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Abstract- Timetabling problems are constraint 
optimization problems proven to be NP complete. 
Furthermore, evaluation of violations is costly, and there 
is no common data format for representing timetabling 
problem instances. In this paper, a framework for 
designing memetic algorithms (MAs) to solve timetabling 
problems is described and a tool, named Final Exam 
Scheduler (FES) is introduced. FES is the first tool that 
accepts Timetabling Markup Language (TTML) 
documents as input.  It utilizes an MA with an adaptive 
violation directed hierarchical hill climbing method for 
solving examination timetabling problem instances. 
Experimental results on a set of benchmark data indicate 
the success of MA. 

1 Introduction 

Timetabling problems have been studied by numerous 
researchers due to its NP complete nature (Even et. al. 
1976). There are varieties of timetabling problem classes on 
which variety of approaches are used. Most of the 
research in the area focuses on employee shift timetabling, 
especially; nurse rostering, course timetabling and 
examination timetabling (Werra 1985, Fang 1994, Schaerf 
1996, Alkan et. al. 2003, Burke et. al. 2004, Ozcan 2005b). 
The aim in examination timetabling is to produce the most 
appropriate schedule for a set of examinations under a 
given set of constraints. 

There is almost no common standard on how to specify 
a timetabling problem instance and its solution. Hence the 
results obtained by researchers cannot be compared and 
benchmarking becomes almost unattainable. Studies for a 
common data format for timetabling are initiated by 
Andrew Cumming at ICPTAT’95. Eventually, a language 
named SSTL (Kingston, Burke et. al. 1997) was emerged. 
For some reason, SSTL is not used by timetabling 
researchers. Ozcan (2003) proposed a promising XML 
based data format for timetabling problems ; Timetabling 
Markup Language (TTML).  TTML utilizes MathML for 
extendibility and generality. Some developers have already 
taken an interest in the XML standard; SchoolTool 
(http://www.schooltool.org), Tablix (http://www.tablix.org).  

Tabu Search (Glover 1986), Simulated Annealing 
(Kirkpatrick et. al. 1983) and Genetic Algorithms (Holland 
1975, Goldberg 1989) are the most common approaches 

used by researchers  for solving different examination 
timetabling problem instances. Ross et al. (1994, 1996) 
introduced a set of violation directed mutation operators 
based on selecting a gene to mutate and an allele to mutate 
to, for evolutionary approaches. Their tests show that 
random selection of a gene, then selecting the allele by 
using a tournament selection performs the best. 
Usefulness of hill climbing and local search operators in 
population based algorithms is emphasized by many 
researchers (Moscato 1992, Raddcliffe et. al. 1994, Ozcan 
et. al. 1998, 2004). Burke et al. (1996) applied a light or a 
heavy mutation, randomly selecting one, followed by a hill 
climbing method. Investigation of various combinations of 
Constraint Satisfaction Strategies with GAs for solving 
examination timetabling problems can be found in 
Terashima-Marín (1998). Paquete et. al. (2001) applied a 
multiobjective evolutionary algorithm (MOEA) based on 
pareto ranking for solving examination timetabling problem 
in the Unit of Exact and Human Sciences at University of 
Algarve. Two objectives are determined as to minimize the 
number of conflicts within the same group and between 
groups. Wong et. al. (2002) used a GA utilizing a non-
elitist replacement strategy to solve final examination 
timetabling problem at École de technologie supérieure. 
After genetic operators are applied, violations are repaired. 
This fixing process can be considered as a hill climbing 
procedure. In their experiments, they used a single problem 
instance.  

Carter et. al. (1996) applied backtracking based on 
different heuristic orderings. Their experimental data is one 
of the benchmarks used in examination timetabling. 
Gaspero and Schaerf (2000) explored tabu search approach 
using graph coloring based heuristics. Merlot et al. (2003) 
proposed a hybrid approach for solving the final 
examination timetabling problem that generates an initial 
feasible timetable using constraint programming, and then 
applied simulated annealing with hill climbing to obtain a 
better solution. Burke et. al. (2004b) proposed a general 
and fast adaptive method that arranges the heuristic to be 
used for ordering examinations to be scheduled next . Their 
algorithm yields comparable results on a benchmark of 
problems  with the current state of the art . Petrovic et. al. 
(2003) proposed a case based reasoning system to 
generate initial solutions to be used by great deluge 



algorithm.   
In this study, we present a tool, named Final Exam 

Scheduler (FES) that accepts TTML input for solving final 
examination timetabling problems, often tackled by 
universities. FES is the first timetabling tool supporting 
TTML input. Furthermore, FES utilizes a memetic algorithm 
(MA), combining genetic algorithms and a violation 
directed hierarchical hill climbing method. MA, based on 
the very same framework that we have proposed in Alkan 
and Ozcan, is tested on a set of timetabling problem 
instances in TTML.  

