
A semantics for functions and behaviours

Anthony Charles Daniels

Thesis submitted to The University of Nottingham for the

degree of Doctor of Philosophy

December 1999



Abstract

The functional animation language Fran allows animations to be pro-

grammed in a novel way. Fran provides an abstract datatype of \behaviours"

that represent time varying values such as the position of moving objects,

together with a simple set of operators for constructing behaviours. More

generally, this approach has potential for other kinds of real-time systems

that consist of interactive components that evolve over time.

We introduce a small functional language, CONTROL, which has be-

haviours and operators that are similar to those in Fran. Our language im-

proves on Fran in certain key areas, in particular, by eliminating start times

and distinguishing between recursive functions and recursive behaviours. Our

main contribution is to provide a complete formal semantics for CONTROL,

which Fran lacks. This semantics provides a precise description of the lan-

guage and can be used as the basis for proving that programs are correct.

The semantics is de�ned under the assumption that real number compu-

tations and operations on behaviours are exact. Behaviours are modelled as

functions of continuous time, and this approach is combined with the stan-

dard approach to the semantics of functional languages. This combination

requires some novel techniques, particularly for handling recursively de�ned

behaviours.



Contents

Acknowledgements vii

Notation viii

1 Introduction 1

1.1 Reactive systems . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Advice to the reader . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Lustre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Imperative streams . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Real-time process calculi . . . . . . . . . . . . . . . . . . . . . 14

2.5 Continuous verses discrete time . . . . . . . . . . . . . . . . . 15

2.6 Arctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Duration Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



CONTENTS iii

3 The Fran system 23

3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Time and Lifting . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Integration for behaviours . . . . . . . . . . . . . . . . . . . . 33

3.6 Recursive behaviours . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Summary of the literature . . . . . . . . . . . . . . . . . . . . 41

4 A language for behaviours 43

4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Domains for behaviours . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Semantic functions . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Behaviour expressions 56

5.1 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Examples of reactivity . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Implicit verses explicit values . . . . . . . . . . . . . . . . . . 68

5.5 Nested until-then expressions . . . . . . . . . . . . . . . . . 68

5.6 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Avenue on event times . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Avenue on alternative semantics for reactivity . . . . . . . . . 77

5.9 Avenue on integrability . . . . . . . . . . . . . . . . . . . . . . 79

5.10 Avenue on axioms . . . . . . . . . . . . . . . . . . . . . . . . . 80



CONTENTS iv

6 Behaviour de�nitions 82

6.1 Recursive behaviour de�nitions . . . . . . . . . . . . . . . . . 83

6.2 Recursive reactive de�nitions . . . . . . . . . . . . . . . . . . . 84

6.3 Least �xed points . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Non-reactive evaluation . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 The no-change rule . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Transitions for reactive behaviours . . . . . . . . . . . . . . . 96

6.8 Transitions for recursive reactive de�nitions . . . . . . . . . . 99

6.9 Transitions for integral behaviours . . . . . . . . . . . . . . . . 100

6.10 Transitions for recursive integral de�nitions . . . . . . . . . . . 102

6.11 Avenue on delayed switching . . . . . . . . . . . . . . . . . . . 104

7 Functions and behaviours 107

7.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Recursive functions . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Examples of recursive functions . . . . . . . . . . . . . . . . . 116

7.4 Recursive behaviours revisited . . . . . . . . . . . . . . . . . . 119

7.5 Combining recursive behaviours and recursive functions . . . . 120

7.6 Local and global time . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Multiple de�nitions . . . . . . . . . . . . . . . . . . . . . . . . 127

7.8 Avenue on Zeno . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Complete formal semantics 131

8.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Explicit typing . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Semantics of non-behaviour terms . . . . . . . . . . . . . . . . 139



CONTENTS v

8.5 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.6 Evaluation rules . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.7 Transition rules . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.8 Semantics of behaviour terms . . . . . . . . . . . . . . . . . . 155

8.9 Semantics of all terms . . . . . . . . . . . . . . . . . . . . . . 156

9 Applications of the semantics 158

9.1 Interpreting programs . . . . . . . . . . . . . . . . . . . . . . 158

9.2 A recursive reactive de�nition . . . . . . . . . . . . . . . . . . 162

9.3 A recursive integral . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4 A recursive function . . . . . . . . . . . . . . . . . . . . . . . 166

