
G54FOP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 4 MODULE, SPRING SEMESTER 2011–2012

MATHEMATICAL FOUNDATIONS OF PROGRAMMING

ANSWERS
Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign
their desk card but must NOT write anything else until the start of the

examination period is announced.

Answer QUESTION ONE and THREE other questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first
language is not English may use a standard translation dictionary to

translate between that language and English provided that neither language
is the subject of this examination. Subject-specific translation directories

are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

Note: ANSWERS

G54FOP-E1 Turn Over

2 G54FOP-E1

Question 1 (Compulsory)

(a) See appendix A for the grammars and operational semantics relevant
to this question. (You do not need the typing rules for this question.)
Use the operational semantics to evaluate the following term until a
value is obtained:

if (if (iszero (succ 0))
then (iszero (succ 0))
else (iszero (pred 0)))

then (succ 0)
else 0

The validity of the first two evaluation steps should be proved by
applying the rules of the operational semantics. For the remaining
steps, just show the sequence of terms in the right order. (8)

Answer: Straightforward, will only sketch the answer. The sequence
of evaluation steps is as follows:

if (if (iszero (succ 0)) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (if false then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (iszero (pred 0)) then (succ 0) else 0

−→ if (iszero 0) then (succ 0) else 0

−→ if true then (succ 0) else 0

−→ succ 0

For full marks, the first two steps should be proved using the rules
of the operational semantics. As an example, the first step should be
proved as follows:

iszero (succ 0) −→ false
E-ISZEROSUCC

if (iszero (succ 0)) then (iszero (succ 0)) else (iszero (pred 0))
−→ if false then (iszero (succ 0)) else (iszero (pred 0))

E-IF

if (if (iszero (succ 0)) then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

−→ if (if false then (iszero (succ 0)) else (iszero (pred 0)))
then (succ 0)
else 0

E-IF

G54FOP-E1

3 G54FOP-E1

(b) Identify the β-redexes and the free variable occurrences in the following
λ-calculus term:

λx.((λy.(x (λy.u v)) y) (((λz.z) (λz.y)) x))

(5)

Answer: Each β-redex is underlined and each free variable occurrence
enclosed in a box:

λx.((λy.(x (λy. u v)) y) (((λz.z) (λz. y)) x))

(There is also an η-redex.)

(c) Given the definitions:

I ≡ λx.x

K ≡ λx.λy.x

ω ≡ λx.x x

reduce the following λ-calculus term to normal form if possible:

(I K) (I I) (ω ω)

Show each unfolding step (expansion of a definition) and each indi-
vidual β-reduction step. If it is not possible to reach a normal form,
explain why. (5)

Answer: Normal-order reduction ensures a normal form will be found,
if it exists. So carry out normal-order reduction (outermost, left-most
redex first) until either a normal form has been reached, or it becomes
evident that reduction isn’t going to yield a normal form:

(I K) (I I) (ω ω)

≡ ((λx.x) K) (I I) (ω ω)

→
β

K (I I) (ω ω)

≡ (λx.λy.x) (I I) (ω ω)

→
β

(λy.(I I)) (ω ω)

→
β

I I

≡ (λx.x) I

→
β

I

≡ λx.x

As there are no more β-redexes, a normal form has been reached and
we are done.

G54FOP-E1 Turn Over

4 G54FOP-E1

(d) Explain what is meant by “well-typed programs do not go wrong”.
Your answer should define any key technical terms used, clarify the
relation to the notions of progress and preservation, and should specif-
ically discuss the possibility of run-time errors and non-termination.

(7)

Answer: “Well-typed programs do not go wrong” means that it is
guaranteed that a well-typed program will not get stuck; i.e., end up
in an ill-defined semantic configuration. This breaks down into two
parts: progress, which means that a well-typed program either has been
evaluated to a result or that it can be evaluated further, and preserva-
tion, which means that well-typedness is invariant under evaluation.
However, it does not in general rule out run-time errors such as di-
vision by zero or out-of-bound array indices. But it does ensure that
the semantics explicitly accounts for such possibilities. Also, there are,
in general, no termination guarantees: the evaluation of a well-typed
program may loop.

