
G54FOP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 4 MODULE, SPRING SEMESTER 2012–2013

MATHEMATICAL FOUNDATIONS OF PROGRAMMING

ANSWERS
Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign
their desk card but must NOT write anything else until the start of the

examination period is announced.

Answer QUESTION ONE and THREE other questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first
language is not English may use a standard translation dictionary to

translate between that language and English provided that neither language
is the subject of this examination. Subject-specific translation directories

are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

Note: ANSWERS

G54FOP-E1 Turn Over

2 G54FOP-E1

Question 1 (Compulsory)

(a) See appendix A for the grammars and operational semantics relevant
to this question. (You do not need the typing rules for this question.)
Use the operational semantics to evaluate the following term until a
value is obtained:

if (if (iszero (pred 0))
then (iszero (succ 0))
else (iszero (pred 0)))

then (succ 0)
else 0

The validity of the first two evaluation steps should be proved by
applying the rules of the operational semantics. For the remaining
steps, just show the sequence of terms in the right order. (8)

Answer: Straightforward, will only sketch the answer. The sequence
of evaluation steps is as follows:

if (if (iszero (pred 0)) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (if (iszero 0) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (if true then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (iszero (succ 0)) then (succ 0) else 0

−→ if false then (succ 0) else 0

−→ 0

For full marks, the first two steps should be proved using the rules
of the operational semantics. As an example, the first step should be

G54FOP-E1

3 G54FOP-E1

proved as follows:

pred 0 −→ 0
E-PREDZERO

iszero (pred 0) −→ iszero 0
E-ISZERO

if (iszero (pred 0)) then (iszero (succ 0)) else (iszero (pred 0))
−→ if (iszero 0) then (iszero (succ 0)) else (iszero (pred 0))

E-IF

if (if (iszero (pred 0)) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (if (iszero 0) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

E-IF

G54FOP-E1 Turn Over

4 G54FOP-E1

(b) Give λ-terms satisfying the following descriptions:

(i) a closed term containing at least one β-redex; (2)

(ii) an open term containing at least two λ-abstractions; (2)

(iii) a term containing at least two bound and two free occurrences of
distinct variables, clearly indicating which variable occurrences
are free and which are bound. (3)

Answer: For example:

• (λx.x) (λx.x)

• λx.λy.z

• λx.λy.x y u v
where the bound variable occurrences have been underlined and
the free ones have been enclosed in a box.

G54FOP-E1

5 G54FOP-E1

(c) Given the definitions:

I ≡ λx.x

S ≡ λx.λy.λz.x z (y z)

K ≡ λx.λy.x

ω ≡ λx.x x

reduce the following λ-calculus term to normal form if possible:

I S K K (ω ω)

Show each unfolding step (expansion of a definition) and each indi-
vidual β-reduction step. If it is not possible to reach a normal form,
explain why. (5)

Answer: Normal-order reduction ensures a normal form will be found,
if it exists. So carry out normal-order reduction (outermost, left-most
redex first) until either a normal form has been reached, or it becomes
evident that reduction isn’t going to yield a normal form:

I S K K (ω ω)

= (λx.x) S K K (ω ω)

→
β

S K K (ω ω)

= (λx.λy.λz.x z (y z)) K K (ω ω)

→
β

(λy.λz.K z (y z)) K (ω ω)

→
β

(λz.K z (K z)) (ω ω)

→
β

K (ω ω) (K (ω ω))

= (λx.λy.x) (ω ω) (K (ω ω))

→
β

(λy.(ω ω)) (K (ω ω))

→
β

ω ω

= (λx.x x) ω

→
β

ω ω

Thus, ω ω reduces to the very same term, ω ω, by normal-order re-
duction; it is thus clear that no normal form can be reached as it will
always be possible to carry out another β-reduction.

G54FOP-E1 Turn Over

6 G54FOP-E1

(d) See appendix A for the grammars and typing rules for this question.
Prove that the following term is well-typed:

if (iszero (pred 0)) then (succ 0) else 0

Your proof should be structured as a proof tree. (5)

Answer:

0 : Nat
T-ZERO

pred 0 : Nat
T-PRED

iszero (pred 0) : Bool
T-ISZERO 0 : Nat

T-ZERO

succ 0 : Nat
T-SUCC

0 : Nat
T-ZERO

if (iszero (pred 0)) then (succ 0) else 0 : Nat
T-IF

G54FOP-E1

7 G54FOP-E1

Question 2
This question concerns the pure, untyped λ-calculus, enriched with λ-definable
constants where indicated.