9.5 Chess Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.6 Water tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.7 Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10 Summary and future work 175

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2 Implementations of CONTROL . . . . . . . . . . . . . . . . . 177

10.3 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.4 Approximation and convergence . . . . . . . . . . . . . . . . . 181

A Constants in CONTROL 183

B A discrete model of CONTROL in Haskell 184



List of Figures

3.1 Types of abstract behaviours in Fran . . . . . . . . . . . . . . 40

3.2 Semantics of abstract behaviours in Fran . . . . . . . . . . . . 40

5.1 Examples of applying the semantics of until-then . . . . . . 67

5.2 The semantic function [[ ]] . . . . . . . . . . . . . . . . . . . . 72

5.3 Di�erent semantics of until-then . . . . . . . . . . . . . . . 78

8.1 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 A bottom up type checking algorithm . . . . . . . . . . . . . . 138

8.3 Direct denotational semantics of non-behaviour terms . . . . . 141

8.4 Transition rules I : Behaviour expressions and no-change . . . 150

8.5 Transition rules II : Reactive behaviours . . . . . . . . . . . . 151

8.6 Transition rules III: Behaviour de�nitions and reduce . . . . . 152

9.1 Interpreting programs, part I . . . . . . . . . . . . . . . . . . . 160

9.2 Interpreting programs, part II . . . . . . . . . . . . . . . . . . 161

9.3 First transition for Example 9.2 . . . . . . . . . . . . . . . . . 163

9.4 First transition for Example 9.3 . . . . . . . . . . . . . . . . . 165

9.5 First transition for Example 9.4 . . . . . . . . . . . . . . . . . 167

vi



Acknowledgements

I would particularly like to thank Conal Elliott for introducing me to this

absorbing topic, guiding me through the early stages of my PhD., and per-

suading the Microsoft Corporation to fund this work. Next I would like

to thank Mark P. Jones for his conscientious supervision and inspirational

tutoring at Nottingham. I thoroughly enjoyed the many hours of engaging

discussion we had on this topic. Graham Hutton took over supervision during

the writing up stage, and I greatly appreciate his useful feedback and advice

in general. Paul Blampied gave some detailed comments on early chapters

which improved the presentation. Thanks also to all the other members of

the Languages and Programming group for creating such a stimulating envi-

ronment, and particularly to Colin, Ben, Claus and Paul for many interesting

discussions.

Outside work my sanity has been revived by friends in Nottingham and

elsewhere. Particular thanks to Jenny for her constant encouragement and

expert assistance with grammatical aspects of my writing. For less sober

assistance I thank Colin, Felix, Jason, Vicky, Rosey, Bob, Bill, Ben, Katie,

Al, Chris and Alex. You made my time at Nottingham an unforgettable

experience.

Most of all I would like to thank my parents for their support and en-

couragement in everything I've ever done, and �nally my Gran for buying

Rosey and me our �rst computer.

vii



Notation

x = y x and y are semantically equal

x � y x and y are syntactically identical

R set of real numbers

B set of boolean values, ftrue; falseg

T set of times (non-negative real numbers, ft 2 R j t � 0g)

A! B functions from A to B (when A and B are sets)

A * B partial functions from A to B

t 7! X function mapping the bound variable t to the formula X�
X1 C1

X2
conditional function

�
X1 , if C1

X2 , otherwise

D ! E !-continuous functions from D to E (when D and E are
domains)

?D bottom element of the domain D

X? 
at domain formed by lifting the set X

[[T ]] domain corresponding to type T

[[E]] semantic function interpreting term E

viii



LIST OF FIGURES ix

; empty set, fg

P(A) power set of A, fS j S � Ag

X n Y set di�erence, fx 2 X j x =2 Y g

X ! Y proper superset, X � Y ^X 6= Y

" S upperset of S, fs 2 R j 9s0 2 S : s0 � s:g

[a; b] closed interval, fx 2 R j a � x � bg

(a; b) open interval, fx 2 R j a < x < bg

[uja : x] function identical to u except that a maps to x

C[ ] context

E=Æ substitution of all free variables in E by Æ

E=[x : N ] substitution of x for N in E

� ` E : � typing judgement that E has type � in context �

FV (E) set of free variables of the term E

dom f domain of the function f

! evaluation relation

�! transition system

" empty term

F1
n=0Xn least upper bound of fX0; X1; : : : g



Chapter 1

Introduction

Most programming languages are partly a way of express-

ing things in terms of other things and partly a basic set of

given things.

