Definitive Semantic Descriptions

Peter D. Mosses

BRICS & Department of Computer Science

University of Aarhus, Denmark

1st APPSEM-II Workshop, Nottingham, March 2003

Abstract syntax (fragment)

Expressions $e \in Exp$ $e ::= con | x | e_0 bop e_1 | \sim e | \dots$ Commands $c \in Com$ $c ::= x := e | c_0; c_1 | \text{ if } e \text{ then } c | \dots$

Auxiliary entities (fragment)

. . .

 $\begin{array}{lll} {\sf Environments} & \rho \in {\it Env} = {\it Var} \to {\it BV} \\ {\sf Stores} & \sigma \in {\it S} = {\it Loc} \to {\it SV} \ldots \end{array}$

Semantics (SOS fragment)

Expressions

$$ho dash \langle e, \sigma
angle \longrightarrow \langle e', \sigma'
angle$$

$$\frac{\rho(x) = l, \quad \sigma(l) = v}{\rho \vdash \langle x, \sigma \rangle \longrightarrow \langle v, \sigma \rangle}$$
(1)

Semantics (SOS fragment)

Commands

$$\rho \vdash \langle c, \sigma \rangle \longrightarrow \langle c', \sigma' \rangle$$

$$\frac{\rho \vdash \langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle}{\rho \vdash \langle \text{if } e \text{ then } c, \sigma \rangle \longrightarrow \langle \text{if } e' \text{ then } c, \sigma' \rangle}$$
(2)
$$\rho \vdash \langle \text{if true then } c, \sigma \rangle \longrightarrow \langle c, \sigma \rangle$$
(3)

 $\rho \vdash \langle \text{if false then } c, \sigma \rangle \longrightarrow \langle nil, \sigma \rangle$ (4)

Possibility of reuse of parts of descriptions?

- usually cut-and-paste, edit, ...
- explicit modules don't help much . . .

Best chance for reuse with descriptions of individual constructs

(or of a few closely-related constructs)

Conventional descriptions of constructs

Commands

 $c \in Com$ $\rho \in Env, \sigma \in S, \dots$ $\rho \vdash \langle c, \sigma \rangle \longrightarrow \langle c', \sigma' \rangle$

Conventional descriptions of constructs

Commands: Conditional

c ::= if e then c $V \supseteq \{\text{true}, \text{false}\}$

$$\frac{\rho \vdash \langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle}{\rho \vdash \langle \text{if } e \text{ then } c, \sigma \rangle \longrightarrow \langle \text{if } e' \text{ then } c, \sigma' \rangle}$$
(5)

Possibility of reuse of parts of descriptions!

- a language description is the collection of the descriptions of its individual constructs
- need to develop libraries of descriptions of individual constructs and auxiliary entities
- Unfortunately, there's a major problem:

combining constructs sometimes requires reformulation of their descriptions

We need definitive descriptions of constructs!

- conventional SOS and denotational semantics don't support definitive descriptions
- modular SOS [see the proceedings] and action semantics definitely do
- does monadic denotational semantics?

Commands

 $c \in Com$

 $c \xrightarrow{X} c'$

Final \supseteq {**nil**}

Commands: Conditional

c ::= if e then c $V \supseteq \{\text{true}, \text{false}\}$

$$e \xrightarrow{X} e'$$

if *e* then $c \xrightarrow{X}$ if *e'* then *c*

(6)

Expressions

 $e \in Exp$

 $e \xrightarrow{X} e'$

Final \supseteq *Con*

Expressions: Constant Identifier

$$e ::= x$$

 $\rho : Env$

$$\frac{U = \{\rho, \ldots\}, \quad \rho(x) = con}{x \xrightarrow{U} con}$$

(7)

Status

- Libraries of definitive descriptions of constructs (and auxiliary entities) are being developed for MSOS and action semantics
- A language-independent abstract syntax is being developed
- Bisimulation proofs can be languageindependent too, based on the definitive descriptions of the constructs involved

Conclusion

- Describe individual constructs definitively
- Contribute to libraries
- Refer to libraries