2 Examination Timetabling Problem 

Examination timetabling problems (ETPs) can be 
represented as a constraint optimization problem by a 3-
tuple (V, D, C), where V is a finite set of examinations, 
possibly examination of courses in a department, faculty or 
university, D is a finite set of domains of variables and C is 
a set of constraints to be satisfied: 
V={v1, v2, …, vM} 
D={d1, …, di, …, dM}  
C={c1, c2, …, cK} 

Let G={t1, t2, …, tN} represent a set of examination start 
times, then a possible domain of each variable can be 
di⊆G. Domain of a variable can be a product of sets, each 
representing a different resource. For example, di⊆GxS can 
be a domain of a variable, where S represents the set of 
classrooms. In this paper, resources other than time will be 
ignored. ETP can be described as a search for finding the 
best assignment (vi, tj) for each variable vi∈V, such that, all 
the constraints are satisfied. The assignment implies that 
the examination represented by vi starts at tj. The search 
space size is enormous; MN, causing the failure of 
traditional methods. 

2.1 Constraints 
Constraints can be categorized into two groups; hard  and 
soft. Hard constraints are the ones that are required to be 
satisfied, whereas, soft ones represent preferences. Similar 
to the rest of the timetabling problem instances six 
different constraint types can be identified for ETPs: 
exclusions, presets, edge constraints, ordering 
constraints, event-spread constraints and attribute 
constraints.  

Exclusions represent the excluded domain members of 
the variables. For example, “CSE 211 exam should not be 
scheduled on Tuesday(s)”, or “ES 112 exam should not be 
scheduled in the afternoons”. Presets represent the 
predetermined assignments for some variables. For 
example, “CSE 311 exam must on Friday (in the first week) 
at 14:00-17:00”. Edge constraints are the most common 
constraint types, representing a pair of course exams that 
should be scheduled without a clash. Assuming a single 
timeslot assignment for each course meeting, an edge 
constraint might require a pair of course meetings vi and vk 
to be assigned to (vi, tj) and (vk, tl), respectively, such that, 

tj≠tl. Ordering constraints represent an ordering between 
examinations. For example, “Exams CSE 252 and CSE 416 
should start at the same time”, or “CSE 311 exam must be 
scheduled after CSE 103 exam”. Event-spread constraints 
deal with the way how the exams are spread out in time. 
For example, “Exams of the courses in the last term of a 
departmental curriculum must be arranged earlier than rest 
of the courses”. Attribute constraints represent 
restrictions that apply between the attributes of a course 
and/or the attributes of its assignment. For example, 
assuming an attribute for a course is the total number of 
students entering the exam for that course, and an 
attribute for a classroom is its capacity, a possible 
constraint would be “Total number of students entering 
the exam should not exceed the capacity of the 
classroom”. Attribute constraints are ignored, since only 
G is assumed as a domain of a variable. 

2.2 Final Exam Timetabling Problem of Faculty of 
Engineering and Architecture at Yeditepe 
University 

Students in the Faculty of Engineering and Architecture 
(FEA) at Yeditepe University choose their courses based 
on a curriculum. A curriculum consists of 8 terms  and 7 
courses per term on average. According to the regulations, 
irregular students with low cumulative grade point 
averages are enforced to register less than the number of 
term courses.  In the first year (2 terms), almost all the 
courses are common. In the following terms , there are 
approximately 20 more courses that are taken in common. 
Although a course might be offered in more than one 
section, generally, final examinations are held in common. 
Sections are merged. All the final examinations must be 
completed at most in two weeks during fall (1) and spring 
semesters (2), in one week during summer semesters (3). 
Each day, 3 hour time slots (9:00-12:00, 13:00-16:00, 16:00-
19:00) are allocated for the examinations, hence at most 3 
consecutive final examinations can take place in a day. 
FEA is a growing faculty. Recently, 2 more departments 
are joined. Arranging final examinations based on the 
constraints started to become a burden, taking a week or 
so. Constraints required by FEA is similar to the ones 
described in Carter et. al. (1996) and Burke et. al. (1996). 
Ignoring presets and exclusions, we consider the following 
constraints: 

1) No student should be scheduled to two final 
examinations at the same time. 

2) No student should be scheduled to two final 
examinations in adjacent periods in a day. There must 
be a free slot between them. 

3) During a period, a maximum seat capacity must not be 
exceeded. 

Due to the second constraint, students can attend at 
most two final examinations per day. FEA requires all the 
constraints to be satisfied. 



