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Abstract The standard approach [23] to proving compiler correctness for con-
current languages requires the use of multiple translations into an intermediate
process calculus. We present a simpler approach that avoids the need for such an
intermediate language, using a new method that allows us to directly establish a
bisimulation between the source and target languages. We illustrate the technique
on two small languages, using the Agda system to present and formally verify our
compiler correctness proofs.

1.1 INTRODUCTION

The standard approach [23] to proving compiler correctness for concurrent lan-
guages requires the use of multiple translations into an intermediate process cal-
culus. This methodology is captured by the following diagram:

Source
compile //

s[[ ]] &&LLLLLLLLLLLL TargetAFBECD

LLLLLLLLLLLL bb

LLLLLLLLLLLL

t[[ ]]yyrrrrrrrrrrr

Process Calculus /≈@GABCD
rrrrrrrrrrr
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I–2 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

That is, for some given compiler from a source language to a target language,
we define separate denotational semantics s[[ ]] and t[[ ]] for both languages in
terms of an underlying process calculus with a suitable notion of bisimulation—
or observational equivalence. The compiler is said to be correct if s[[p]] and
t[[compile p]] are bisimilar for all programs p. The advantage of using a tradi-
tional process calculus is that we may reuse existing theories and techniques, and
perform our reasoning in a single, homogeneous framework.

However, there are two drawbacks to this method: firstly, the source language
is defined by a map s[[ ]] into an underlying process calculus, which adds an extra
level of indirection when reasoning about the operational behaviour of source
programs. Secondly, the target language and process calculus are given separate
operational semantics—represented by the two endomorphic arrows in the above
diagram—with a semantic function t[[ ]] mapping the former to the latter. Thus
we additionally need to show that the operational semantics of the target language
is adequate with respect to that of the process calculus via the translation t[[ ]].

In this paper, we present a simpler approach that avoids the need for an inter-
mediate process calculus. Our contributions include:

• A combined semantics which allows us to establish a direct bisimulation be-
tween the source and target languages.
• Illustration of our method on two small example languages, along with their

respective virtual machines and compilers.
• A compiler correctness proof for both example languages, using the Agda

system for our formal reasoning.

After a brief overview of related work (§1.2), we begin by describing a small non-
deterministic language with its associated virtual machine and compiler (§1.3),
before introducing and justifying our ‘combined semantics’ (§1.4). We then state
our compiler correctness theorem and outline its proof (§1.5). Sections 1.6 and
1.7 scale the technique to a more general language with concurrency. Finally we
conclude with some reflections on Agda and outline directions for future work.

This paper is aimed at the reader with functional programming background
and an interest in the semantics or implementation of concurrency. We make use
of Agda [17, 20]—a dependently typed programming language and interactive
proof assistant—as a vehicle for expressing many of the ideas in this paper, as
well as a formal means of checking our proofs. Knowledge of Agda is not a
requirement and we will introduce any concepts when necessary. We originally
used standard Agda colouring conventions throughout to aid readability; while
not reproduced here in print, a colour version of our paper is downloadable from
http://liyang.hu/#pub-cccctc. The full Agda proofs may be found at
the same location.

1.2 RELATED WORK

The formal notion of ‘compiler correctness’ dates back to 1967, when McCarthy
and Painter [13] proved the correctness of a compiler from arithmetic expressions
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to a register machine. Their stated goal was ‘to make it possible to use a computer
to check proofs that compilers are correct’; we aim to do precisely this for a
concurrent language.

In the four decades since, a large body of pen-and-paper correctness proofs
have been produced for various experimental languages. (See Dave [3] for a de-
tailed bibliography.) However it is only recently, by making essential use of a
formal theorem prover, that it has become possible to verify a realistic compiler
in full. In particular, Leroy [12] has produced a certified compiler for a C-like core
language in the Coq [21] framework, relating a series of intermediate languages,
eventually targeting PowerPC assembly code.

