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Abstract. Hyper-heuristics are a class of high-level search methods
used to solve computationally difficult problems, which operate on a
search space of low-level heuristics rather than solutions directly. Pre-
vious work has shown that selection hyper-heuristics are able to solve
many combinatorial optimisation problems, including the multidimen-
sional 0-1 knapsack problem (MKP). The traditional framework for iter-
ative selection hyper-heuristics relies on two key components, a heuristic
selection method and a move acceptance criterion. Existing work has
shown that a hyper-heuristic using Modified Choice Function heuristic
selection can be effective at solving problems in multiple problem do-
mains. Late Acceptance Strategy is a hill climbing metaheuristic strategy
often used as a move acceptance criteria in selection hyper-heuristics.
This work compares a Modified Choice Function - Late Acceptance Strat-
egy hyper-heuristic to an existing selection hyper-heuristic method from
the literature which has previously performed well on standard MKP
benchmarks.
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1 Introduction

Hyper-heuristics are high-level search methodologies which operate on a search
space of heuristics. A hyper-heuristic is defined by Burke et al. [1,2] as: ‘...a
search method or learning mechanism for selecting or generating heuristics to
solve computational search problems’. This definition covers the two main classes
of hyper-heuristics, those concerned with heuristic selection and those with
heuristic generation. Although often considered as an alternative to metaheuris-
tics, the recent definition of a metaheuristic offered by Sérensen and Glover [3]
somewhat subsumes hyper-heuristics. According to their definition, a selection
hyper-heuristic is a metaheuristic which provides a framework within which to



mix and control low-level heuristics, whereas a generation hyper-heuristic is a
metaheuristic to generate heuristics. It follows that if a metaheuristic is a heuris-
tic, a hyper-heuristic can either be a metaheuristic itself (e.g. a Grammatical
Evolution system to generate heuristics [4]) or contain metaheuristic components
(e.g. a selection hyper-heuristic using Late Acceptance Strategy move acceptance
criterion [5]). Hyper-heuristics have been applied successfully to a wide range of
problems including: production scheduling [6], nurse rostering [7], examination
timetabling [7], sports scheduling [8], bin packing [9], dynamic environments [10],
vehicle routing [4] and the multidimensional 0-1 knapsack problem [11,12].

A traditional selection hyper-heuristic iteratively selects and applies low-level
heuristics to a single solution, with a decision made at each step whether to ac-
cept the new solution. In this paper, such hyper-heuristics are labelled heuristic
selection method - move acceptance criterion hereafter. Ozcan et al. [13] de-
scribed four different hyper-heuristic frameworks. One of these frameworks Fi,
selects and applies a mutational heuristic from a set of low-level heuristics, fol-
lowed by a pre-defined hill climber before deciding whether to accept the new
solution. This is the framework used in this paper, illustrated in Figure 1.
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Fig. 1: F¢ single-point search hyper-heuristic framework

The Modified Choice Function is an elegant heuristic selection method in-
spired by Reinforcement Learning, which scores heuristics based on a combina-
tion of three different measures. At each given step of a search, the heuristic
selected is based on a weighted combination of these scores. Existing work has
shown that a hyper-heuristic using Modified Choice Function heuristic selection
can be effective at solving problems in multiple problem domains. In this paper
we investigate the suitability of using Modified Choice Function hyper-heuristics
to solve the MKP, a domain in which hyper-heuristics have previously shown to
be successful.



2 Selection Hyper-heuristics and Choice Function
Heuristic Selection

The first use of the term hyper-heuristic was by Cowling et al. [14], who defined
hyper-heuristics as ‘heuristics to choose heuristics’. This paper investigated the
application of a number of Simple Random, Greedy and Choice Function-based
hyper-heuristic approaches to a real-world sales summit scheduling problem us-
ing two deterministic move acceptance criteria: All Moves and Only Improving.
Choice Function heuristic selection has also been used by Bilgin et al. [15] for
benchmark function optimisation, Ozcan et al. [16] and Burke et al. [17] for
examination timetabling and Drake et al. [12] for the MKP.

The Choice Function is a heuristic selection method which scores heuristics
based on a combination of three different measures. The first measure (f1) reflects
the previous performance of a given low-level heuristic, weighted towards the
most recent application. The value of f; for a low-level heuristic h; is defined as:
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where I,,(h;) is the change in solution quality, T}, (h;) is the time taken to execute
the heuristic for each previous invocation n of heuristic h; and « is a value
between 0 and 1 giving greater importance to recent performance.