3 A Framework for Designing Operators for 
Solving Timetabling Problems 

In most of the timetabling problems, it is possible to 
identify a hierarchical arrangement of events  and 
resources to be scheduled. Generally, such arrangements 
are static. Dynamic arrangements can be also produced by 
taking the timetable structure and the assignments into 
account while searching for an optimal solution. For 
example, all the events scheduled at each day in a 
timetable constitute a dynamic arrangement of events. 
During the search, each new candidate or neighboring 
solution might generate different groupings in the 
arrangement. Obviously, more than one such 
arrangements can be identified for a given timetabling 
problem instance. These are useful especially, while 
defining the constraints. For example, Figure 1 illustrates 
static arrangements arising due to the curriculum based 
university (faculty) course timetabling problem instance as 
described in Alkan and Ozcan 2003 at FEA. An example 
constraint is  that no clashes should occur among the 
courses in a term. We should emphasize that at a level in 
the hierarchy, although it is possible, a subset does not 
have to be a partition. For example, the real data contains 
common technical elective courses in terms 6, 7 and 8.  

 
Figure 1. An example of two different arrangements of events 
(courses) to be scheduled 

Structured problem instances as explained above allow 
the design of a rich set of genetic and hill climbing 
operators: 

• A classifier (subset of variables) at any level of an 
arrangement can be considered as a single unit. 
Operators can be applied on or within all classifiers at 
a selected hierarchy level in a selected arrangement. 

• Operators can be applied only within the selected 
regions in a selected classifier. 

There are many selection mechanisms to be employed. 
A fixed arrangement and/or a hierarchy level can be 
utilized (predetermined selection) during the design of an 
operator. An arrangement and/or a hierarchy level and/or a 

classifier and/or a region can be selected randomly. Using 
a biased selection mechanism based on overall violations 
(cost/fitness), or violations due to a specific constraint 
type seems to be promising. Hence, ranking, tournament 
and rhoulette wheel selection methods become useful. As 
another alternative, a different method can be utilized at 
any point of selection. Some of the suggested genetic 
operators, exploiting the structure of data, are already 
experimented by Alkan et. al. (2003) and Ozcan (2005b). In 
Alkan et. al. (2003), operators are designed based on a 
fixed arrangement with id#1 as shown in Figure 1. Results 
indicate that traditional crossover and mutation operators 
perform the best. Yet, the rest of the operators are still 
promising. Choosing the appropriate operator dynamically 
or adaptively and discovering arrangements of events 
automatically is left as a further study. Ignoring the rest of 
the constraints, assuming there are only edge constraints, 
then a timetabling problem reduces to a graph coloring 
problem (Leighton 1979). A clique is defined as a strongly 
connected subgraph. Terashima-Marín et. al. (1999) 
investigated some promising clique-based crossover 
operators for solving timetabling problems. Similarity 
between these operators and the proposed operators are 
that classifiers are cliques in a structured data. Clique-
based crossover awaits for further attention. Burke et. al. 
(2003b) applied variable neighborhood search using a set 
of different perturbation methods and local search 
algorithms on randomly generated schedules. Lewis et. al. 
(2004) tested several crossover operators for solving 
university course timetabling problems. According to the 
results conflicts-based crossover (uses a dynamic 
arrangement) performs better than sector-based (Enzhe et. 
al. 2002), day-based and student-based crossover. Most of 
these operators use the framework described above. A 
hyper-heuristic is a method for selecting a heuristic among 
a set of heuristics to solve an optimization problem (Burke 
et. al. 2003b). Recently, timetabling researchers started to 
investigate different types of hyper-heuristics. Our 
framework might be useful in designing more heuristics 
and even hyper-heuristics. 

In some timetabling problems, it is  not possible to build 
static arrangements of events. For example, there is a 
single arrangement of events in most of the examination 
timetabling problem instances due to the students as 
shown in Figure 2. We propose a modified version of 
violation directed hierarchical hill climbing method (Alkan 
et. al. 2003) to be applied to timetabling problems 
discarding any arrangements of events. 

 

Figure 2. Arrangement of events (exams) for an examination 
timetabling problem instance 
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4 Memetic Algorithms for Solving Examination 
Timetabling Problems 

Memetic Algorithms (MAs) combine Genetic Algorithms 
and hill climbing. A memetic algorithm with a violation 
directed hierarchical hill climbing (VDHC) is designed to 
solve examination timetabling problems. 

4.1 Representation and Initialization 
Direct representation is used to encode a candidate 
solution. Each gene receives an allele, indicating when the 
examination for a specific course will start. For example, 
assume that the first gene of a chromosome represents the 
variable for MATH151 as shown in Figure 3. Then (3, 2) 
can be a possible allele assignment for that specific locus, 
indicating MATH151 exam starts in the third day, second 
timetable slot.  The chromosome length corresponds to the 
number of exams. 

 

Figure 3. A sample individual 

Initial population is generated randomly. A random 
allele value is chosen within the discrete domain of a 
corresponding variable for the gene in question. 
Population size is a factor of the chromosome length. 