While compiler correctness for sequential languages has been well explored
by many researchers, the issue of concurrency has received relatively little atten-
tion, with most of the progress being made by Wand and his collaborators. In the
early 80s, Wand and Sullivan [24] initially suggested a methodology for sequen-
tial languages: by giving the denotational semantics of both source and target
languages in a common domain, the correctness proofs relating the operational
behaviour of the source and target languages may then be carried out within the
same domain. Wand and Sullivan then adapt this paradigm to the concurrent set-
ting [23], which is further elaborated by Gladstein [5, 4].

Our work in this paper follows on from Hutton and Wright [11], who recently
considered the issue of compiler correctness for a simple non-deterministic lan-
guage, by relating a denotational source semantics to an operational target se-
mantics, based on the extensional notion of comparing final results. As noted in
Hutton and Wright [11], the addition of effects and concurrency requires an inten-
sional notion of comparing intermediate actions via a suitable notion of bisimula-
tion. The purpose of this paper is to explore this idea, while retaining the approach
of directly relating the source and target without the need for an intermediate lan-
guage.

1.3 A NON-DETERMINISTIC LANGUAGE

In order to focus on the essence of this problem, we abstract from the details of
a real language and consider a simple expression language consisting of integers
and addition [9, 10, 11]. This minimal language suffices for explaining our basic
ideas. We give it its usual semantics using a labelled transition system, together
with an extra (ZAP) rule to introduce a form of non-determinism. A virtual ma-
chine and a compiler for the language complete the definition. We present and
justify a novel technique for proving compiler correctness in the presence of non-
determinism.

1.3.1 Expression Syntax and Semantics

Let us begin by defining the syntax of our expression language:

Expr ::= N | Expr ⊕ Expr
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While seemingly simplistic, this language nevertheless contains the essential com-
putational aspects we desire. In particular, the notion of a monad [16, 22] has been
widely used within the literature as a basis for computation. In our language, the
monoid (N,0, ⊕ ) may be seen as a degenerate monad. This simplification allows
us to avoid orthogonal issues, namely binding and substitution. We maintain the
key aspect of sequencing by giving our language a left-to-right evaluation order.

We can express the above definition as an Agda datatype:

data Expr : Set where
val : N → Expr
⊕ : Expr → Expr → Expr

The syntax is reminiscent of ‘generalised algebraic datatypes’ (GADTs) in Haskell,
with the exception of Expr : Set above, where Set denotes the built-in ‘type of
types’. The underscores either side of ⊕ denote argument positions for operators.

We define the operational semantics of expressions in the usual fashion as a
transition system, extended with labels to indicate the nature of each transition:

Action ::= � |  |� N
Label ::= τ | !Action

7→< > ⊆ Expr×Label×Expr

Each transition either emits (denoted by ‘!’) one of �,  or � (read as ‘add’,
‘zap’ and ‘result’ respectively), or has the silent label τ . We make a two-level dis-
tinction between labels and actions in this language so that silent transitions may
be identified by simple pattern-matching in our Agda proofs. The corresponding
translation of Action and Label is straightforward as usual:

data Action : Set where
� : Action
 : Action
� : N → Action

data Label : Set where
τ : Label
! : Action → Label

The transition rules are presented in the usual natural deduction style. From here
on, we shall use m and n for natural numbers, a and b for expressions, α for
actions and Λ for labels. Let us first consider the two base rules:

m ⊕ n 7→< !� > m + n
(ADD)

m ⊕ n 7→< ! > 0
(ZAP)

That is, when evaluating the expression m ⊕ n, one of two things can happen:
either the two numbers are summed as usual, or they are ‘zapped’ to zero; each
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transition is labelled accordingly. The addition of the (ZAP) rule introduces a sim-
ple form of non-determinism, as a first step towards moving from a sequential, de-
terministic language, to a concurrent, non-deterministic language. The remaining
pair of rules ensure a left-biased reduction order, as discussed previously:

b 7→< Λ > b′

m ⊕ b 7→< Λ > m ⊕ b′
(ADDR)

a 7→< Λ > a′

a ⊕ b 7→< Λ > a′ ⊕ b
(ADDL)