(a) Consider the following definition of a function for summing the integer
values carried by the leaves and nodes in a binary tree:

sumtree(t) = if isleaf(t) then

leafval(t)

else

sumtree(left(t))

+ nodeval(t)

+ sumtree(right(t))

Show how to translate this function into the pure λ-calculus, explain-
ing the key ideas of the translation. You may assume normal-order
evaluation and use the following λ-definable constants:

IF Usual three-argument conditional; first argument,
the condition, assumed to be of Boolean type

ISLEAF Test for leaf

LEAFVAL Value carried by a leaf

NODEVAL Value carried by a node

LEFT Left subtree

RIGHT Right subtree

PLUS Numerical addition (two arguments)

Any other constants needed in your translation have to be defined and
explained.

(10)

Answer: The idea of the translation is to abstract out the recursively
called function as an extra, first, argument. The resulting residual func-
tion is thus a function that will return a function that computes the
sum of the values in a tree if applied to a function that computes this
sum. Or, in other words, the desired function is the fixed point of the
residual function. If we introduce a fixed-point combinator Y for com-
puting fixed points, the above function fib can be translated into the λ-
calculus as follows, where SUMTREE′ is the residual and SUMTREE
the desired translation:

SUMTREE′ ≡ λf.λt.IF (ISLEAF t)
(LEAFVAL t)
(PLUS (f (LEFT t)) (PLUS (NODEVAL t) (f (RIGHT t))))

SUMTRE ≡ Y SUMTREE′

G54FOP-E1 Turn Over

8 G54FOP-E1

Y is the call-by-name fixed point combinator and works under call-by-
name or normal-order evaluation. It has the following definition:

Y ≡ λf.(λx.f (x x)) (λx.f (x x))

(An answer along the lines above suffices for full marks; the following
are additional explanations/suggests possible variations of a good an-
swer.) What makes this work is the fact that Y satisfies the fixed point
equation

Y F = F (Y F)

In other words, Y ensures that a function F to which Y is applied gets
applied to the fixed point of the function F itself, which is computed by
applying Y to F.

Another way to understand this is that Y enables a recursive defini-
tion to be unfolded on demand, thus simulating the jump to a specific
code sequence, which is how function calls and recursion usually are
handled, by inlining a copy of the called function at the call site.

(b) A discriminated union is a way to form the union of two sets of val-
ues in such a way that it for each element in the union is possible to
tell from which of the two sets this element initially came. One way
to realise this idea is through two injection functions, left and right ,
that takes an element from one or the other set into the discriminated
union, and a function case that applies one of two given functions to
an element from the discriminated union depending on whether that
element was injected using left or right . Using ⊎ to denote discrimi-
nated union, the types for these functions for some specific sets A, B,
and C would be:

left : A → A ⊎ B

right : B → A ⊎ B

case : (A → C) → (B → C) → (A ⊎ B) → C

Further, for arbitrary a : A, b : B, f : A → C, and g : B → C, the
following algebraic laws must hold:

case f g (left a) = f a

case f g (right b) = g b

Provide λ-calculus definitions for these three functions that meet the
above specification. Explain your construction, and use only the basic
calculus; if you wish to use some auxiliary constants, you must de-
fine them first. Further, demonstrate the validity of your definition by
proving that one of the two algebraic laws holds. (10)

G54FOP-E1

9 G54FOP-E1

Answer: One possible encoding is as follows. The idea is essentially
the same as the Church encoding of the Booleans, except that we as-
sociate a “payload” with each element, essentially forming one-field
records:

LEFT ≡ λa.λf.λg.f a

RIGHT ≡ λb.λf.λg.g b

CASE ≡ λf.λg.λc.c f g

That this encoding satisifies the first law can be proved as follows:

CASE f g (LEFT a)

= (λf.λg.λc.c f g) f g (LEFT a)
∗
→
β

(LEFT a) f g

= ((λa.λf.λg.f a) a) f g

→
β

(λf.λg.f a) f g

∗
→
β

f a

Another possibility is to make use of the Church encodings of Booleans
and pairs. In essence the idea is to tag elements by pairing them either
with true or false, enabling a choice of which function to be applied to
be done in the encoding of case:

LEFT ≡ PAIR T

RIGHT ≡ PAIR F

CASE ≡ λf.λg.λc.IF (FST c) (f (SND c)) (g (SND c))

Note that for full marks, the definitions of all of these constants must
also be given.