The second measure (f2) attempts to capture any pair-wise dependencies
between heuristics. Values of f, are calculated for each heuristic h; when invoked
immediately following hy using the formula in Equation 6:
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where I,,(hy, h;) is the change in evaluation function, T, (hg, h;) is the time taken
to call the heunsmc for each previous invocation n of heunsmc h; following hy,
and [ is a value between 0 and 1 which also gives greater importance to recent
performance.

The third measure (f3) is the time elapsed (7(h;)) since the heuristic was
last selected by the Choice Function. This allows all heuristics at least a small
chance of selection.

fa(hj) = 7(h;) (3)

In order to rank heuristics, a score is given to each heuristic with Choice
Function F' calculated as:

F(h;) = afi(h;) + Bf2(hw, hj) +  f3(hy) (4)

where a and 3 as defined previously weight f; and fs respectively to provide
intensification of the heuristic search process whilst & weights f3 to provide
sufficient diversification.



2.1 Modified Choice Function Heuristic Selection

The Modified Choice Function [18] was introduced to overcome some of the limi-
tations of the classic Choice Function, when applied to cross-domain optimisation
using the CHeSC2011 [19] benchmarks. Modified Choice Function heuristic se-
lection automatically controls the intensification and diversification parameters
of the Choice Function, weighting each of f1, fo and f3 using a method inspired
by Reinforcement Learning, giving far greater emphasis to intensification. The
Modified Choice Function does not make a distinction between the values of «
or $ which weight f; and fs5, so these are reduced to a single intensification
parameter which is referred to as ¢. Using the Modified Choice Function, the
score F; for each heuristic h; is defined as:

Fi(h;) = ¢ifi1(hj) + o1 fa(hu, hy) 4 01 f3(hy) (5)

where t is the current iteration. At each stage if an improvement in solution
quality is observed ¢ is rewarded heavily whilst § is harshly punished. If the
quality of the solution does not improve following the application of a low-
level heuristic, the level of intensification is decreased linearly, reducing ¢ and
increasing ¢ to diversify the heuristic search process. The intention is to give the
intensification component of the Choice Function more time as the dominating
factor in the calculation of F'. In this paper the parameters ¢; and ¢; are defined
as:

8 0.99, if an improving move is made (6)

‘ max {¢:—1 — 0.01,0.01}, if a non-improving move is made

5 =1— ¢y (7)

The use of 0.01 as the minimum value ensures that the diversification com-
ponent of the Modified Choice Function always has some non-negative influence
on the F' value for each heuristic. Here we would like to clarify that whilst each
individual heuristic has its own F' value, all low low level heuristics use the same
¢ and § values. The Modified Choice Function was shown to outperform the orig-
inal Choice Function on average, over six different problem domains by Drake
et al. [18]. Additionally the best results in the literature were achieved for the
MAX-SAT problem domain, within the HyFlex framework.

3 The Multidimensional Knapsack Problem

The NP-hard [20] multidimensional 0-1 knapsack problem (MKP) [21] is a gen-
eralised case of the standard 0-1 knapsack problem, with roots in applications
such as capital budgeting and project selection. The MKP is a resource alloca-
tion model, where the objective is to select a subset of objects which yield the



greatest profit, whilst observing the constraints on knapsack capacities. Unlike
the standard 0-1 knapsack problem, each object j consumes a different amount
of resources in each dimension ¢ when selected. Formally the MKP is stated as:

maximise Z i, (8)
j=1

subject to Zaijzj S bi, 1= 1, ey (9)
j=1

with z; € {0,1}, ji=1,...,n (10)

where p; is the profit for selecting item j, a;; is the resource consumption of
item j in dimension 4, b; is the capacity constraint of each dimension ¢. Using
direct binary encoding, x1,...,x, is a set of decision variables indicating whether
or not object j is included in the knapsack. The size of a problem is defined by
the total number of variables n and the number of dimensions m.

