
Tool-Assisted Specification and
Verification of the JavaCard

Platform

Gilles Barthe
INRIA Sophia-Antipolis, France

Joint work with: P. Courtieu, G. Dufay, M. Huisman,
L. Jakubiec, B. Serpette, S. Melo de Sousa, S. Stratulat

� ��� � ��

New generation smartcards

� Flexibility

� High-level language for developing applets

� Multi-application and post-issuance

� New Security Threats

� Confidentiality

� Integrity

� Availability

� ��� � ��

Formal verification for smartcards

� Motivations

� Complex software with high demands on security

� Common Criteria require formal methods at levels
EAL5-EAL7

Focus
Platform vs. program verification

Bytecode vs. source level

� ��� � ��

Formal verification for smartcards

� Motivations

� Complex software with high demands on security

� Common Criteria require formal methods at levels
EAL5-EAL7

� Focus

� Platform vs. program verification

� Bytecode vs. source level

� ��� � ��

Overview

� JavaCard

� CertiCartes: verification of the JavaCard platform

� Jakarta: tool support for specification and verification
of virtual machines

� ��� � ��

JavaCard

� A superset of a subset of Java:

� A subset: no large datatypes, security manager,
dynamic class loading, (garbage collection). . .

� A superset: firewall, entry points, shareable
interfaces, transactions, etc.

� JavaCard programs use the JavaCard APIs

� ��� � ��

The JavaCard Platform

Virtual Machine

 APIs

Industry−Specific Extensions

 Operating System

011100011
101011010
011111001
110110111
100100110

 Applet
011100011
101011010
011111001
110110111
100100110

 Applet
011100011
101011010
011111001
110110111
100100110

 Applet

Linking
Loading

011100011
101011010
011111001
110110111
100100110

Java compiler
Class File Converter

Cap File Builder

package fr.inri

import javacar

public class no
 public Object

011100011
101011010
011111001
110110111
100100110

Bytecode verifier

Class fileJava source Cap file

� ��� � ��

CertiCartes

Formal specification/verification of:

� JCVMs: small-step semantics

exec : s ta te � > re tu rned_s ta te

� written in Coq but use a neutral style

� executable with the JCVM Tools

� BCV: executable in Caml

� part of the JCRE

� ��� � ��

Program model

Record jcprogram : Set : = { i n t e r f a c e s : (l i s t I n t e r f a c e) ;

c lasses : (l i s t Class) ;

methods : (l i s t Method) } .

Record Method : Set : = {

i s _ s t a t i c : bool ;

s igna tu re : ((l i s t type) � type) ;

l o c a l : nat ; (� Number o f l o c a l va r i ab l es)

h a n d l e r _ l i s t : (l i s t handler_type) ; (� Except ion handlers)

bytecode : (l i s t I n s t r u c t i o n) ; (� i n s t r u c t i o n s to be executed)

method_id : method_idx ; (� Index o f the method i n program)

owner : c lass_ idx (� Index o f the owning c lass) } .

� ��� � ��

Memory model

� Stack as a list of frames

Record frame : Set : = {

locvars : (l i s t va lu) ; (� Local Var iab les)

opstack : (l i s t va lu) ; (� Operand stack)

p_count : bytecode_idx ; (� Program counter)

method_loc : method_idx ; (� Locat ion o f the method)

con tex t_ re f : package ; (� Context In fo rma t i on) } .

� State

D e f i n i t i o n s ta te : = s ta t i c_heap � heap � stack .