P. J. Landin

In 1966 Landin proposed a core language framework based on the �-

calculus which he called ISWIM [Lan66]. His hypothesis was that this frame-

work could provide a basis for many realistic languages, each one di�ering

only in the set of given things that are required for programming partic-

ular kinds of applications. This is a natural approach to take because it is

clear that some tasks are easier in certain languages than others, but also that

there are similar core features in most languages; for example, most languages

provide facilities for de�ning functions and values, controlling the scope of

identi�ers, expressing conditionals and building data structures. Landin went

on to suggest:

A possible �rst step in the research programme is 1700 doc-

toral theses called \A correspondence between x and Church's �-

notation."

1



CHAPTER 1. INTRODUCTION 2

We follow Landin's approach by proposing a new core language called

CONTROL (CONtinuous Time Reactive Object Language) which is in-

tended as a basis for reactive systems languages. Reactive systems control

and monitor various entities in real-time, and CONTROL provides opera-

tions for describing time-varying quantities using behaviours. In common

with ISWIM, CONTROL is based on the �-calculus, but it uses types and

normal order evaluation so it is actually more closely related to PCF [Sco93].

Like Landin, we also want to give an unambiguous description of our

language. In the three decades since Landin's paper, much progress has

been made towards constructing theories of programming languages [Rey98].

These theories allow us to rigorously de�ne the meaning of programs written

in a particular language; in other words, they allow us to construct a seman-

tics for the language. The functional part of CONTROL can be dealt with

using these existing theories, but behaviours require some new techniques; in

particular, for describing reactivity, integrals and for de�ning behaviours re-

cursively. The development of these techniques, and of a complete semantics

for CONTROL, are the primary subjects of this dissertation.

1.1 Reactive systems

In our context, reactive systems encompass any real-time control system

that must respond to external stimuli in non-trivial ways; for example, lifts,

robots, aircraft, heating systems, power stations, satellites and interactive

animations. Although these systems are physically very dissimilar (partic-

ularly interactive animation) descriptions of their abstract behaviour often

bear a strong resemblance. What all these systems have in common is that

they must monitor values that vary with time and respond or react to situa-

tions that arise; we call these situations events. Furthermore, events cannot



CHAPTER 1. INTRODUCTION 3

in general be predicted prior to the system being run, and so the responses

must be determined in real-time. This is in contrast to simpler real-time

systems, such as signal processing, where the computation that will be per-

formed is �xed and not determined by occurrences of events.

One of the most diÆcult problems reactive systems pose is that computing

responses to events takes a �nite amount of time, and this results in a delay in

the response. Of course, in any physical system there will always be a slight

delay due to the mechanical or electrical hardware, but this is generally a

�xed period as opposed to the variable time taken to compute responses.

Events cannot usually be predicted beforehand, and it may be possible for

many events to occur in a short period of time. If the responses to these

events cannot be computed quickly enough, then the system could fail.

Reactive languages are designed to make it easier to program reactive

systems. We discuss various reactive languages in Chapter 2. One of the

major tasks in specifying reactive systems is de�ning when response times

are acceptable. For this purpose various calculi have been devised. They

help system designers to reason about real-time properties of programs, and

have been used to verify that implementations of particular systems meet

their speci�cation. Despite these formalisms, it is usually very diÆcult to

guarantee real-time properties of real systems, largely because the languages

used are not amenable to analysis using real-time calculi.

1.2 Fran

CONTROL is inspired by the animation language Fran which takes a di�er-

ent approach to that of most reactive languages. It adopts a continuous no-

tion of time so that, as far as the programmer is concerned, responses occur at

exactly the time speci�ed and time-varying quantities (i.e., behaviours) vary



CHAPTER 1. INTRODUCTION 4

continuously rather than being approximated by values at discrete points in

time. Fran provides an abstract datatype for behaviours embedded in an

existing functional language, Haskell.

In contrast with Fran, most other reactive languages are based on discrete

time. Fran does not make any guarantees about response times, however,

because the implementation of the language features uses discrete represen-

tations, and computation speed is, of course, �nite. But the shift of emphasis

is important: if it can be shown that the language features satisfy certain

real-time constraints for all programs, subject to some limiting criteria, then

the task of verifying the real-time properties of individual programs is greatly

simpli�ed. So the burden of proof is shifted from individual programs onto

the language, which potentially saves much repetition of e�ort.