A number of benchmarks sets exist for the MKP, each with different proper-
ties®. SAC-94 is a benchmark library of MKP instances taken from a number of
papers in the literature, often representing real-world examples. These instances
are generally small with m ranging from 2 to 30 and n ranging from 10 to 105
with optimal solutions known for all. ORLib is a widely used benchmark library
containing 270 instances, split into 27 sets of 10 instances, containing n € {100,
250, 500} variables, m € {5, 10, 30} dimensions and tightness ratio € {0.25,
0.50, 0.75}. A third benchmark library was introduced by Glover and Kochen-
beger [22], referred to here as GK, containing much larger instances of the MKP
with n up to 2500 and m up to 100. As optimal solutions are not known for
all of the instances in ORLib and GK, performance is often measured using the
%-gap distance to the solution to the LP-relaxed problem calculated as:

LPopt—SolutionFound
100 * Soluti (11)

where L Popt is the fitness value of the LP-relaxed solution to a given problem
and SolutionFound is the fitness value of the solution found. In the case of the
SAC-94 instances, as optimal solutions are known, performance is measured by
the proportion of instances for which the optimal solution is found.

4 Experimental Framework and Parameters

The Modified Choice Function described in the previous section is paired with
Late Acceptance Strategy acceptance criterion and applied to the MKP bench-
marks. Late Acceptance Strategy [23] is a general purpose optimisation technique
which has previously been used as an acceptance criterion in a number of selec-
tion hyper-heuristics [16,11,5]. A Choice Function - Late Acceptance Strategy

3 All three benchmark instance sets have been standardised and are available in a
unified format at: http://www.cs.nott.ac.uk/~jqd/mkp/index.html



hyper-heuristic was shown to be the best of nine selection hyper-heuristics for
the MKP by Drake et al. [11]. The same framework is used here, containing
seven low-level heuristics to select from. A single hill climbing heuristic to be
applied after each low-level, as required by an F¢ hyper-heuristic framework, is
also included. In each case a run for a single instance terminates once 10° fitness
evaluations have been performed. This allows for direct comparison to the re-
sults of the original Choice Function - Late Acceptance Strategy hyper-heuristic
and a wide range of existing methods in the literature. A single run of each
hyper-heuristic is performed on each of the instances in the ORLib and SAC-94
benchmark sets. In the case of the larger GK instances, results are given as the
average of 10 runs for each instance.

5 Computational Results

Table 1 shows the results of the Modified Choice Function - Late Acceptance
Strategy hyper-heuristic over the 270 ORLib instances in terms of average %-
gap, along with the results for Choice Function - Late Acceptance Strategy. Stan-
dard deviations are given as subscript. The results for both hyper-heuristics are
very similar over the ORLib instances, with Choice Function - Late Acceptance
Strategy obtaining an average %-gap of 0.70 and Modified Choice Function -
Late Acceptance Strategy a %-gap of 0.73, with little difference in standard de-
viation. An independent Student’s t-test within a 95% confidence interval shows
no statistically significant difference between the two hyper-heuristics on this
benchmark set.

Table 2(a) and Table 2(b) compare the performance of Choice Function -
Late Acceptance Strategy and Modified Choice Function - Late Acceptance Strat-
egy over the SAC-94 and GK problem instances. In the case of the SAC-94
instances, which contains six subsets of problems, the success rate is defined as
the proportion on instances within each subset that the optimal solution is found.
Again the two methods are showing very similar performance on both of these
benchmark sets. Modified Choice Function - Late Acceptance Strategy is slightly
outperformed in terms of success rate in the pb and weish instances, finding the
optimal solution in one and three less instances respectively compared to Choice
Function - Late Acceptance Strategy. On the GK benchmark set, both methods
obtain the same average %-gap over 10 runs of each of the 11 instances.

Table 3 gives the average %-gap for a number of techniques from the literature
over the ORLib benchmark set. Our approach is able to outperform many of the
existing methods, achieving an average %-gap of 0.73. This is considerably lower
than many of the heuristic methods an some of the metaheuristic techniques
proposed previously.

6 Conclusions

In this work we have applied a Modified Choice Function - Late Acceptance
Strategy selection hyper-heuristic to a well known optimisation problem, the



Table 1: Comparison between Choice Function - Late Acceptance Strategy (CF-
LAS) and Modified Choice Function - Late Acceptance Strategy (MCF-LAS) on
all 270 instances of ORLib in terms of %-gap