� ��� � ��

Instruction
D e f i n i t i o n NEW : = [idx : cap_class_idx] [s t a te : jcvm_state]

Cases (s tack_ f s ta te) o f

(cons h l f) = >

(� Ex t rac t the owner c lass from thew c a p _ f i l e �)

Cases (N th_e l t (c lasses cap) idx) o f

(� then a new ins tance i s created and pushed i n t o the heap �)

(Some c l) = > l e t new_obj = . . . i n

(Normal

(Bu i ld_ jcvm_sta te

(sheap_f s ta te)

(app (heap_f s ta te) new_obj)

(� the re ference o f the created ob jec t i s pushed i n t o the opstack �)

(cons

(update_opstack (cons (vRef (vRef_instance idx (S (leng th (heap_f s ta te))))) (opstack h)) h)

l f))) |

None = > (AbortCode class_membership_error s ta te)

end |

_ = > (AbortCode s t a t e _ e r r o r s ta te)

end .

� ��� �� ��

Virtual Machines Specification

� Defensive JCVM is closest to specification:

� It manipulates typed values

� Types are checked at run-time

Offensive JCVM is closest to implementation:

It manipulates untyped values

Type correctness enforced by BCV

Abstract JCVM used in bytecode verification:

Manipulates types as values

Operates on a method-per-method basis

� ��� � � ��

Virtual Machines Specification

� Defensive JCVM is closest to specification:

� It manipulates typed values

� Types are checked at run-time

� Offensive JCVM is closest to implementation:

� It manipulates untyped values

� Type correctness enforced by BCV

Abstract JCVM used in bytecode verification:

Manipulates types as values

Operates on a method-per-method basis

� ��� � � ��

Virtual Machines Specification

� Defensive JCVM is closest to specification:

� It manipulates typed values

� Types are checked at run-time

� Offensive JCVM is closest to implementation:

� It manipulates untyped values

� Type correctness enforced by BCV

� Abstract JCVM used in bytecode verification:

� Manipulates types as values

� Operates on a method-per-method basis

� ��� � � ��

Cross-Validation

Defensive and offensive VMs coincide on programs that
are well-typed for the abstract VM

offensive and defensive VMs coincide on programs
well-typed for the defensive VM

programs that are well-typed for the abstract VM are
well-typed with the defensive VM

Best viewed as some form of correctness of abstract
interpretations

� ��� � � ��

Cross-Validation

Defensive and offensive VMs coincide on programs that
are well-typed for the abstract VM

� offensive and defensive VMs coincide on programs
well-typed for the defensive VM

programs that are well-typed for the abstract VM are
well-typed with the defensive VM

Best viewed as some form of correctness of abstract
interpretations

� ��� � � ��

Cross-Validation

Defensive and offensive VMs coincide on programs that
are well-typed for the abstract VM

� offensive and defensive VMs coincide on programs
well-typed for the defensive VM

� programs that are well-typed for the abstract VM are
well-typed with the defensive VM

Best viewed as some form of correctness of abstract
interpretations

� ��� � � ��

Cross-Validation

Defensive and offensive VMs coincide on programs that
are well-typed for the abstract VM

� offensive and defensive VMs coincide on programs
well-typed for the defensive VM

� programs that are well-typed for the abstract VM are
well-typed with the defensive VM

Best viewed as some form of correctness of abstract
interpretations

� ��� � � ��

Offensive vs. Defensive

� Abstraction function: ��� � � ���
� 	
�� 	

Diagram commutes

��

//

��
//

if defensive VM does not raise typing errors

� ��� � � ��

Offensive vs. Defensive

� Abstraction function: ��� � � ���
� 	
�� 	

� Diagram commutes

��� � � ���
��
	

��
��� � �

//

��� � � � ���
�� �
	

��� � � � ��� � � � �
// � � � � � ���

if defensive VM does not raise typing errors

� ��� � � ��

Abstract vs. Defensive

� Abstraction function: ���
�

� ���
� 	
 � �

Diagram commutes

��

//
� _

��
//

if “execution keeps in the same frame”

� ��� � � ��

Abstract vs. Defensive

� Abstraction function: ���
�

� ���
� 	
 � �

� Diagram commutes

��� � � ���
����

��
��� � �

//

��� � � � ���

� _

�� � �

���� � � ��� �� � �
// �� � � � � � �

if “execution keeps in the same frame”