4.2 Genetic Operators 
As a crossover operator traditional one point crossover 
(1PTX) is used. Two different mutation operators are 
implemented. As a traditional mutation operator, RAND 
randomly assigns a time slot for an exam. A modified 
version of RAND is also utilized. SWAP operator swaps 
two alleles if the values are within the domains of related 
variables, otherwise RAND is invoked.  

4.3 Fitness Function 
An optimum timetable is the one satisfying all the 
constraints. Fitness function is defined as follows: 
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    (Eq. 1), 

where pj is the penalty associated with the constraint ci∈C 
belonging to the constraint type j, gi(T) is the number 
violations in the timetable T due to the constraint ci, and wj 
is the weight applied to the constraint type j.  

MA attempts to satisfy constraints with higher 
penalties with respect to lower ones and/or constraints 
that cause more violations. Unless it is mentioned pj is set 
to 1 in all the experiments.  

4.4 Selection 
As a mate selection method, ranking (RANK) and 
tournament (TOUR) strategies are implemented. Steady 
state and transgenerational strategies based on weak 
elitism are utilized as a replacement strategy. Steady state 
(SSMA) strategy requires two offspring to be produced. 
Then the parents  are replaced by the best individuals 
among parents and offpsring. Trans-generational (TGMA) 
approach requires creation of an offspring pool of size 
(population_size-2). During the replacement, 2 best 
individuals from the old generation are kept; the rest is 
replaced by offspring. 

4.5 Violation Directed Hierarchical Hill Climbing 
The idea behind our hill climbing approach is to create a 
hill climbing method for each type of constraint and 
combine them under a single hill climbing method, denoted 
as VDHC. Starting from a high resolution, as long as the 
fitness improves, VDHC stays at that level, otherwise, 
VDHC lowers the resolution, restricting the aim. In Alkan 
et. al. (2003) and Ozcan (2005b), the number of hill climbing 
steps depends on the hierarchy levels in an arrangement. 
Since there is almost no arrangement for the examination 
timetabling problem instances,   3 improvement steps are 
identified, representing 3 hierarchical levels of resolution 
as presented in Figure 4. In the second step, part of the 
chromosome is selected randomly. In the third step, an 
event pair is marked for hill climbing, since we do not have 
any unary constraints. 

 

Figure 4. Violation directed hierarchical hill climbing method used 
in the MA 

As a constraint type selection method tournament with 
tour size 2 is used. Three types of constraints should be 
satisfied; hence, three hill climbing methods are 
implemented corresponding to each constraint as 
described in Section 2.2: HC1, HC2 and HC3. HC1 captures 
overlapping pair of examinations and reschedules one of 
them using its domain information. If scheduling fails  for 
the selected examination, HC1 reschedules the second one 
in the same way. HC2 attempts to schedule adjacent 
examinations using one of the patterns based on 
predetermined probabilities. Either examinations are 
assigned to the first and the third slot in the same day, or 
they are randomly rescheduled in a similar fashion to HC1. 
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the events). If individual is improved go to Step2. 
Step3. Select a constraint type. Apply the related hill 
climbing function to a single gene of a chromosome 
(single event or a pair of events). If the individual is 
improved go to Step3. 

M 



Given a period, if the maximum seat capacity is  exceeded, 
HC3 reschedules an examination to a random period. In all 
hill climbing methods, maximum number of unsuccessful 
attempts is  bounded. Constraint type selection provides 
adaptivity. Hill climbing method corresponding to a 
constraint type producing higher number of violations 
within the range is more likely to be selected. 

Timetabling problems are considered as multi-criteria 
optimization problems. While reducing the violations due 
to a constraint, overall fitness of an individual can be 
worsen. Hill climbing attempts to move an individual to a 
local optimum.  Applying a hill climbing seems to be 
computationally expensive in timetabling problems  due to 
fitness calculations. Yet, if the total computation time 
reduces and/or the quality of solution increases, a hill 
climbing approach becomes preferable. Furthermore, 
depending on the constraints, it might be possible to 
calculate the fitness of an individual faster by considering 
the changes within itself, after an operator is applied (Ross 
et. al. 1994a).  

5 Final Exam Scheduler (FES) 

The details of Timetabling Markup Language (TTML) can 
be found in Ozcan (2005). Final exam scheduler (FES) is a 
TTML processor, embodying a parser, problem solver 
and a solution interpreter as shown in Figure 5. As a 
programming language Java is used to implement FES. FES 
accepts an examination timetabling problem instance in 
TTML format and attempts to solve it. As a problem 
solver, an MA as described in Section 4 is embedded. FES 
allows the same input document to be modified to include 
a proposed solution by the solver. Various parameters of 
the MA can be also set via the graphical user interface of 
FES. 
 