G54FOP-E1

5 G54FOP-E1

Question 2
See appendix A for the grammar and operational semantics relevant to this
question. (You do not need the typing rules for this question.)

Add an exception mechanism to the language. The syntax for the new
constructs are given below. You should add all necessary rules to the oper-
ational semantics in order to formally define the meaning of the new con-
structs.

New language constructs:

t → . . . terms:

| excn nv exception

| raise t raising an exception

| try t catch any with t catching an arbitrary exception

| try t catch t with t catching only a specific exception

The idea is that excn nv is a new normal form (but not a value!) standing
for an exception. Note that an exception carries a numerical value so that
different exceptions can be told apart.

The meaning of the construct raise t is that the argument t first is
evaluated and (assuming the argument evaluates to a numerical value) the
entire construct then evaluates to an exception carrying this value.

If an exception is the result of evaluation anywhere in a term, with the
exception of the try-construct as described below, then that entire term
should evaluate to the exception. This means that a number of exception
propagation rules have to be added to the semantics for the original language
constructs. They are as follows:

if (excn nv1) then t2 else t3 −→ excn nv1 (E-IFEXCN)

succ (excn nv1) −→ excn nv1 (E-SUCCEXCN)

pred (excn nv1) −→ excn nv1 (E-PREDEXCN)

iszero (excn nv1) −→ excn nv1 (E-ISZEROEXCN)

Note that propagation rules also will be needed for the new language con-
structs; for example, if the evaluation of the argument to raise happens to
raise an exception itself.

Finally, the try-construct allows exceptions to be caught. There are two
forms. The first one allows any exception to be caught. The meaning of
try t1 catch any with t2 is that if t1 evaluates to a value, then that is the
result of the entire construct. However, if t1 evaluates to an exception, then
the overall result is given by t2.

G54FOP-E1 Turn Over

6 G54FOP-E1

The second form try t1 catch t2 with t3 is similar to the first one,
except that an exception excn nv1 is only caught if t2 evaluates to the
same numerical value nv1. If t2 evaluates to a different numerical value, the
exception should be re-raised; i.e., the entire construct should evaluate to
excn nv1.

(a) Give semantic rules for raise t1 that capture the behaviour described
above. (5)

(b) Give semantic rules for try t1 catch any with t2 that capture the
behaviour described above. (5)

(c) Give semantic rules for try t1 catch t2 with t3 that capture the be-
haviour described above. You can assume that equality and inequal-
ity relations are defined for values; i.e., feel free to use premises like
nv1 = nv2 or nv1 6= nv2 in the rules if you need to. (8)

(d) Using your semantic rules, evaluate:

if (try (raise (succ (raise 0))) catch (succ 0) with true)
then (succ 0)
else 0

For full marks, the first step should be formally proved using the se-
mantics rules. For the remaining steps, just show the sequence of terms.

(7)

Answer:

(a) Semantic rules for raise:

raise nv1 −→ excn nv1 (E-RAISENV)

raise (excn nv1) −→ excn nv1 (E-RAISEEXCN)

t1 −→ t′1
raise t1 −→ raise t′1

(E-RAISE)

(b) Semantic rules for try catching any exception:

try v1 catch any with t2 −→ v1 (E-TRYANYV)

try (excn nv1) catch any with t2 −→ t2 (E-TRYANYEXCN)

t1 −→ t′1
try t1 catch any with t2 −→ try t′1 catch any with t2

(E-TRYANY)