� ��� � � ��

Bytecode verifier

� Reject programs which go wrong (on the abstract
VM) using dataflow analysis (Kildall’s algorithm)

Defensive and offensive machines coincide on
programs that pass bytecode verification

Proof builds upon commuting diagrams, correctness
of DFA, methodwise verification, and monotonicity of
abstract VM

� ��� � � ��

Bytecode verifier

� Reject programs which go wrong (on the abstract
VM) using dataflow analysis (Kildall’s algorithm)

� Defensive and offensive machines coincide on
programs that pass bytecode verification

Proof builds upon commuting diagrams, correctness
of DFA, methodwise verification, and monotonicity of
abstract VM

� ��� � � ��

Bytecode verifier

� Reject programs which go wrong (on the abstract
VM) using dataflow analysis (Kildall’s algorithm)

� Defensive and offensive machines coincide on
programs that pass bytecode verification

� Proof builds upon commuting diagrams, correctness
of DFA, methodwise verification, and monotonicity of
abstract VM

� ��� � � ��

Assessment

� Positive evaluation from Gemplus but CertiCartes is
an in-depth feasibility study

A complete formalization of the JavaCard platform is
labour intensive (E. Giménez)

The methodology works well and could be used for
other analyses

High-level of automation is possible

Specifications use a restricted language and proofs
use well-understood techniques

� ��� � � ��

Assessment

� Positive evaluation from Gemplus but CertiCartes is
an in-depth feasibility study

� A complete formalization of the JavaCard platform is
labour intensive (E. Giménez)

The methodology works well and could be used for
other analyses

High-level of automation is possible

Specifications use a restricted language and proofs
use well-understood techniques

� ��� � � ��

Assessment

� Positive evaluation from Gemplus but CertiCartes is
an in-depth feasibility study

� A complete formalization of the JavaCard platform is
labour intensive (E. Giménez)

� The methodology works well and could be used for
other analyses

High-level of automation is possible

Specifications use a restricted language and proofs
use well-understood techniques

� ��� � � ��

Assessment

� Positive evaluation from Gemplus but CertiCartes is
an in-depth feasibility study

� A complete formalization of the JavaCard platform is
labour intensive (E. Giménez)

� The methodology works well and could be used for
other analyses

� High-level of automation is possible

Specifications use a restricted language and proofs
use well-understood techniques

� ��� � � ��

Assessment

� Positive evaluation from Gemplus but CertiCartes is
an in-depth feasibility study

� A complete formalization of the JavaCard platform is
labour intensive (E. Giménez)

� The methodology works well and could be used for
other analyses

� High-level of automation is possible

� Specifications use a restricted language and proofs
use well-understood techniques

� ��� � � ��

Jakarta

� A dedicated environment for formal specification and
verification of typed low-level languages

Designed to support:

executable specifications

abstractions (and refinement) of specifications

automation of correctness proofs

� ��� � � ��

Jakarta

� A dedicated environment for formal specification and
verification of typed low-level languages

� Designed to support:

� executable specifications

� abstractions (and refinement) of specifications

� automation of correctness proofs

� ��� � � ��

Current focus

� Input: defensive virtual machine

Output:

offensive and abstract virtual machines

offensive and defensive machines coincide on
well-typed programs
programs that are ill-typed for the defensive VM

are ill-typed with the abstract VM
the abstract virtual machine is monotone

� ��� � � ��

Current focus

� Input: defensive virtual machine

� Output:

offensive and abstract virtual machines

offensive and defensive machines coincide on
well-typed programs
programs that are ill-typed for the defensive VM

are ill-typed with the abstract VM
the abstract virtual machine is monotone

� ��� � � ��

Current focus

� Input: defensive virtual machine

� Output:

� offensive and abstract virtual machines

offensive and defensive machines coincide on
well-typed programs
programs that are ill-typed for the defensive VM

are ill-typed with the abstract VM
the abstract virtual machine is monotone

� ��� � � ��

Current focus

� Input: defensive virtual machine

� Output:

� offensive and abstract virtual machines

� offensive and defensive machines coincide on
well-typed programs

programs that are ill-typed for the defensive VM
are ill-typed with the abstract VM
the abstract virtual machine is monotone

� ��� � � ��

Current focus

� Input: defensive virtual machine

� Output:

� offensive and abstract virtual machines

� offensive and defensive machines coincide on
well-typed programs

� programs that are ill-typed for the defensive VM
are ill-typed with the abstract VM

the abstract virtual machine is monotone

� ��� � � ��

Current focus

� Input: defensive virtual machine

� Output:

� offensive and abstract virtual machines

� offensive and defensive machines coincide on
well-typed programs

� programs that are ill-typed for the defensive VM
are ill-typed with the abstract VM

� the abstract virtual machine is monotone

� ��� � � ��

Jakarta Specification Language

� JSL types are first-order polymorphic types

� JSL expressions are first-order algebraic terms

� � � � � � � � ��� �� � ��

� Functions defined by conditional rewrite rules

��� 	
� � � � � �
�� 	
� �

where
�� are patterns with fresh variables

� ��� � � ��

Compiling JSL Specifications

� Specifications are executed by rewriting engines

� Deterministic specifications are compiled into
case-expressions then CAML, Coq, Isabelle, PVS

� Non-deterministic specifications �� � are
translated into

� � � � �

� Partial specifications �� � are translated into

� �� � �

� ��� � � ��

Abstractions

� For each datatype� define

�� and
�

�
�

�

�� ��

For each defined function , define
by transforming into

Not a legal rule: substitution and cleaning steps
declared in abstraction scripts

Generated offensive and abstract JCVMs

� ��� � � ��

Abstractions

� For each datatype� define

�� and
�

�
�

�

�� ��

� For each defined function �� �, define

�

� ��

by transforming

� � 	
� � � � � �
�� 	
� �

into

� �� � 	 �
� �
� � � � �

� �� � 	 �
� � � � � � �

Not a legal rule: substitution and cleaning steps
declared in abstraction scripts

Generated offensive and abstract JCVMs

� ��� � � ��

Abstractions

� For each datatype� define

�� and
�

�
�

�

�� ��

� For each defined function �� �, define

�

� ��

by transforming

� � 	
� � � � � �
�� 	
� �

into

� �� � 	 �
� �
� � � � �

� �� � 	 �
� � � � � � �

� Not a legal rule: substitution and cleaning steps
declared in abstraction scripts

Generated offensive and abstract JCVMs

� ��� � � ��

Abstractions

� For each datatype� define

�� and
�

�
�

�

�� ��

� For each defined function �� �, define

�

� ��

by transforming

� � 	
� � � � � �
�� 	
� �

into

� �� � 	 �
� �
� � � � �

� �� � 	 �
� � � � � � �

� Not a legal rule: substitution and cleaning steps
declared in abstraction scripts