 

Figure 5. A TTML processor for solving timetabling problem 
instances 

Solution interpreter component represents the utility 
for viewing the results. During the evolution, pausing is 
supported by FES at any time. After the execution is 

paused, any candidate solution (chromosome) within the 
population can be selected to be viewed. Total number of 
violations (cost) and violations due to each constraint 
type for a candidate solution are also provided. Depending 
on the classifiers defined in the TTML document used as 
input, FES supports generation of different timetables for 
viewing (Figure 6). For example, defining student 
classifiers in a TTML document, where each subset 
represents courses registered by a student; final 
examination timetable of each student can be displayed. 
Additionally, a user might prefer to prepare a TTML 
document with curriculum term classifiers, grouping 
courses for a department for each curriculum term and 
lecturer classifiers, grouping courses offered by each 
lecturer. By that way, a user is enabled to define 
constraints using these classifiers, and display different 
final examination timetables. Then, timetables containing 
the assignments of courses for a selected curriculum term 
or a selected lecturer can be displayed.  Output can be 
viewed as either a list or a table. Users are allowed to save 
a selected solution embedding it into the input document 
in TTML format. Furthermore, generated timetables can be 
saved in HTML format as well.  

 

 

Figure 6. A snapshot of the FES graphical user interface during 
execution 

We are hoping for a single problem solver for solving 
different types of timetabling problems  and we have taken 
some serious steps towards achieving this . Ultimately, our 
aim is to design such a system that would accept TTML 
input and solve it, without any data and problem type 
dependency. Developing an XML based standard, namely 
TTML and FES was the first step. Currently, we are 
working on the framework of the problem solver. It is 
important to emphasize that feeding TTML input into the 
TTML processor does not have to be a local process. 
TTML processor can be designed as a web service. 

6 Experiments 

Experiments are performed in two stages on Pentium 4, 
2.6GHz Win2000 machines with 256 Mb memories. In the 
first stage, best configuration is obtained, while in the 
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second stage the MA using the best configuration VDHC 
is tested on more data.  

6.1 Parameter Settings 
Each experiment is repeated 50 times. A run is terminated if 
all the constraints are satisfied or maximum number of 
generations is  exceeded that is a factor of the chromosome 
length. Crossover and mutation rates are chosen as 1.0 
and 1/chromosome_length, respectively. Population size is 
selected as half of the chromosome length. Maximum 
number of unsuccessful hill climbing (HC1, HC2 and HC3) 
steps is fixed as 5. Maximum number of successful VDHC 
attempts is also fixed as the chromosome length. In all the 
experiments, the virility for RANK and the tour size for 
TOUR are set to 4. 

6.2 Experimental Data 
Two problem instance sets  are used during the 
experiments. The first set is a reduced form of student 
course registrations of in FEA at YU during 2001/2002 and 
2002/2003 educational years. YU data is labeled as 
yue#educational year#semesterid. Data reduction is 
performed by eliminating sections. Most of the existing 
final examination timetabling data consists of two files. 
One file includes a list of students and the courses they 
are assigned and the other includes a list of classrooms 
and their capacity. Constraints are generally provided in 
the context of related publications. Using TTML, we have 
combined the input data and the constraints in a single file 
for each problem instance. The second problem instance 
set is retrieved from Carter’s benchmark (Carter et. al. 
1996). Similar problem instances staf83 and utes92 are 
used during the experiments. It is known that there is at 
least one solution for all the examination problem 
instances used during the experiments.  

Characteristics of the experimental data are summarized 
in Table 1, including constraint related parameters. Number 
of days in the timetables used for YU data is  based on the 
FEA requirements. 
 

Data 
Label 

No. of 
exams 

No. of 
st. 

Avr. 
neps dcm 

msc, 
days 

yue20011 140 559 6,24 0,14 500,10 
yue20012 158 591 6,27 0,14 500,10 
yue20013 30 234 1,91 0,19 500,4 
yue20021 168 826 6,97 0,16 800,12 
yue20022 187 896 6,54 0,16 800,12 
yue20023 40 420 1,88 0,19 800,4 
yue20031 177 1125 5,97 0,15 800,12 
yue20032 210 1185 5,77 0,14 800,12 

staf83 139 611 9,41 0,14 500,10 
utes92 184 2749 4,29 0,08 500,10 

Table 1. Characteristics of experimental data, where neps is the 
number of examinations per student, dcm is the density of the 
conflict matrix and msc is the maximum seat capacity 

Both problem instance sets are converted into TTML 
format, using a java parser, named as CONFETI (a 

converter for examination timetabling textual data). 
CONFETI applet and the timetabling data repository can 
be freely reached at: 

http://cse.yeditepe.edu.tr/~eozcan/research/TTML 
 

6.3 Experimental Results 
In the first stage, eight experiments are conducted using 
each data; yue20011, yue20012, yue20013, yue20023, 
staf83 and utes92. MAs are tested utilizing RANK and 
TOUR, SSMA and TGMA, RAND and SWAP operators 
as mate selection, replacement and mutation operators, 
respectively. Define success rate (s.r.) as percentage of the 
successful runs. Considering the success rate, in all cases 
tournament mate selection performed better than ranking 
strategy as presented in Table 2. 