In Agda, we can encode the 7→< > relation directly as a datatype, where
each transition rule gives rise to a constructor. As Agda is a dependently typed
language, we may parametrise datatype definitions by values as well as types. In
this instance, 7→< > is indexed by a pair of expressions, along with a label:

data 7→< > : Expr → Label → Expr → Set where
7→-� : val m ⊕ val n 7→< !� > val (m + n)
7→- : val m ⊕ val n 7→< ! > val 0
7→-R : b 7→< Λ > b′ → val m ⊕ b 7→< Λ > val m ⊕ b′

7→-L : a 7→< Λ > a′ → a ⊕ b 7→< Λ > a′ ⊕ b

Under the above encoding, an expression of type a 7→< Λ > b may be viewed as
a witness for a single-step transition from a to b, labelled with Λ . Because Agda
is a total language, there is no⊥ or ‘bottom’ value, so any type-correct expression
really is a witness (or proof) of the corresponding type (or proposition).

Choice of Action Set

An unanswered question so far is: ‘how was the set of actions chosen?’ As we
shall see later in §1.4, we wish to distinguish between different choices in the
reduction path a given expression can take. In this instance, we need to know
which of the (ADD) or (ZAP) rules were applied, hence the use of distinct actions
� and  respectively. Later in §1.4.1 we also wish to distinguish between different
final results for an expression, which are revealed using the � action.

1.3.2 Compiler, Virtual Machine and its Semantics

The virtual machine for our language has a simple stack-based design, with only
two instructions, defined as follows:

data Instruction : Set where
PUSH : N → Instruction
ADD : Instruction

A program comprises a list of such instructions. The compiler for our expression
language is as shown below. In order to make our proofs more straightforward,
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we take a code continuation as an additional argument [8], which corresponds to
writing the compiler in a accumulator-passing style:

Program : Set
Program = List Instruction

compile : Expr → Program → Program
compile (val m) c = PUSH m :: c
compile (a ⊕ b) c = compile a (compile b (ADD :: c))

To execute c : Program, we pair it with a Stack, implemented here as List N. This
is precisely how we represent any given state t : Machine of the virtual machine:

Stack : Set
Stack = List N
data Machine : Set where
〈 , 〉 : Program → Stack → Machine

Finally, we can specify the operational semantics of the virtual machine through
the �< > relation:

data �< > : Machine → Label → Machine → Set where
�-PUSH : 〈PUSH m :: c , σ 〉 �< τ > 〈c , m :: σ 〉
�-ADD : 〈ADD :: c , n :: m :: σ 〉 �< !� > 〈c , m + n :: σ 〉
�-ZAP : 〈ADD :: c , n :: m :: σ 〉 �< ! > 〈c , 0 :: σ 〉

That is, the PUSH instruction takes a numeric argument m and pushes it onto the
stack σ , with a silent label τ . In turn, the ADD instruction replaces the top two
numbers on the stack with either their sum, or zero—labelled respectively with �
or  —in correspondence with the 7→-� and 7→- rules.

1.4 NON-DETERMINISTIC COMPILER CORRECTNESS

In general, a compiler correctness theorem asserts that for any source program, the
result of executing the corresponding compiled target code on its virtual machine
will coincide with that of evaluating the source using its high-level semantics:

Source
compile //

eval
$$IIIIIIIIII Target

exec
zzuuuuuuuuuu

Result

With a deterministic language and virtual machine—such as our Zap language
without the two ‘zap’ rules—it is natural to use a high-level denotational or big-
step semantics for the expression language, which we can realise as an interpreter
eval : Expr → N. In turn, the low-level operational or small-step semantics for
the virtual machine can be realised as a function exec : Stack → Program →
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Stack, that takes an initial stack along with a list of instructions and returns the
final stack. Compiler correctness is the statement that:

∀c σ a. exec σ (compile a c) ≡ exec (eval a :: σ) c (DET)

or equivalently as the following commuting diagram:

∀c σ . Expr
compile c //

exec (eval :: σ) c $$JJJJJJJJJJ Program

exec σ
xxrrrrrrrrrrr

Stack / ≡

That is to say, compiling an expression a and then executing the resulting code
together with a code continuation c gives the same result—up to definitional
equality—as executing c with the value of a atop the original stack σ .