(c) Explain the problem of name capture. Illustrate your answer with an
example. (5)

Answer: Name capture occurs when a term with free variables is
naively substituted for a variable in a context where one or more of
the variables that are free in the term are bound. For example, if the
application

(λx.λy.x) y

were to be reduced naively by substituting y for x in λy.x, then the result
would be λy.y which is wrong. The initially free y has been confused
with a different bound variable that just happened to have the same
name.

G54FOP-E1 Turn Over

10 G54FOP-E1

Question 3
Consider the following expression language:

e → expressions:
n natural numbers, n ∈ N

| x variables, x ∈ Name
| if e then e else e conditional

where Name is the set of variable names. The types are given by the following
grammar:

t → types:
Nat natural numbers

| Bool Booleans

The ternary relation Γ ⊢ e : t says that expression e has type t in the typing
context Γ and it is defined by the following typing rules:

Γ ⊢ n : Nat (T-NAT)

x : t ∈ Γ
Γ ⊢ x : t

(T-VAR)

Γ ⊢ e1 : Bool Γ ⊢ e2 : t Γ ⊢ e3 : t
Γ ⊢ if e1 then e2 else e3 : t

(T-COND)

A typing context, Γ in the rules above, is a comma-separated sequence of
variable-name and type pairs, like

x : Nat, y : Bool, z : Nat

or empty, denoted ∅. Typing contexts are extended on the right, e.g. Γ, z :
Nat, the membership predicate is denoted by ∈, and lookup is from right to
left, ensuring recent bindings hides earlier ones.

(a) Use the typing rules given above to formally prove that the expression

if b then 3 else x

has type Nat in the typing context

Γ1 = b : Bool, x : Nat

(5)

Answer:

b : Bool ∈ Γ1

Γ1 ⊢ b : Bool
T-VAR

Γ1 ⊢ 3 : Nat
T-NAT

x : Nat ∈ Γ1

Γ1 ⊢ x : Nat
T-VAR

Γ1 ⊢ if b then 3 else x : Nat
T-COND

G54FOP-E1

11 G54FOP-E1

(b) The expression language defined above is to be extended with lists of
elements of some specific type (i.e. homogeneous lists) as follows:

e → expressions:
.
| null empty list
| cons e e list construction
| head e head of list
| tail e tail of list
| isnull e test for empty list

t → types:
.
| List t list of elements of type t

Provide a typing rule for each of the new expression constructs in the
same style as the existing rules. The constant null has type List t

for any type t; cons takes a value of a type t and a list of elements of
the same type t, i.e. List t, as arguments, and returns a list of type
List t; and head, tail, and isnull all take a list of elements of a
type t, List t, as argument and return, respectively, a result of type
t, List t, and Bool. (5)

Answer:

Γ ⊢ null : List t (T-NULL)

Γ ⊢ e1 : t Γ ⊢ e2 : List t
Γ ⊢ cons e1 e2 : List t

(T-CONS)

Γ ⊢ e1 : List t
Γ ⊢ head e1 : t

(T-HEAD)

Γ ⊢ e1 : List t
Γ ⊢ tail e1 : List t

(T-TAIL)

Γ ⊢ e1 : List t
Γ ⊢ isnull e1 : Bool (T-ISNULL)

G54FOP-E1 Turn Over

12 G54FOP-E1

(c) Extend the language further with function abstraction and application
as follows:

e → expressions:
.
| λx :t . e function abstraction
| e e function application

t → types:
.
| t → t function (arrow) type

For example, the function abstraction λx :Nat. x is the identity func-
tion on Nat, the natural numbers, and (λx :Nat. x) 42 is the applica-
tion of this function to the number 42.