This was not the original motivation for Fran; it was intended to reduce

the repetition of e�ort in programming computers to display modelled ani-

mations. We discuss Fran in detail and expand on this point in Chapter 3.

Our work uses continuous time as Fran does, but for the bene�ts it brings to

proving programs are correct as well as for ease of programming.

1.3 Approach

It is true that our machines can only provide an approximation

to these [real valued] functions but the discrepancies are generally

small and we usually start by ignoring them. It is only after we

have devised a program which would be correct if the functions

used were the exact mathematical ones that we start investigating

the errors caused by the �nite nature of our computer.

C. Strachey



CHAPTER 1. INTRODUCTION 5

CONTROL has a type for real numbers along with various operations

on this type. In addition, behaviours can be real-valued and they can be

integrated and used to describe events. As Strachey observed[Str73], when

considering the semantics of such operations on real numbers we must �rst

consider the outcome if the functions were the exact mathematical ones, and

then consider the errors due to approximation. This was before methods

had been devised for computing certain operations on exact representations

of real numbers [Vui90]. However, Strachey's approach is still applicable to

CONTROL because the operations available in the language are beyond the

limits of these methods, and therefore most implementations of CONTROL

are likely to use approximation techniques for these operations.

This work accomplishes the �rst step suggested by Strachey|�nding the

values assuming the operations are exact|and does not address the sec-

ond step|investigating the errors in an implementation using approximation

techniques. It is therefore an idealised theory which provides a theoretical ba-

sis for the study of real languages based on CONTROL. Without this theory

we would not know what it is that these real languages are approximating.

1.4 Assumptions

Our aim is to construct a formal semantics for an idealised language based

on the the core operators in Fran. There is some 
exibility here because the

actual language is not speci�ed completely. It includes the most important

features in Fran, but we may alter the language design in response to semantic

considerations. In other words, we will describe the design of a Fran-like

language, rather than a language that is a strict subset of Fran.

There are a number of assumptions we make; �rstly, the validity of Stra-

chey's approach of starting with an idealised language and then considering



CHAPTER 1. INTRODUCTION 6

separately the errors due to approximation. From a programming perspec-

tive, we assume that continuous time behaviours and declarative program-

ming are suÆcient, and also convenient, for creating many reactive systems.

That said, we feel that the example applications in Chapter 9 demonstrate

the power and elegance of CONTROL for simple reactive systems.

1.5 Contributions

Our contributions are twofold: �rstly, we have designed a new language

which improves on previous languages; and secondly, we have constructed

a formal semantics for our language which has not been accomplished for

similar languages. It is likely that our semantics could be adapted to account

for features in related languages such as Fran.

More speci�cally, our contributions towards language design are: an im-

plicit notion of time that makes explicit time values unnecessary; a new

mechanism for de�ning recursive behaviours; and the integration of these

features into a purely functional language. Our main contributions towards

semantics are: a formal de�nition of the core operators (Chapter 5), in partic-

ular, a more re�ned treatment of event occurrences; a semantics for recursive

behaviour de�nitions (Chapter 6); a complete semantics, combining func-

tions and behaviours (Chapter 4, Chapter 7, Chapter 8); and some useful

theorems for proving properties of programs (Chapter 8). Finally, we also

give some examples which illustrate the expressiveness of the language and

the usefulness of the semantics (Chapter 9).



CHAPTER 1. INTRODUCTION 7

1.6 Advice to the reader

The remainder of this dissertation is organised as follows. Chapter 2 gives

some background on various reactive languages and Chapter 3 describes Fran

in detail. The subsequent chapters describe our contribution|a language

for programming reactive systems with continuous time behaviours and its

formal semantics. The quickest way to �nd the main technical results is to

read Chapter 8 which gives the complete formal semantics of CONTROL.

Doing so would miss the motivation behind the language features and the

semantics, but it would reveal the 
avour of this work. The examples in

Chapter 9 are also worthwhile for those not wanting to read the dissertation

in full.

For the most part, chapters begin by following the main development

of the theory with few deviations. Then, towards the end of each chapter,

various interesting alternatives and additional parts of theory are explored

in sections titled `Avenue on x.' This makes it possible to concentrate on

the main discussion uninterrupted, and then explore other possibilities sep-

arately. In fact, one useful way to approach this dissertation is to �rst read

it through ignoring the avenue sections, and then re-read it in full.