In order to compare the replacement strategies utilized, 
yue20022 is added to the test cases. According to the 
results of the four experiments for each data in which 
TOUR is fixed as a mate selection method, TGMA 
performs better than SSMA as a replacement strategy in all 
cases. Outcomes are presented in Table 3. TGMA visits 
less number of states as compared to SSMA on average.  
 

TOUR RANK 
Data  
Label 

Avr. No. of 
States Vis. 

Avr. 
s.r. 

Avr. No. of 
States Vis. 

Avr. 
s.r. 

yue20011 967.909 0,99 829.507 0,99 
yue20012 4.358.394 0,94 4.952.054 0,57 
yue20013 1.851 1,00 734 1,00 
yue20023 3.621 1,00 2.697 1,00 

staf83 1.255.874 0,99 1.459.840 0,91 
utes92 89.537 1,00 144.780 1,00 

Avr. 1.112.864 0,99 1.231.602 0,91 

Table 2. Comparison of mate selection methods; TOUR and 
RANK, based on average number of states visited per run and 
average success rate for each problem instance, considering all 
runs 

 
SSMA TGMA 

Data  
Label 

Avr. No. of 
States Vis. 

Avr. 
s.r. 

Avr. No. of 
States Vis. 

Avr. 
s.r. 

yue20011 1.904.463 0,98 31.354 1,00 
yue20012 8.516.845 0,89 199.942 0,99 
yue20013 3.422 1,00 279 1,00 
yue20022 18.364.709 0,84 521.309 0,88 
yue20023 6.442 1,00 801 1,00 

staf83 2.472.994 0,98 38.755 1,00 
utes92 170.020 1,00 9.053 1,00 

Avr. 4.491.271 0,96 114.499 0,98 

Table 3. Comparison of replacement strategies; SSMA and 
TGMA, based on average number of states visited per run and 
average success rate for each problem instance, considering all 
runs where TOUR is used as a mate selection method  



MA experimental results, in which TOUR and TGMA 
are utilized, indicate that traditional mutation operator 
RAND performs almost the same as SWAP with respect to 
the average success rate. In five out of seven test cases 
MA runs using RAND perform slightly better than SWAP 
considering average number of generations. Hence, RAND 
is favored during further experiments. 

In the second stage experiments, yue20031, yue20032 
and yue20033 are added to the test cases. The best MA 
configuration is experimented on the additional problem 
instances. Experimental results with the best MA (vMA) 
utilizing TOUR, RAND and TGMA operators are 
summarized in Table 4. The vMA utilizing VDHC discovers 
optimal solutions in all cases with high success rates. 

Furthermore, experiments are performed for observing 
the influences of hill climbing and crossover. Maximum 
number of generations is trippled during Genetic 
Algorithm runs without hill climbing (sGA)  for a fair 
comparison.  The same MA settings are used for the rest 
of the parameters. When the hill climbing operator (VDHC) 
is disabled, the performance of sGA deteriorates 
significantly in almost all cases as shown in Table 4. 
Moreover, the average number of states visited per run 
increases for the problem instances yue20013 and utes92, 
unless VDHC is used. When the crossover operator is 
disabled (xMA), performance of the MA worsens for the 
problem instances yue20021 and yue20022 (Table 4). As a 
result, we can safely conclude that hill climbing and 
crossover operators together are very useful during the 
search for an optimal solution.  
 

Data 
Label vMA xMA sGA 

yue20011 1,00 1,00 0,86 
yue20012 0,96 0,96 0,36 
yue20013 1,00 1,00 1,00 
yue20021 1,00 0,00 0,00 
yue20022 0,90 0,88 0,32 
yue20023 1,00 1,00 0,98 
yue20031 0,98 1,00 0,70 
yue20032 1,00 1,00 0,74 

staf83 1,00 1,00 0,96 
utes92 1,00 1,00 1,00 

Table 4. Success rates for the MA with TOUR, RAND, TGMA 
and VDHC (vMA), the MA without crossover (xMA) and 
without VDHC (sGA) 