Provide a typing rule for each of the new expression constructs, in
the same style as the existing rules, reflecting the standard notions of
function abstraction and function application. (6)

Answer:

Γ, x : t1 ⊢ e : t2
Γ ⊢ (λx :t1 . e) : t1 → t2

(T-ABS)

Γ ⊢ e1 : t2 → t1 Γ ⊢ e2 : t2
Γ ⊢ e1 e2 : t1

(T-APP)

G54FOP-E1

13 G54FOP-E1

(d) Use the extended set of typing rules to formally prove that the expres-
sion

tail ((λf :Nat → Bool. cons (f 7) null) even)

has type List Bool in the typing context

Γ2 = even : Nat → Bool

(9)

Answer: Let g = λf : Nat → Bool. cons (f 7) null. Let us first
determine the type of the expression g:

f : Nat → Bool ∈ Γ3
Γ3 ⊢ f : Nat → Bool

T-VAR

Γ3 ⊢ 7 : Nat T-NAT

Γ3 ⊢ f 7 : Bool
T-APP

Γ3 ⊢ null : List Bool
T-NULL

Γ3 = Γ2, f : Nat → Bool ⊢ cons (f 7) null : List Bool
T-CONS

Γ2 ⊢ g : (Nat → Bool) → List Bool
T-ABS

We then check the type of the application g even

Γ2 ⊢ g : (Nat → Bool) → List Bool
above

even : Nat → Bool ∈ Γ2

Γ2 ⊢ even : Nat → Bool
T-VAR

Γ2 ⊢ g even : List Bool
T-APP

Finally, we turn to the complete expression:

Γ2 ⊢ g even : List Bool
above

Γ2 ⊢ tail (g even) : List Bool
T-HEAD

G54FOP-E1 Turn Over

14 G54FOP-E1

Question 4
The aim of this question is to give an operational semantics for the language
in Appendix B. As it is an imperative language, the evaluation relation(s)
will have to relate a term c or e along with a store σ to the resulting term
after one step of evaluation and, if necessary, an updated store. As described
in the informal semantics, there is only one type of value, integers, and the
subset of terms representing values is thus just n, the syntactic category of
integers. Take a store to be a function that maps a variable name to a value;
i.e.

σ : x → n

Further, use the notation [x 7→ n]σ for “updating” a store; i.e., to denote a
store that is like σ except that x is mapped to n.

(a) Give an operational semantics for expressions e. It is permissible to
use predicates on the integers as premises in the inference rules. For
example, if you need the sum n′ of two integers n1 and n2 in the
conclusion of a rule, use a predicate like n′ = n1 + n2 as a premise, or
if a rule should only be applicable if two numbers n1 and n2 are not
equal, use a premise like n1 6= n2. (8)

Answer:

σ(x) = n
x | σ −→ n

(E-VAR)

e1 | σ −→ e′1
e1 + e2 | σ −→ e′1 + e2

(E-ADD1)

e2 | σ −→ e′2
n1 + e2 | σ −→ n1 + e′2

(E-ADD2)

n = n1 + n2
n1 + n2 | σ −→ n

(E-ADDN)

e1 | σ −→ e′1
e1 = e2 | σ −→ e′1 = e2

(E-EQ1)

e2 | σ −→ e′2
n1 = e2 | σ −→ n1 = e′2

(E-EQ2)

n1 = n2
n1 = n2 | σ −→ 1

(E-EQEQ)

n1 6= n2
n1 = n2 | σ −→ 0

(E-EQNE)

G54FOP-E1

15 G54FOP-E1

(b) Give an operational semantics for commands c. (12)

Answer:

c1 | σ −→ c′1 | σ′

c1 ; c2 | σ −→ c′1 ; c2 | σ′ (E-SEQ)

skip ; c2 | σ −→ c2 | σ (E-SEQSKIP)

e | σ −→ e′

x := e | σ −→ x := e′ | σ
(E-ASSIGN)

x := n | σ −→ skip | [x 7→ n]σ (E-ASSIGNN)

e | σ −→ e′

if e then c1 else c2 | σ −→ if e′ then c1 else c2 | σ
(E-IF)

n 6= 0
if n then c1 else c2 | σ −→ c1 | σ

(E-IFTRUE)

if 0 then c1 else c2 | σ −→ c2 | σ (E-IFFALSE)

e1 | σ −→ e′1
for x := e1 to e2 do c | σ −→ for x := e′1 to e2 do c | σ

(E-FOR1)

e2 | σ −→ e′2
for x := n1 to e2 do c | σ −→ for x := n1 to e′2 do c | σ

(E-FOR2)

n1 ≤ n2 n′

1 = n1 + 1
for x := n1 to n2 do c | σ −→ c ; for x := n′

1 to n2 do c | [x 7→ n1]σ
(E-FORDO)

n1 > n2
for x := n1 to n2 do c | σ −→ skip | [x 7→ n1]σ

(E-FORDONE)

