D. De, (1985) “An introduction to timetabling”,
European Journal of Operations Research, 19:151-162.
Wong, T., Cote, P. and Gely, P. (2002) “Final exam
timetabling: a practical approach”, Canadian Conference
on Electrical and Computer Engineering, Winnipeg, CA,
vol.2, pp. 726- 731.