G54FOP-E1

7 G54FOP-E1

(c) Semantic rules for try catching specific exception only:

try v1 catch t2 with t3 −→ v1 (E-TRYV)

try (excn nv1) catch nv1 with t3 −→ t3 (E-TRYEXCNMATCH)

nv1 6= nv2

try (excn nv1) catch nv2 with t3 −→ excn nv1

(E-TRYEXCNNOMATCH)

try (excn nv1) catch (excn nv2) with t3
−→ excn nv2

(E-TRYEXCNEXCN)

t2 −→ t′2
try (excn nv1) catch t2 with t3
−→ try (excn nv1) catch t′2 with t3

(E-TRYEXCN)

t1 −→ t′1
try t1 catch t2 with t3
−→ try t′1 catch t2 with t3

(E-TRY)

(d) The first evaluation step is justified as follows:

raise 0 −→ excn 0
E-RAISENV

succ (raise 0) −→ succ (excn 0)
E-SUCC

raise (succ (raise 0)) −→ raise (succ (excn 0))
E-RAISE

try (raise (succ (raise 0))) catch (succ 0) with true

−→ try (raise (succ (excn 0))) catch (succ 0) with true

E-TRY

if (try (raise (succ (raise 0))) catch (succ 0) with true)
then (succ 0)
else 0

−→ if (try (raise (succ (excn 0))) catch (succ 0) with true)
then (succ 0)
else 0

E-IF

G54FOP-E1 Turn Over

8 G54FOP-E1

The complete sequence of evaluation steps is:

if (try (raise (succ (raise 0))) catch (succ 0) with true)
then (succ 0)
else 0

−→ if (try (raise (succ (excn 0))) catch (succ 0) with true)
then (succ 0)
else 0

−→ if (try (raise (excn 0)) catch (succ 0) with true)
then (succ 0)
else 0

−→ if (try (excn 0) catch (succ 0) with true)
then (succ 0)
else 0

−→ if (excn 0) then (succ 0) else 0

−→ excn 0

G54FOP-E1

9 G54FOP-E1

Question 3
This question concerns the pure, untyped λ-calculus, enriched with λ-definable
constants where indicated.

(a) Consider the following recursive definition of a function for computing
the nth Fibonacci number (n ∈ N assumed):

fib(n) = if n == 0 then

0

else

if n == 1 then

1

else

fib(n-1) + fib(n-2)

Show how to translate this function into the pure λ-calculus, explain-
ing the key ideas of the translation. You may assume normal-order
evaluation and use the following λ-definable constants:

IF Usual three-argument conditional; first argument,
the condition, assumed to be of Boolean type

EQ Comparison for numerical equality

PLUS Numerical addition

MINUS Numerical subtraction

0, 1, 2, . . . Numerical constants; any natural number you need

Any other constants needed in your translation have to be defined and
explained. (10)

Answer: The idea of the translation is to abstract out the recursively
called function as an extra, first, argument. The resulting residual func-
tion is thus a function that will return a function that computes the
nth Fibonacci number if applied to a function that computes the nth
Fibonacci number. Or, in other words, the desired function is the fixed
point of the residual function. If we introduce a fixed-point combinator
Y for computing fixed points, the above function fib can be translated
into the λ-calculus as follows, where FIB′ is the residual and FIB the
desired translation:

FIB′ ≡ λf.λn.IF (EQ n 0)
0
(IF (EQ n 1)

1
(PLUS (f (MINUS n 1)) (f (MINUS n 2))))

FIB ≡ Y FIB′

G54FOP-E1 Turn Over

10 G54FOP-E1

Y is the call-by-name fixed point combinator and works under call-by-
name or normal-order evaluation. It has the following definition:

Y ≡ λf.(λx.f (x x)) (λx.f (x x))

What makes this work is the fact that Y satisfies the fixed point equa-
tion

Y F = F (Y F)

In other words, Y ensures that a function F to which Y is applied gets
applied to the fixed point of the function F itself, which is computed by
applying Y to F.

Another way to understand this is that Y enables a recursive defini-
tion to be unfolded on demand, thus simulating the jump to a specific
code sequence, which is how function calls and recursion usually are
handled, by inlining a copy of the called function at the call site.