G54FOP-E1 Turn Over

16 G54FOP-E1

(c) Use your rules to formally evaluate the program

i := i + 7

given an initial store σ1 such that σ1(i) = 3. (5)

Answer: Straightforward, will only sketch the answer. The sequence
of evaluation steps is as follows:

i := i + 7 | σ1

−→ i := 3 + 7 | σ1

−→ i := 10 | σ1

−→ skip | [i 7→ 10]σ1

For full marks, the steps should be proved using the rules of the op-
erational semantics. As an example, the first step should be proved as
follows:

σ1(i) = 3

i | σ1 −→ 3
E-VAR

i + 7 | σ1 −→ 3 + 7
E-ADD1

i := i + 7 | σ1 −→ i := 3 + 7 | σ1
E-ASSIGN

G54FOP-E1

17 G54FOP-E1

Question 5
The aim of this question is to give a denotational semantics for the language
in Appendix B. As it is an imperative language, the notion of a store mapping
a variable name to the current value of that variable is needed. There is only
one type of value, integers. Thus, take a store σ to be a function of type Σ
mapping a variable name (in the syntactic category x) to its current value
(in Z):

Σ = x → Z

σ : Σ

Further, use the notation [x 7→ n]σ for “updating” a store; i.e., to denote a
store that is like σ except that x is mapped to n.

(a) Suggest an appropriate type signature for a semantic function E[[·]]
that maps an expression to its meaning. Use the syntactic category e

as the type of expressions. Provide a brief explanation of your answer.
Note that evaluation of expressions in this language has no side effects
and is total and terminating. (2)

Answer: An appropriate type signature for E[[·]] is:

E[[·]] : e → (Σ → Z)

As evaluation of expressions is total and terminating, there is no need
for a bottom element in the range of the semantic function.

(b) Define the semantic function E[[·]] for expressions. (4)

Answer: Definition:

E[[n]] σ = n

E[[x]] σ = σ x

E[[e1 + e2]] σ = E[[e1]] σ + E[[e2]] σ

E[[e1 = e2]] σ =

{

1, if E[[e1]] σ = E[[e2]] σ

0, otherwise

(c) What is a suitable type signature for a semantic function C[[·]] mapping
a command to its meaning? Use the syntactic category c as the type
of commands. Provide a brief explanation of your answer. Note that
execution of a command in the language as given always terminates;
in particular, the body of a for-loop is repeated a finite number of
times. (4)

G54FOP-E1 Turn Over

18 G54FOP-E1

Answer: A suitable type signature is:

C[[·]] : c → (Σ → Σ)

That is, a command is mapped to a state transformer, a function map-
ping a state represented by a store to a new state. The language does
include a loop construct, but the number of iterations is always finite
meaning that execution will never diverge (fail to terminate). The state
transformer is thus a total function, and its range should therefore not
include ⊥ (no lifting).

(d) Define the semantic function C[[·]] for commands. (10)

Answer:

C[[skip]] σ = σ

C[[x := e]] σ = [x 7→ E[[e]] σ]σ

C[[c1 ; c2]] σ = C[[c2]] (C[[c1]] σ)

C[[if e then c1 else c2]] σ =

{

C[[c1]] σ, if E[[e]] σ 6= 0
C[[c2]] σ, otherwise

C[[for x := e1 to e2 do c]] σ = (fixZ→(Σ→Σ) g) (E[[e1]] σ) σ

where g = λf.λn.λσ1.

{

[x 7→ n]σ1, if n > E[[e2]] σ

f (n + 1) (C[[c]] ([x 7→ n]σ1)), otherwise

Further comments on the solution:

A denotational semantics should always be compositional, i.e. the mean-
ing of the whole (syntactic construct) given by meaning of the parts
(subterms). This is not just a matter of style, but is deeply connected
to the question of whether denotational semantics actually has any
well-defined meaning.