The presence of non-determinism requires a more refined approach, due to
the possibility that different runs of the same program may give different results.
One approach is to realise the interpreter and virtual machine as set-valued func-
tions [11], restating the above equality on final values in terms of sets of final
values. A more natural approach however, is to define the high-level semantics as
a relation rather than a function, using a small-step operational semantics.

Moreover, the small-step approach also allows us to consider the intensional
(or local) notion of what choices are made in the reduction paths, in contrast to the
extensional (or global) notion of comparing final results. In our Zap language, the
available choices are reflected in our selection of transition labels, and we weaken
the above definitional equality to a suitable notion of branching equivalence on
intermediate states. This is just the familiar notion of bisimilarity [15], which we
shall make concrete in §1.4.2. As we shall see, the local reasoning afforded by
this approach also leads to simpler and more natural proofs.

1.4.1 Combined Machine and its Semantics

In this section, we introduce our key idea of a ‘combined machine’, which we
arrive at by considering the small-step analogue of the compiler correctness state-
ment for big-step deterministic languages. The advantage of the combined ma-
chine is that it lifts source expressions and target virtual machine states into the
same domain, which avoids a detour [23] via an intermediate process calculus
and allows us to directly establish a bisimulation between the source and target
languages. Our approach to non-deterministic compiler correctness—making use
of such a combined machine—is illustrated below:

Source@GAFBE
==

compile //

liftS &&MMMMMMMMMMMM TargetAFBECD

MMMMMMMMMMMM cc

MMMMMMMMMMMM

liftTxxqqqqqqqqqqqq

Combined /≈@GABCD
qqqqqqqqqqqq

[[

qqqqqqqqqqqq
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In the case of our Zap language, a combined machine x : Combined has three
distinct phases of execution,

data Combined : Set where
〈 , 〉 : Expr → Machine → Combined
〈 〉 : Machine → Combined
〈 〉 : Combined

whose semantics is defined by the following transition relation:

data �< > : Combined → Label → Combined → Set where
�-7→ : a 7→< Λ > b → 〈a , t 〉 �< Λ > 〈b , t 〉
�-� : t �< Λ > u → 〈 t 〉 �< Λ > 〈 u〉
�-switch : 〈val m , 〈c , σ 〉 〉 �< τ > 〈〈c , m :: σ 〉〉
�-done : 〈 〈[] , m :: []〉 〉 �< !� m > 〈 〉

The first constructor 〈 , 〉 of Combined pairs an expression with a virtual ma-
chine continuation. In this initial phase, a combined machine 〈a , 〈c , σ 〉〉 can be
understood as the small-step analogue of the right side of the (DET) statement—
exec (eval a :: σ) c—which begins by effecting the reduction of a. The applicable
reductions are exactly those of the expression language, inherited via the �- 7→
rule above.

When the expression a eventually reduces to a value m, the �-switch rule
pushes m onto the stack σ , switching the combined machine to its second phase of
execution, corresponding to the 〈 〉 constructor. This is the small-step analogue
of pushing the result of eval a onto σ , again following the right side of (DET),
namely exec (eval a :: σ) c.

The second Combined constructor 〈 〉 lifts a virtual machine into a combined
machine, which then effects the reduction of the former via the �-� rule. This
corresponds to the small-step analogue of exec σ c, which matches the left side
of (DET), and also the right side after the evaluation of the embedded expression
has completed.