(b) Show how triples (ternary products) can be encoded in the pure λ-
calculus without assuming any existing definitions. That is, define a
constructor function for building a triple, and three projection func-
tions for selecting the first, second, and third component of a triple,
respectively. (4)

Answer:

TRIPLE ≡ λf.λs.λt.λb.b f s t

FST ≡ λp.p (λf.λs.λt.f)

SND ≡ λp.p (λf.λs.λt.s)

THD ≡ λp.p (λf.λs.λt.t)

(c) Explain the problem of name capture. Illustrate your answer with an
example. (4)

Answer: Name capture occurs when a term with free variables is
naively substituted for a variable in a context where one or more of
the variables that are free in the term are bound. For example, if the
application

(λx.λy.x) y

were to be reduced naively by substituting y for x in λy.x, then the result
would be λy.y which is wrong. The initially free y has been confused
with a different bound variable that just happened to have the same
name.

G54FOP-E1

11 G54FOP-E1

(d) State Church-Rosser theorems I and II, and put them into context by
briefly discussing their implications and the pros and cons of normal-
order vs. call-by-value evaluation. Also briefly explain the idea of lazy
evaluation against this background. (7)

Answer:

• Church-Rosser Theorem I: For all λ-calculus terms t, t1, and
t2 such that t

∗
→
β

t1 and t
∗
→
β

t2, there exists a term t3 such that

t1
∗
→
β

t3 and t2
∗
→
β

t3. (That is, β-reduction is confluent.)

• Church-Rosser Theorem II: For all λ-calculus terms t1 and
t2, if t1

∗
→
β

t2 and t2 is a normal form (no redexes), then t1 reduces

to t2 under normal-order reduction.

This means that normal-order reduction has the best possible termina-
tion properties; i.e., if a normal form exists, it will be found through
normal order reduction, whereas other reduction strategies may diverge
(“loop” for ever). Moreover, due to confluence, the normal form is
unique. However, if a term is successfully reduced to a normal form
using a different reduction strategy, this may well be accomplished
in fever reduction steps than when using normal order. In fact, this
is quite common as redexes often are duplicated under normal order
reduction, which can lead to duplication of work. Lazy evaluation is
an optimised implementation with normal order reduction semantics
where duplication is avoided by sharing of redexes: if reduced, the re-
dex is overwritten by the result. Thus, under lazy evaluation, any one
redex is reduced at most once.

G54FOP-E1 Turn Over

12 G54FOP-E1

Question 4
See appendix A for the grammar, operational semantics, and typing rules
relevant to this question.

(a) The expression language defined in appendix A is to be extended with
lists of elements of some specific type (i.e., homogeneous lists) as fol-
lows:

t → terms:
.
| null empty list
| cons t t list construction

v → values:
.
| null null value
| cons v v list value

T → types:
.
| List T list of elements of type T

Provide (call-by-value) evaluation rules (where needed) and typing
rules for each of the new term constructs in the same style as the
existing rules. The constant null has type List T for some type T ,
cons takes a value of some type T and a list of elements of the same
type T , i.e. List T , as arguments and returns a list of type List T .

(5)

Answer:

t1 −→ t′1
cons t1 t2 −→ cons t′1 t2

(E-CONS1)

t2 −→ t′2
cons v1 t2 −→ cons v1 t′2

(E-CONS2)

null : List T (T-NULL)

t1 : T t2 : List T
cons t1 t2 : List T

(T-CONS)

(Evaluation of the arguments to cons in the other order is also fine.)

(b) Progress can be formulated as follows:

THEOREM [PROGRESS]: Suppose that t is a well-typed
term (i.e., t : T), then either t is a value or else there is some
t′ with t −→ t′.

G54FOP-E1

13 G54FOP-E1

Prove Progress for the cases where the last step of a derivation was by
the typing rule for null (call it T-NULL) and when it was by the rule
for cons (call it T-CONS) by induction on the structure of a typing
derivation. (10)

Answer:

Case T-NULL: t = null But then t is a value, so the theorem
holds trivially.