In this particular case, given that the for-loop as defined is guaranteed
to terminate, one might argue that a non-compositional “operational-
style” definition, where for each iteration the loop is syntactically trans-
lated into a sequence of the loop body followed by a loop with one fewer
iterations, should be fine as it really just amounts to a finite unfolding
of the loop; i.e. a kind of “macro expansion”.

However, besides breaking compositionality, it is a very precarious ap-
proach. For example, it is very easy to inadvertently violate the speci-
ficed semantics by opening up for non-termination by re-evaluating the
loop expressions at each iteration. Note that the specification clearly
says that the loop expressions are to be evaluated before the loop be-
gins. This is a critical part of ensuring termination. Because otherwise
a loop like e.g. the following will not terminate:

G54FOP-E1

19 G54FOP-E1

y = 1;

for x = 0 to y do

y := y + 1

Or other variations on this theme.

Thus the right approach is to ensure that the loop expressions are only
evaluated with respect to the initial store (note the distinction between
σ and σ1 above), and then define a suitable semantic function by means
of a fixed-point construction.

(e) How would the type of C[[·]] have to be changed if a while-loop (with
the conventional imperative semantics) were to be added to the lan-
guage? Explain your answer, and provide an updated definition of
C[[c1 ; c2]] as an illustration. (5)

Answer: Adding a conventional while-loop means that execution of
commands now may diverge (fail to terminate). The range (co-domain)
of the state transformer that is the meaning of a command must there-
fore be extended to include ⊥, denoting divergence. The new type sig-
nature becomes:

C[[·]] : c → (Σ → Σ⊥)

When the result of one state transformer is passed to another, the
domain of the second state transformer needs to be extended to account
for the fact that the result from the first one may be ⊥. This can be
done by a source lifting that extends a function by mapping ⊥ to ⊥.
For example, the denotation of sequencing becomes:

C[[c1 ; c2]] σ = (C[[c2]]⊥⊥) (C[[c1]] σ)

G54FOP-E1 Turn Over

20 G54FOP-E1

Appendix A
This appendix contains the abstract syntax, operational semantics, and typ-
ing rules for the small example language (from Pierce’s book Types and
Programming Languages) that has been discussed in the module.

Abstract Syntax:

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

Values:

v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

Types:

T → types:

Bool Boolean type

| Nat Numeric type

G54FOP-E1

21 G54FOP-E1

Operational Semantics: (call-by-value)

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IF)

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

Typing Rules:

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

0 : Nat (T-ZERO)

t1 : Nat
succ t1 : Nat (T-SUCC)

t1 : Nat
pred t1 : Nat (T-PRED)

t1 : Nat
iszero t1 : Bool (T-ISZERO)

G54FOP-E1 Turn Over

22 G54FOP-E1

Appendix B
This appendix gives the abstract syntax and informal semantics for a small
imperative language. In the following, x is some suitable syntactic category
of variable names, and n that of integers (Z):

c → Commands:
| skip Do nothing
| c ; c Sequencing
| x := e Assignment
| if e then c else c Conditional
| for x := e to e do c for-loop

e → Expressions:
| n Literal integer
| x Variable
| e + e Addition
| e = e Comparison

Expressions are interpreted in the conventional way; e.g., + is integer
addition. The order of evaluation is call-by-value. However, for simplicity,
there is only one type of value in the language, integers, and the integer
values 0 and 1 are used to represent the Boolean values false and true,
respectively. Thus, 3 = 7 evaluates to 0 and 7 = 7 evaluates to 1. Additionally,
when what notionally is a Boolean value is used, any non-zero value is treated
as representing true. Note that evaluation of expressions in this language has
no side effects and is total and terminating.

Commands have the conventional, imperative interpretation, along with
the following refinement for the for-loop:

The two expressions are first evaluated, the first one to n1 and
the second one to n2; if n1 ≤ n2, the loop body c is repeated
n2 − n1 + 1 times with x being assigned to consecutive values
from n1 to n2 prior to each iteration; the value of x after the
loop is the greater of n1 and n2 + 1.

Also, as implied by the description of Boolean values above, the conditional
treats any non-zero value as true. Note that commands in general have side
effects.

G54FOP-E1 End