Lastly, the �-done rule reveals the computed result using the � action, and
terminates with the empty 〈 〉 state. This construction allows us to distinguish
between final result values using only the basic notion of bisimulation.

1.4.2 Weak Bisimilarity

Now we can give a concrete definition to our notion of bisimilarity. More specifi-
cally, we shall be defining ‘weak bisimilarity’, as we are not concerned with silent
transitions. First of all, it is convenient to define a ‘visible transition’ Z⇒< >
in terms of our existing �< > relation, where only Actions are exposed:

x �<τ>? x′ x′ �< !α > y′ y′ �<τ>? y
x Z⇒< α > y

We define �<τ>? to be the reflexive, transitive closure of �< τ > . The
above relation is implemented by the following datatype:
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data Z⇒< > : Combined → Action → Combined → Set where
Z⇒ : x �<τ>? x′ → x′ �< !α > y′ → y′ �<τ>? y → x Z⇒< α > y

The two states x and y are now defined to be ‘weakly bisimilar’ if and only if
whatever visible transition x can make, y is able to follow with the same action,
resulting in states x′ and y′ that are also bisimilar, and vice versa:

x ≈ y ⇐⇒ ∀ x′,α. x Z⇒< α > x′ =⇒ ∃ y′. y Z⇒< α > y′ ∧ x′ ≈ y′

∧ ∀ y′,α. y Z⇒< α > y′ =⇒ ∃ x′. x Z⇒< α > x′ ∧ y′ ≈ x′

This corresponds to the following Agda definition, in which we encode conjunc-
tions (∧) as products (×):

data ≈ : Combined → Combined → Set where
bisim : ∀{x y} →

(∀{x′ α} → x Z⇒< α > x′ → ∃ λ y′ → y Z⇒< α > y′× x′ ≈ y′) →
(∀{y′ α} → y Z⇒< α > y′ → ∃ λ x′ → x Z⇒< α > x′× y′ ≈ x′) →
x ≈ y

It is straightforward to show that ≈ is an equivalence relation:

≈-reflexive : x ≈ x
≈-symmetric : x ≈ y → y ≈ x
≈-transitive : x ≈ y → y ≈ z → x ≈ z

1.5 COMPILER CORRECTNESS FOR ZAP

Now we have enough machinery to formulate the compiler correctness theorem,
which states that given a code continuation c and an initial stack σ , execution of
the compiled code for an expression a followed by c is weakly bisimilar to the
reduction of the expression a followed by the machine continuation 〈c , σ 〉,

correctness : 〈〈compile a c , σ 〉〉 ≈ 〈a , 〈c , σ 〉〉

or equivalently as the following commuting diagram:

∀c σ . Expr
compile c //

〈 , 〈c , σ 〉〉 &&MMMMMMMMMMM Program

〈〈 , σ 〉〉wwpppppppppppp

Combined / ≈

In particular, instantiating c and σ to empty lists results in the corollary that, for
any arbitrary expression a, 〈〈compile a [] , []〉〉 ≈ 〈a , 〈[] , []〉〉 holds.

We can prove correctness by structural induction on the expression a; the
equational reasoning combinators defined in the Agda standard library [2] allow
us to present the proof in a simple calculational style. For example, the inductive
case is given below:
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correctness {a ⊕ b} {c} {σ} =
begin
〈〈compile (a ⊕ b) c , σ 〉〉

≡{ byDefinition }
〈〈compile a (compile b (ADD :: c)) , σ 〉〉

≈{ correctness }
〈a , 〈compile b (ADD :: c) , σ 〉〉

≈{ eval-left }
〈a ⊕ b , 〈c , σ 〉〉

ut

This case makes use of an eval-left lemma, which in turn uses eval-right, which
finally depends on ADD≈m⊕n. These three lemmas are stated as follows:

eval-left : 〈 a , 〈compile b (ADD :: c) , σ 〉〉 ≈ 〈 a ⊕ b , 〈c , σ 〉〉
eval-right : 〈 b , 〈ADD :: c , m :: σ 〉〉 ≈ 〈val m ⊕ b , 〈c , σ 〉〉
ADD≈m⊕n : 〈val n , 〈ADD :: c , m :: σ 〉〉 ≈ 〈val m ⊕ val n , 〈c , σ 〉〉