Case T-CONS: t = cons t1 t2
t1 : T t2 : List T

By the induction hypothesis, either t1 and t2 are values, or else there
is some t′1 such that t1 −→ t′1 and/or some t′2 such that t2 −→ t′2.

If both t1 and t2 are values, then so is t, and the theorem holds.

On the other hand, if t1 −→ t′1, then by E-CONS1, t −→ cons t′1 t2,
and the theorem holds.

Finally, if t1 = v1 is a value, but t2 not, then it must be the case that
t2 −→ t′2. Then, by E-CONS2, we have t −→ cons v1 t′2, and the
theorem holds.

(c) Preservation can be formulated as follows:

THEOREM [PRESERVATION]: If t : T and t −→ t′ then
t′ : T .

Prove Preservation for the cases T-NULL and T-CONS by induction
on the structure of a typing derivation. (10)

Answer: Case T-NULL: t = null There is no evaluation rule for
null, by design as null is a value, so the theorem holds trivially.

Case T-CONS: t = cons t1 t2
t1 : T t2 : List T

t −→ t′ for some t′

The only possible evaluation rules are one of E-CONS1 and E-CONS2.

If evaluation is by E-CONS1, then we know t1 −→ t1′. As we also
know t1 : T , we can apply the induction hypothesis and conclude that
t′1 : T . And then, by T-CONS, we can conclude cons t1′ t2 : List T .

If evaluation is by E-CONS2, then we know t2 −→ t2′. As we also
know t2 : List T , we can apply the induction hypothesis and conclude
that t′2 : List T . And then, by T-CONS, we can conclude cons t1 t2′ :
List T .

Thus, in both cases, the resulting term is well-typed and the evaluation
has moreover preserved the type, proving that the theorem holds for the
T-CONS case.

G54FOP-E1 Turn Over

14 G54FOP-E1

Question 5

(a) The following is a variant of the Polymorphic λ-calculus or System F
with Nat, the natural numbers, as a base type:

T → types:
Nat natural number type

| T → T function type
| X type variable
| ∀X .T universally quantified type

Γ → contexts:
∅ empty context

| Γ, x : T context extended with variable typing
| Γ, X context extended with type variable

t → terms:
n natural number, n ∈ N

| x variable
| λx :T . t abstraction
| t t application
| ΛX . t type abstraction
| t [T] type application

The ternary relation Γ ⊢ t : T says that expression t has type T in the
type context Γ and it is defined by the following typing rules:

Γ ⊢ n : Nat (T-NAT)

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

Γ, x : T1 ⊢ t : T2

Γ ⊢ (λx :T1 . t) : T1 → T2

(T-ABS)

Γ ⊢ t1 : T2 → T1 Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T1

(T-APP)

Γ, X ⊢ t : T
Γ ⊢ (ΛX . t) : ∀X .T

(T-TABS)

Γ ⊢ t1 : ∀X .T1

Γ ⊢ t1 [T2] : [X 7→ T2]T1

(T-TAPP)

Using the above typing rules, formally prove that

(ΛX .λx :X .x) [Nat] 7

is well-typed and what its type is in the empty context ∅. (12)

G54FOP-E1

15 G54FOP-E1

Answer:

x : X ∈ (∅, X, x : X)

∅, X, x : X ⊢ x : X
T-VAR

∅, X ⊢ (λx :X .x) : X → X
T-ABS

∅ ⊢ (ΛX .λx :X .x) : ∀X .X → X
T-TABS

∅ ⊢ (ΛX .λx :X .x) [Nat] : [X 7→ Nat](X → X)
T-TAPP

∅ ⊢ 7 : Nat
T-NAT

∅ ⊢ (ΛX .λx :X .x) [Nat] 7 : Nat
T-APP

(b) Consider the following command language fragment:

c → commands:
| skip no operation
| c ; c sequence
| if e then c else c conditional
| while e do c iteration
| break n break iteration
| continue n continue iteration

Here, n is the syntactic category of natural numbers, and e is the
syntactic category of expressions. The details of the expression syntax
is of no concern to us, but we assume a typing relation:

Γ ⊢ e : T

meaning “expression e has type T in type context Γ”. The command
break n, where n ≥ 1, exits from an enclosing loop, with n specify-
ing the nesting level of the loop to exit, 1 being the innermost one.
The command continue n transfers control to the beginning of an
enclosing loop, with n ≥ 1 again specifying the level of the loop.