7 Conclusions and Future Work 

Final examination timetabling problem at the Faculty of 
Engineering and Architecture is described. The only 
difference between the problem and other available 
problem instances is that all the constraints are hard 
constraints. A tool is introduced for solving examination 

timetabling problems, named Final Examination Scheduler 
(FES). The major components of the tool are its document 
parser, timetable viewer and an MA problem solver.   
Timetabling Markup Language documents are accepted as 
input by FES. Output viewer generates and displays a 
timetable for a subset of variables as defined in the TTML 
document. Any view can be saved as an HTML file. The 
MA solver with VDHC is tested using different operators 
on a set of benchmark data. The best MA configuration is 
achieved by combining one point crossover, tournament 
mate selection, elitist transgenerational replacement 
strategy and traditional mutation. In almost all cases, the 
MA successfully produces optimal timetables, satisfying 
all the imposed constraints. Modified violation directed 
hierarchical hill climbing operator utilizes a framework 
proposed in a previous study (Alkan et. al. 2003).  VDHC 
turns out to be a promising hill climbing method, even if no 
arrangements or logical groupings of data are available 
before the runs. 

More MA operators will be considered within the 
framework described to improve the GA solver. First 
operator to be tested next  is the uniform crossover. A 
robust solver with a high success rate and low average 
number of generations (evaluations) for solving a problem 
instance is the goal. In most of the recent publications, 
importance of initialization is emphasized for solving 
timetabling problem instances. Hence, heuristics for 
initializing a population will be considered. VDHC is an 
adaptive operator based on the cooperation of different 
hill climbing methods. As a next step, its performance will 
be compared to a multimeme strategy (Krasnogor 2002). 
More benchmark problems  and larger instances will be 
attacked with the methods devised.  

Bibliography 

Alkan, A. and Ozcan, E. (2003) “Memetic Algorithms for 
Timetabling”, Proc. of 2003 IEEE Congress on 
Evolutionary Computation, pp. 1796-1802. 
Burke, E., Elliman, D., Ford, P., Weare, B. (1996a) 
“Examination Timetabling in British Universities- A 
Survey”, The Practice and Theory of Automated 
Timetabling, Lecture Notes in Computer Science 1153, 
pages 76–90. Springer-Verlag. 
Burke, E., Newall, J.P., and Weare, R.F. (1996b) “A 
Memetic Algorithm for University Exam Timetabling”, 
Lecture Notes in Computer Science, 1153:241-250, 
Springer. 
Burke, E. K., Pepper, P. A. and Kingston, J. H. (1997) “A 
Standard Data Format for Timetabling Instances”, Springer 
Lecture Notes in Computer Science, 1408:213-222. 
Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden 
Berghe G. (2003a) “Variable Neighbourhood Search for 
Nurse Rostering Problems”, in Metaheuristics: Computer 
Decision-Making (edited by Mauricio G.C. Resende and 
Jorge Pinho de Sousa), chapter 7, Kluwer, pp. 153-172. 
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and 
Schulenburg, S. (2003b) “Hyper-heuristics: an emerging 



direction in modern search technology”, Handbook of 
metaheuristics, chapter 16, pp. 457-474. Kluwer Academic 
Publishers. 
Burke, E.K., De Causmaecker, P. and Vanden Berghe, G., 
Van Landeghem, H. (2004a) “The State of the Art of Nurse 
Rostering”, Journal of Scheduling, 7:441-499. 
Burke, E. and Newall, J. P. (2004b) “Solving Examination 
Timetabling Problems  through Adaption of Heuristic 
Orderings: Models and Algorithms for Planning and 
Scheduling Problems ”, (Editors: Philippe Baptiste, Jacques 
Carlier, Alix Munier, Andreas S. Schulz) Annals of 
Operations Research,    vol. 129, no. 1-4,   pp. 107-134(28). 
Carter, M. W, Laporte, G. and Lee, S.T. (1996) "Examination 
timetabling: algorithmic strategies and applications.", 
Journal of the Operational Research Society , 47:373-383. 
Enzhe, Y. and Sung, K. (2002) “A Genetic Algorithm for a 
University Weekly Courses Timetabling Problem”, 
International Transactions in Operational Research, 9:703-
717. 
Even, S., Itai, A. and Shamir, A. (1976) “On the Complexity 
of Timetable and Multicommodity Flow Problems ”, SIAM 
J. Comput., 5(4):691-703. 
Fang, H. L. (1994) “Genetic Algorithms in Timetabling and 
Scheduling”, PhD thesis , Department of Artificial 
Intelligence, University of Edinburgh, Scotland. 
Glover, F. “Tabu search - Part I”. ORSA Journal on 
Computing, 1(3):190-206, 1989. 
Gaspero, L. Di and Schaerf, A. (2000) “Tabu Search 
Techniques for Examination Timetabling”, LCNS archive 
Selected papers from the Third International Conference 
on Practice and Theory of Automated Timetabling, pp. 104 
- 117. 
Goldberg, D. E. (1989) Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison-Wesley, 
Reading (MA). 
Holland, J. H. (1975) Adaptation in Natural and Artificial 
Systems, Univ. Mich. Press. 
Kingston, J.H. (2001) “Modeling timetabling problems with 
STTL”, Springer LCNS, 2079:309. 
Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). 
“Optimization by simulated annealing”, Science, vol. 220, 
no. 4598, pp. 671-680. 
Krasnogor, N. (2002) “Studies on the Theory and Design 
Space of Memetic Algorithms”, PhD Thesis, University of 
the West of England, Bristol, United Kingdom. 
Leighton, F. T. (1979) “A graph coloring algorithm for large 
scheduling problems”, Journal of Reasearch of the 
National Bureau of Standards, 84:489. 
Lewis, R. and Paechter, B. (2004) “New Crossover 
Operators for Timetabling with Evolutionary Algorithms”, 
5th International Conference on Recent Advances in Soft 
Computing (RASC 2004), vol. 5, pp 189-195. 
Merlot, L., Boland, N., Hughes, B. and Stuckey P. (2003) 
“A hybrid algorithm for the examination timetabling 
problem”,  Lecture Notes in Computer Science, vol. 2740, 
Gent, Belgium, Springer-Verlag, pp. 207-231. 
Moscato, P. and Norman, M. G. (1992) “A Memetic 
Approach for the Traveling Salesman Problem 