The eval-left lemma asserts that evaluating the left argument of ⊕ , then execut-
ing the compiled code corresponding to the right argument followed by an ADD
instruction, is bisimilar to evaluating the original ⊕ expression. The eval-right
lemma is the analogue of eval-left for the right argument of ⊕ . The proofs for
these two lemmas proceed by induction on the size of an expression.

〈val m ⊕ val n , 〈c , σ 〉〉

≈
A

D
D
≈

m
⊕

n

!�
�

-7→
7→

-�

				

! �
-7→
7→

- 

�� ��

〈val n , 〈ADD :: c , m :: σ 〉〉

τ

�
-s

w
it
ch

����

≈
el

id
e-

τ

〈val (m + n) , 〈c , σ 〉〉

τ

�
-s

w
it
ch

����

≈
el

id
e-

τ

〈val 0 , 〈c , σ 〉〉

τ

�
-s

w
it
ch

����

≈
el

id
e-

τ〈〈ADD :: c , n :: m :: σ 〉〉

!�

�-�
�-ADD

xxxxpppppppppppppppp
! �-�

�-ZAP %% %%KKKKKKKKKKKKKKK

〈〈c , m + n :: σ 〉〉 〈〈c , 0 :: σ 〉〉

FIGURE 1.1. Proof sketch for the ADD≈m⊕n lemma.

The non-determinism in our language comes into play only when considering the
ADD≈m⊕n lemma. A sketch of its proof may be recovered by chasing the arrows
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in Figure 1.1, in which nodes represent machine states, while arrows (decorated
with their respective labels and witnesses) correspond to transitions. Suppose we
take as a starting point either side of the ADD≈m⊕n bisimilarity, given by the
nodes 〈 val n , 〈ADD :: c , m :: σ 〉 〉 and 〈 val m ⊕ val n , 〈 c , σ 〉 〉 at the top of
the figure. Whether we take the left branch (corresponding to the two rules for
addition) or the right (corresponding to the two ‘zap’ rules), the other state can
always follow, emitting the same action. The resulting states are bisimilar by the
elide-τ lemma, defined below.

The elide-τ Lemma

A key lemma used throughout our correctness proofs states that if there exists a
silent transition between two states x and y, then x and y are bisimilar:

elide-τ : x �< τ > y → x ≈ y

In one direction of x ≈ y, the proof is trivial: whatever y does, x can always
match it by first making the given x �< τ > y transition, after which it can follow
y exactly. In the other direction, the proof relies on the fact that wherever there is
a choice in the reduction of any given state, each possible transition is identified
with a distinct non-silent label. Hence a witness to x �< τ > y implies that
this must be the unique transition that can be made from x. From this, it is then
immediate that y can match any visible transition made by x.

1.6 AN EXPLICITLY CONCURRENT LANGUAGE

In the previous section, we have described our methodology for tackling the ques-
tion of compiler correctness for a simple non-deterministic language. In this sec-
tion, we shall demonstrate that our technique scales to a more explicit form of
non-determinism, namely the dynamic creation of concurrently executing threads.

1.6.1 Expression and Virtual Machine Syntax

As with the Zap language, we base our language on that of natural numbers and
addition. We build on this by adding a fork primitive, which introduces a simple
and familiar approach to explicit concurrency:

data Expr : Set where
val : N → Expr
⊕ : Expr → Expr → Expr

fork : Expr → Expr

An expression fork a will begin evaluation of a in a new thread, immediately
returning val 0, in a manner reminiscent of Haskell’s forkIO [19] primitive. Sim-
ilarly, we extend the virtual machine with a FORK instruction, which spawns the
sequence of instructions in a new thread:
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data Instruction : Set where
PUSH : N → Instruction
ADD : Instruction
FORK : Program → Instruction

The compiler remains unchanged, except an extra case for fork:

Program : Set
Program = List Instruction

Stack : Set
Stack = List N
compile : Expr → Program → Program
compile (val m) c = PUSH m :: c
compile (a ⊕ b) c = compile a (compile b (ADD :: c))
compile (fork a) c = FORK (compile a []) :: c

As before, we represent each virtual machine Machine thread by a pair Program×
Stack: a sequence of instructions, together with a stack of natural numbers.