It is an error to specify more enclosing loops than there are; e.g., the
following is an ill-formed program fragment:

while true do break 2

Define a typing and well-formedness relation for commands that can
be used to statically ensure that commands are both well-typed (here
meaning that the conditions of the if-construct and while-loop both
have type Bool; commands have no type as such) and well-formed in
that the numeric argument of a break or continue command is no
higher than the number of enclosing loops. Additionally, break 0 and
continue 0 should be considered ill-formed, enforcing that the numeric
argument to these commands is at least 1. Explain your construction

G54FOP-E1 Turn Over

16 G54FOP-E1

and define the relation by providing an appropriate rule for each of
the commands. (13)

Answer: Define a relation:

Γ ; n ⊢ c

meaning “command c is well-typed and well-formed in type context Γ
and with n enclosing loops”. This relation is defined by the following
rules:

Γ ; n ⊢ skip (T-SKIP)

Γ ; n ⊢ c1 Γ ; n ⊢ c2

Γ ; n ⊢ c1 ; c2

(T-SEQ)

Γ ⊢ e : Bool Γ ; n ⊢ c1 Γ ; n ⊢ c2

Γ ; n ⊢ if e then c1 else c2

(T-COND)

Γ ⊢ e : Bool Γ ; (n + 1) ⊢ c1

Γ ; n ⊢ while e do c
(T-WHILE)

1 ≤ m ≤ n
Γ ; n ⊢ break m

(T-BREAK)

1 ≤ m ≤ n
Γ ; n ⊢ continue m

(T-CONT)

The idea is simple: we just keep a count n of the number of enclos-
ing loops and, whenever we encounter a break m or continue m we
ensure that m is in the appropriate range: 1 ≤ m ≤ n.

G54FOP-E1

17 G54FOP-E1

Question 6

(a) Consider the following simple expression language, where x is the syn-
tactic category of variables:

e → expressions:

x variable

| n constant number, n ∈ N

| true constant true

| false constant false

| not e logical negation

| e && e logical conjunction

| e + e addition

| e - e subtraction

| e = e numeric equality test

| e < e numeric less than test

Evaluation of expressions in this language has no side effects. We wish
to give a denotational semantics for this language. Assume that we
take the semantic domain to be N, the natural numbers, letting the
denotation of true be 1 and the denotation of false be 0. The result
of subtracting a larger number from a smaller one should be 0. Note
that this expression language thus is total : an expression always has
a well-defined result. Assume further that the meaning of a variable
is obtained by looking it up in a store σ represented by a function of
type Σ mapping a variable name (in the syntactic category x) to its
current value (a natural number in N):

Σ = x → N

σ : Σ

Given this, suggest an appropriate type signature for a semantic func-
tion E[[·]] that maps an expression to its meaning. Then define E[[·]]
for the above expression language. You only have to consider the cases
for variable, constant number, logical conjunction, subtraction, and nu-
meric equality test.

(7)

Answer:

An appropriate type signature for E[[·]] is:

E[[·]] : e → (Σ → N)

G54FOP-E1 Turn Over

18 G54FOP-E1

Definition (all cases given for reference):

E[[x]] σ = σ x

E[[n]] σ = n

E[[true]] σ = 1

E[[false]] σ = 0

E[[not e]] σ =

{

1, if E[[e]] σ = 0
0, otherwise

E[[e1 && e2]] σ =

{

1, if E[[e1]] σ = 1 ∧ E[[e2]] σ = 1
0, otherwise

E[[e1 + e2]] σ = E[[e1]] σ + E[[e2]] σ

E[[e1 - e2]] σ = max(E[[e1]] σ − E[[e2]] σ, 0)