Implementation of a Computational Ecology for 
Combinatorial Optimization on Message-Passing 
Systems ”, Parallel Computing and Transputer 
Applications, pp. 177-186. 
Ozcan, E. and Mohan, C. K. (1998) “Steady State Memetic 
Algorithm for Partial Shape Matching”, LNCS, 
Evolutionary Programming VII, 7th International 
Conference, EP98, San Diego, CA, USA, Springer, Berlin, 
vol. 1447, pp. 527-536. 
Ozcan, E. and Alkan, A., (2002) “Solving Time Tabling 
Problem using Genetic Algorithms”, Proceedings of the 
4th International Conference on the Practice and Theory of 
Automated Timetabling, pp.104-107. 
Ozcan, E. and Onbasioglu, E. (2004) “Genetic Algorithms 
for Parallel Code Optimization”, Proc. of 2004 IEEE 
Congress on Evolutionary Comp ., vol. 2, pp. 1775-1781. 
Ozcan, E. (2005a) “Towards an XML based standard for 
Timetabling Problems: TTML”, Multidisciplinary 
Scheduling: Theory and Applications, 2005, Selected 
Volume of the 1st MISTA (2003), to appear. 
Ozcan, E. (2005b) “Memetic Algorithms for Nurse 
Rostering”, The 20th International Symposium on 
Computer and Information Sciences, in review. 
Petrovic, S., Yang, Y., Dror, M. (2003) “Case-Based 
Initialisation of Metaheuristics for Examination 
Timetabling”, pp. 137-154., Proc. of 1st Multidisciplinary 
International Conference on Scheduling: Theory and 
Applications (MISTA 2003), pp. 137-154. 
Paquete, L. F. and Fonseca C. M. (2001) “A Study of 
Examination Timetabling with Multiobjective Evolutionary 
Algorithms”, Proc. of the 4th Metaheuristics International 
Conference (MIC 2001), pp. 149-154, Porto. 
Radcliffe, N. J. and Surry, P.D. (1994) “Formal memetic 
algorithms ”, Evolutionary Computing: AISB Workshop, 
Springer Verlag, LNCS 865, pp. 1-16. 
Ross, P., Corne, D. and Fang, H-L. (1994a) “Improving 
Evolutionary Timetabling with Delta Evaluation and 
Directed Mutation”, Proc. of PPSN III, pp. 556-565. 
Ross, P., Corne, D. and Fang, H-L. (1994b) “Fast Practical 
Evolutionary Timetabling”, Proc. of AISBWorkshop on 
Evolutionary Computation. 
Schaerf, A. (1999) “A survey of automated timetabling”, 
Artificial Intelligence Review, 13(2):87-127. 
Terashima-Marín, H. (1998)  “Combinations of GAs and 
CSP Strategies for Solving the Examination Timetabling 
Problem”, PhD thesis, Computer Systems Engineering, 
Tecnológico Monterrey, Mexico. 
Terashima-Marín, H., Ross, P. and Valenzuela-Rendón, M. 
(1999) “Clique-Based Crossover for Solving the 
Timetabling Problem with Gas”, Proc. of the Congress on 
Evolutionary Computation, pp. 1200-1206. 
Werra, D. De,  (1985) “An introduction to timetabling”, 
European Journal of Operations Research, 19:151-162. 
Wong, T., Cote, P. and Gely, P. (2002) “Final exam 
timetabling: a practical approach”, Canadian Conference 
on Electrical and Computer Engineering, Winnipeg, CA, 
vol.2, pp. 726- 731. 