Instance Set CF-LAS|MCF-LAS
OR5x100-0.25 |1.16 9.20| 1.09 ¢.21
OR5X100-0.50 0.53 0.08 0.57 0.08
OR5x100-0.75 (0.40 0.07| 0.38 0.05
OR5X250—0.25 0.42 0.04 0.41 0.10
OR5x250-0.50 0.20 ¢.03| 0.22 ¢.04
OR5X250—0.75 0.13 0.01 0.14 0.02
OR5X500—0.25 0.19 0.03 0.21 0.04
OR5X500-0.50 0.10 0.03 0.10 0.03
OR5x500-0.75 |0.06 0.01| 0.06 ¢.01
OR10x100-0.25|2.00 ¢.22| 1.87 0.16
OR10x100-0.50|1.02 ¢.19| 0.95 ¢.16
OR10x100-0.75|0.58 0.0s8| 0.53 0.09
OR10x250-0.25|0.83 0.09| 0.79 0.11
OR10x250-0.50|0.39 ¢.06| 0.41 ¢.05
OR10x250-0.75]0.23 ¢.03| 0.24 ¢.03
OR10X500—0.25 0.40 0.06 0.44 0.07
OR10x500-0.50|0.18 ¢.02| 0.20 ¢.03
OR10x500-0.75|0.12 ¢.01| 0.13 ¢.01
OR30x100-0.25|3.45 ¢.46| 3.61 ¢.53
OR30X100-0.50 1.56 0.26 1.60 0.29
OR30x100-0.75|0.92 ¢.08| 0.97 0.15
OR30x250-0.25|1.55 ¢.17| 1.75 ¢.22
OR30X250-0.50 0.71 0.08 0.79 0.10
OR30x250-0.75|0.39 0.04| 0.43 ¢.07
OR30x500-0.25]0.92 ¢.10| 1.05 0.10
OR30x500-0.50(0.39 ¢.05| 0.44 ¢.06
OR30x500-0.75]0.23 ¢.02| 0.27 0.02
Averagesmpev 0.70 0.09 0.73 0.11




Table 2: Performance of Choice Function - Late Acceptance Strategy and Modified
Choice Function - Late Acceptance Strategy in terms of (a) success rate of over
SAC-94 instances and (b) %-gap obtained in GK instances

(a) (b)
Dataset| CF-LAS|MCF-LAS Instance | CF-LAS |MCF-LAS
hp 0.00 0.00 GKO01 0.57 1.49 | 0.58 1.66
pb 0.67 0.50 GKO02 0.81 3.86 | 0.78 3.75
pet 0.50 0.50 GK03 0.63 3.10 0.63 4.30
sento 1.00 1.00 GK04 0.91 3.77| 0.86 5.81
weing 0.63 0.63 GKO05 0.45 3.00| 0.44 5.83
weish 1.00 0.90 GKO06 0.76 5.02 | 0.78 4.04
GKO07 0.19 6.48 | 0.22 288
GKO08 0.33 568 | 0.31 7.60
GKO09 0.07 7.47| 0.07 6.85
GK10 0.14 863 | 0.14 11.71
GK11 0.13 12.34| 0.14 11.10
Average| 0.450.30 | 0.450.29

Table 3: Comparison of genetic programming hyper-heuristic to previous ap-
proaches over all instances in ORLib in terms of %-gap

|T ype |Reference |%-gap|
MIP Drake et al. [11] (CPLEX 12.2) 0.52
MA Chu and Beasley [24] 0.54
Selection HH  |Drake et al. [11] 0.70
Selection HH |Modified Choice Function - Late Acceptance Strategy | 0.73
MA Ozcan and Basaran [25] 0.92
Heuristic Pirkul [26] 1.37
Heuristic Fréville and Plateau [27] 1.91
Generation HH |Drake et al. [12] 3.04
MIP Chu and Beasley [24] (CPLEX 4.0) 3.14
Heuristic Akcay et al. [28] 3.46
Heuristic Volgenant and Zoon [29] 6.98
Heuristic Magazine and Oguz [30] 7.69




MKP. Previously, using Modified Choice Function heuristic selection was shown
to outperform the classic Choice Function. Additionally the Choice Function has
previously worked well with Late Acceptance Strategy move acceptance when
solving the MKP. Although the Modified Choice Function has outperformed the
Choice Function over multiple domains in the past, this has not been the case
when applied to the MKP, with the Modified Choice Function offering slightly
poorer performance in two of the three benchmark sets tested. Future work will
combine the Modified Choice Function with other move acceptance criteria, to
assess whether there is any variation in performance over the MKP benchmarks.
We will also test the Modified Choice Function on further benchmark problems in
order to better understand the type of problem in which this heuristic selection
method can perform well.
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