E[[e1 = e2]] σ =

{

1, if E[[e1]] σ = E[[e2]] σ

0, otherwise

E[[e1 < e2]] σ =

{

1, if E[[e1]] σ < E[[e2]] σ

0, otherwise

(b) Now consider extending the expression language above with commands
as follows. Unlike expressions, execution of a command in general has
a side effect ; that is, it may change the store:

c → commands:

| skip no operation

| x := e assignment

| c ; c sequence

| if e then c else c conditional

| repeat c until e iteration

What is a suitable type signature for a semantic function C[[·]] mapping
a command to its meaning? Provide a brief explanation of your answer.

(4)

Answer: A suitable type signature is:

C[[·]] : c → (Σ → Σ⊥)

That is, a command is mapped to a state transformer, a function map-
ping a state represented by a store to a new state. However, as the
commands include a loop, the execution may diverge (fail to termi-
nate). The range (co-domain) of the state transformer must therefore
be extended to include ⊥ denoting divergence, hence Σ⊥.

G54FOP-E1

19 G54FOP-E1

(c) Define C[[·]] for the commands given above. Use the notation [x 7→ v]σ
to denote an updated store that is like σ except that x is mapped to the
value v (in N). The repeat-loop should have the usual semantics; i.e.,
repetition of the loop body at least once until the condition becomes
true. (8)

Answer:

C[[skip]] σ = σ

C[[x := e]] σ = [x 7→ E[[e]] σ]σ

C[[c1 ; c2]] σ = (C[[c2]]⊥⊥) (C[[c1]] σ)

C[[if e then c1 else c2]] σ =

{

C[[c1]] σ, if E[[e]] σ = 1
C[[c2]] σ, otherwise

C[[repeat c until e]] = fixΣ→Σ⊥






λf.λσ.











σ′, if E[[e]]⊥⊥ σ′ = 1
f⊥⊥ σ′, otherwise
where σ′ = C[[c]] σ







(d) Suppose we wish to add expressions with side effects to the language;
for example, a C-like post-increment operator: x++. Explain how the
semantics would have to be restructured. Assume that the expression
sublanguage still is total and terminating. Illustrate your answer by
giving suitable definitions for E[[e1 + e2]] and C[[x := e]].

(6)

Answer: As the evaluation of an expression now can have a side ef-
fect, the semantic function E[[·]] must be changed to return a possibly
changed store in addition to the result of the expression. As the ex-
pression sublanguage still is total and terminating, we do not need to
lift the range of the function. The new type signature for E[[·]] thus
becomes:

E[[·]] : e → (Σ → N × Σ)

The possibly changed store has to be threaded properly through the eval-
uation of subexpressions, as the case for evaluation of e.g. addition
illustrates:

E[[e1 + e2]] σ = (n1 + n2, σ′′)
where (n1, σ′) = E[[e1]] σ

(n2, σ′′) = E[[e2]] σ′

Whenever the execution of a command involves the evaluation of an
expression, the possibly changed store again has to be threaded through
properly as the case for assignment illustrates:

C[[x := e]] σ = [x 7→ n]σ′

where (n, σ′) = E[[e]] σ

G54FOP-E1 Turn Over

20 G54FOP-E1

Appendix A
This appendix contains the abstract syntax, operational semantics, and typ-
ing rules for the small example language (from Pierce’s book Types and
Programming Languages) that has been discussed in the module.

Abstract Syntax:

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

Values:

v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

Types:

T → types:

Bool Boolean type

| Nat Numeric type

G54FOP-E1

21 G54FOP-E1

Operational Semantics: (call-by-value)

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IF)

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

Typing Rules:

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

0 : Nat (T-ZERO)

t1 : Nat
succ t1 : Nat (T-SUCC)

t1 : Nat
pred t1 : Nat (T-PRED)

t1 : Nat
iszero t1 : Bool (T-ISZERO)

G54FOP-E1 End