� Generated offensive and abstract JCVMs

� ��� � � ��

Proof automation using Coq

� Mostly case analysis + equational reasoning

Built tactics that reduce to

and perform some equational reasoning

Further automation of equational reasoning
is highly desirable

Exploiting abstraction scripts seems promising

� ��� � � ��

Proof automation using Coq

� Mostly case analysis + equational reasoning

� Built tactics that reduce

� ��� �
� ����

���
 to

� ���� �	��

� ����

�
�

��� � �� �

� ��
� � �� � � � �����

� �� �

and perform some equational reasoning

Further automation of equational reasoning
is highly desirable

Exploiting abstraction scripts seems promising

� ��� � � ��

Proof automation using Coq

� Mostly case analysis + equational reasoning

� Built tactics that reduce

� ��� �
� ����

���
 to

� ���� �	��

� ����

�
�

��� � �� �

� ��
� � �� � � � �����

� �� �

and perform some equational reasoning

� Further automation of equational reasoning
is highly desirable

Exploiting abstraction scripts seems promising

� ��� � � ��

Proof automation using Coq

� Mostly case analysis + equational reasoning

� Built tactics that reduce

� ��� �
� ����

���
 to

� ���� �	��

� ����

�
�

��� � �� �

� ��
� � �� � � � �����

� �� �

and perform some equational reasoning

� Further automation of equational reasoning
is highly desirable

� Exploiting abstraction scripts seems promising

� ��� � � ��

Proof automation using Spike

� Spike is a first-order prover for “inductive theorems”

Cross-validation of the VMs for 2/3 of bytecodes

Now applying Spike to prove the monotonicity of
abstract VM

� ��� � � ��

Proof automation using Spike

� Spike is a first-order prover for “inductive theorems”

� Cross-validation of the VMs for 2/3 of bytecodes

Now applying Spike to prove the monotonicity of
abstract VM

� ��� � � ��

Proof automation using Spike

� Spike is a first-order prover for “inductive theorems”

� Cross-validation of the VMs for 2/3 of bytecodes

� Now applying Spike to prove the monotonicity of
abstract VM

� ��� � � ��

Conclusions

� Formal specification and verification of the JavaCard
platform is feasible but labor-intensive

Tool support for formal specification and verification
of (type safety for) low-level typed languages

Some interesting topics:

extracting code or tests from specifications
tools for certifying certifying compilers

For further information www.inria.fr/lemme/verificard

� ��� � � ��

Conclusions

� Formal specification and verification of the JavaCard
platform is feasible but labor-intensive

� Tool support for formal specification and verification
of (type safety for) low-level typed languages

Some interesting topics:

extracting code or tests from specifications
tools for certifying certifying compilers

For further information www.inria.fr/lemme/verificard

� ��� � � ��

Conclusions

� Formal specification and verification of the JavaCard
platform is feasible but labor-intensive

� Tool support for formal specification and verification
of (type safety for) low-level typed languages

� Some interesting topics:

� extracting code or tests from specifications

� tools for certifying certifying compilers

For further information www.inria.fr/lemme/verificard

� ��� � � ��

Conclusions

� Formal specification and verification of the JavaCard
platform is feasible but labor-intensive

� Tool support for formal specification and verification
of (type safety for) low-level typed languages

� Some interesting topics:

� extracting code or tests from specifications

� tools for certifying certifying compilers

� For further information www.inria.fr/lemme/verificard

� ��� � � ��

	Tool-Assisted Specification and Verification of the JavaCard Platform
	New generation smartcards
	Formal verification for smartcards
	Formal verification for smartcards

	Overview
	JavaCard
	The JavaCard Platform
	CertiCartes
	Program model
	Memory model
	Instruction
	Virtual Machines Specification
	Virtual Machines Specification
	Virtual Machines Specification

	Cross-Validation
	Cross-Validation
	Cross-Validation
	Cross-Validation

	Offensive vs. Defensive
	Offensive vs. Defensive

	Abstract vs. Defensive
	Abstract vs. Defensive

	Bytecode verifier
	Bytecode verifier
	Bytecode verifier

	Assessment
	Assessment
	Assessment
	Assessment
	Assessment

	Jakarta
	Jakarta

	Current focus
	Current focus
	Current focus
	Current focus
	Current focus
	Current focus

	Jakarta Specification Language
	Compiling JSL Specifications
	Abstractions
	Abstractions
	Abstractions
	Abstractions

	Proof automation using Coq
	Proof automation using Coq
	Proof automation using Coq
	Proof automation using Coq

	Proof automation using Spike
	Proof automation using Spike
	Proof automation using Spike

	Conclusions
	Conclusions
	Conclusions
	Conclusions