1.6.2 Actions and Semantics

We extend the set of actions by + a, to indicate the spawning of a new thread a,
and the action . . . to indicate preemption of the foreground thread:

data Action (l : Set) : Set where
τ : Action l
� : Action l
+ : l → Action l
� : N → Action l
. . . : Action l → Action l

Due to the addition of explicit concurrency in this Fork language, we no longer
require the ‘zap’ action or its associated semantics. The definition of Action is
parametrised by either expressions or virtual machines.

With the Zap language, a single τ label sufficed, because the semantics did not
diverge at the points where silent transitions occurred. With the Fork language,
we have a ‘soup’ of concurrent threads, of which more than one may be able to
make a silent transition at a given point. We had previously mandated that distinct
choices in the reduction path must be labelled with distinct actions: in this case,
we folded the τ symbol into the definition of Action, such that both τ and . . . τ

are considered to be silent, yet they remain distinct.
This choice does complicate matters somewhat: previously, we could syntac-

tically match a Label with τ to determine if a transition was silent; in the same
way, we know a priori that Action-labelled transitions cannot be silent. Here we
use a more elaborate scheme:

data Silent {l : Set} : Action l → Set where
is-τ : Silent τ

is- . . . : ∀{α} → Silent α → Silent (. . . α)
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This definition of the Silent indexed datatype encodes a predicate on actions:
Silent α is inhabited precisely when α is silent.

It remains for us to define the semantics for expressions,

data 7→< > : Expr → Action Expr → Expr → Set where
7→-� : val m ⊕ val n 7→< � > val (m + n)
7→-R : b 7→< Λ > b′ → val m ⊕ b 7→< Λ > val m ⊕ b′

7→-L : a 7→< Λ > a′ → a ⊕ b 7→< Λ > a′ ⊕ b
7→-+ : fork a 7→< + a > val 0

and virtual machines,

data �< > : Machine → Action Machine → Machine → Set where
�-PUSH : 〈PUSH m :: c , σ 〉 �< τ > 〈c , m :: σ 〉
�-ADD : 〈ADD :: c , n :: m :: σ 〉 �< � > 〈c , m + n :: σ 〉
�-FORK : 〈FORK c′ :: c , σ 〉 �< + 〈c′ , []〉 > 〈c , 0 :: σ 〉

labelled with the above action set. In both cases, the + action carries the forked
child as a parameter.

1.7 CONCURRENT COMPILER CORRECTNESS

1.7.1 Combined Machines, Thread Soups and Semantics

Our definition of a combined machine remains unchanged from the Zap language,
with the constructors 〈 , 〉, 〈 〉 and 〈 〉 corresponding to the three phases of exe-
cution. We model a ‘thread soup’ [18] as a List of combined machines, and define
a transition relation �< > on said thread soups:

Soup : Set
Soup = List Combined

data �< > : Soup → Action> → Soup → Set where
�-7→ : a 7→< α > b → 〈a , t 〉 :: s �< sipE α > 〈b , t 〉 :: soupConE α s
�-� : t �< α > u → 〈 t 〉 :: s �< sipM α > 〈 u 〉 :: soupConM α s
�-preempt : r �< α > s → x :: r �< . . . α > x :: s
�-switch : 〈val m , 〈c , σ 〉〉 :: s �< τ > 〈〈c , m :: σ 〉〉 :: s
�-done : 〈〈[] , m :: []〉〉 :: s �< � m > 〈 〉 :: s

As in the Zap language, the �-7→ and �-� rules inherit the transitions of ex-
pressions and virtual machines, along with �-switch and �-done for housekeep-
ing. The sipE function lifts an Action Expr to an Action Combined; the soupConE

helper prepends the forked expression to the soup in the case of a + action and
otherwise leaves the soup unchanged. Corresponding helpers sipM and soupConM

act on virtual machines instead. Finally, we allow thread interleaving via the
�-preempt rule.

1.7.2 Fork Compiler Correctness Proof

For our Fork language, we take the same definition of weak bisimilarity as that of
the Zap language, but parametrised on an updated visible transition relation:
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data Z⇒< > : Combined → Action Combined → Combined → Set where
Z⇒ : x �<τ>? x′ → x′ �< α > y′ → y′ �<τ>? y → ¬ Silent α →

x Z⇒< α > y

Previously we were able to enforce syntactically that α is a visible action; now,
we must include ¬ Silent α as an additional side-condition. Conversely, as there
are multiple actions which we consider to be silent, we must define the binary
silent transition relation �<τ> as a dependent triple comprising an action α ,
a witness of Silent α , along with the α-transition itself:

�<τ> : Soup → Soup → Set
r �<τ> s = ∃ λ α → Silent α× r �< α > s

As before, we take �<τ>? to be the reflexive, transitive closure of �<τ> .
The previous correctness theorem is then further generalised over s : Soup:

correctness : 〈a , 〈c , σ 〉〉 :: s ≈ 〈〈compile a c , σ 〉〉 :: s

We prove correctness by first showing that the �< > transition relation is
well-founded and then proceeding by induction on said transition. Details of the
completed proof in Agda may be found on the authors’ websites2.

1.8 CONCLUSION AND FURTHER WORK

In this article we have presented a new approach to compiler correctness for con-
current languages which avoids the need for an intermediate process calculus as
used in previous work [23]. In particular, by generalising the usual determinis-
tic compiler correctness statement to a non-deterministic setting, we are able to
establish a direct bisimulation between the source and target languages. In retro-
spect, our generalisation is both natural and straightforward, but surprisingly this
approach appears not to have been considered in the literature.

The use of Agda has been a key aspect of our work. As one would expect,
the use of a formal tool ensures that our definitions and proofs are free from am-
biguities and omissions, and provides a mechanical guarantee of the correctness
of our results. In our experience, Agda has also proved invaluable in the devel-
opment of our definitions, theorems and proofs. While it is a matter of personal
preference, some find ‘proof scripts’ à la Coq [21] difficult to understand offline,
whereas the direct manipulation of proof terms in Agda seems both more natural
and less fragile with respect to changes. The direct application of the Curry–
Howard correspondence blurs the distinction between producing proofs and pro-
gramming, which allows us to take advantage of our intuitions from both activ-
ities. At present, Agda’s most prominent downside is its immaturity relative to
systems that come with well-developed libraries and tools such as Coq, although
the Agda standard library [2] is evolving at a rapid pace.

There are a number of possible directions for future work. First of all, it
is important to consider how our approach scales from the minimal languages

2http://liyang.hu/#pub-cccctc
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considered in this paper to more realistic notions of concurrency that include
synchronisation and communication, as well as other language features such as
name binding, mutable state, input and output, exceptions and interrupts [11].
Indeed, Danielsson has successfully implemented [1] the main result of Hutton
and Wright [11] in Agda, making use of a ‘combined machine’. The mechanised
proof—using the combined semantics—is significantly shorter than the original
pen-and-paper proof, which suggests our approach can scale to more elaborate
scenarios.

In a similar vein, we are particularly keen to develop a formally verified im-
plementation of a compiler for software transactional memory [7, 6]. Finally, it
would also be interesting to attempt to encode the correctness of a compiler for
a concurrent language directly in its type, following the lead of McKinna and
Wright [14], rather than as a separate theorem.
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