Chapter summary

CONTROL is a functional language with facilities for describing time-varying

quantities called behaviours, where time is continuous. Our theory of the

meaning of programs is idealised because it assumes that all real number

computation, including integration and comparison of behaviours, is exact.

CONTROL evolved from a core subset of Fran, which is a functional language

for animation. This dissertation develops a complete formal semantics for



CHAPTER 1. INTRODUCTION 8

CONTROL and illustrates the application of this theory.



Chapter 2

Background

This chapter begins with a survey of some languages for programming reac-

tive systems. The aim here is to concentrate on the features in each language

and to give an idea of the character of programs. The languages we discuss

at �rst are based on a discrete model of time, in contrast to our language.

Then we discuss the relative merits of continuous time compared to discrete

time, and discuss a language based on continuous time.

Following this we review two calculi for specifying real-time properties

of programs. The �rst is the Duration Calculus, which we illustrate with

the standard gas burner example. The second is an extension of CSP for

specifying hybrid systems. We describe a water tank controller using this

notation, and in Chapter 9 we will return to this example and program it in

CONTROL.

2.1 Esterel

Esterel is an imperative reactive language designed for programming control

intensive reactive systems [Ber97]. Here `reactive' means that the role of

the system is to react to external stimuli in a timely way; the pace of the

interaction is determined by the environment. Esterel is deterministic, which

9



CHAPTER 2. BACKGROUND 10

means that the output of the system is uniquely determined by the inputs and

their timing. Esterel is based on a synchronous model of concurrency; that

is, one in which concurrent processes are able to perform computation and

exchange information in zero time. In practice, however, it is not possible to

implement such a model exactly, so timing constraints are based on estimates

and are not guaranteed.

As an example of concurrency in Esterel, consider the following:

await A || await B.

This is a process which terminates as soon as the input actions A and B have

both occurred. Processes can also be pre-empted, which means interrupted

by another process that has priority; for example, the process

loop P each R

acts like the process P until the event R occurs, at which point P is started

afresh. Putting these two examples together, and adding an output action

emit 0, we obtain the following Esterel code fragment which emits the output

0 as soon as both the inputs A and B have been received, and resets whenever

the input R is received;

loop

[await A jj await B];

emit 0

each R:

Because Esterel performs actions and all communication instantaneously,

events can occur simultaneously and pre-emption is instant. In practice, the

usual way that implementations work is to deal with all active processes in

each input-output cycle. For example, in the program above we would �rst

receive any input from A, B, and R, and then determine what action to



CHAPTER 2. BACKGROUND 11

take. Since R is a pre-emption process it takes priority over A and B, so any

input to R will restart the program. After all inputs have been received, all

outputs are sent and a new input-output cycle begins. Therefore the discrete

notion of time is essential for achieving synchronicity.

2.2 Lustre

Lustre is a data
ow programming language designed for programming reac-

tive systems [HCRP91]. It is well suited for data intensive reactive systems,

such as signal processing, in contrast to Esterel which is aimed at control

intensive systems. In common with Esterel, it uses the synchronous model

of communication. Veri�cation of timing properties is an important con-

cern, and the designers of Lustre claim that this is simpler than for some

other languages because of its similarity with temporal logics. This allows

the language to be used for both writing programs and expressing program

properties, easing the task of veri�cation. Later on we will see that it is

possible to apply this idea to CONTROL programs.

Lustre models time-varying quantities by sequences of values, called 
ows,

and so it is based on a discrete notion of time. We will use integer indices

to refer to the value of a 
ow at a discrete point in time. Lustre 
ows

are quite similar to di�erence equations, which are equations in terms of

sequences (Hubbard and West describe di�erence equations as evolution in

discrete time, compared to di�erential equations which describe evolution

in continuous time [HW91]). One di�erence, however, is that the operations

provided in Lustre are deliberately restricted so that 
ows are straightforward

to compute.

As a simple example, we will describe how to represent the sequence of

Fibonaci numbers by a 
ow in Lustre. The Fibonaci sequence is usually



CHAPTER 2. BACKGROUND 12

de�ned by the following equations:

f0 = 1

f1 = 1

fn = fn�1 + fn�2:

The third equation states that the n-th Fibonaci number is the sum of the

previous two numbers in the sequence. Therefore we need to know how to

refer to earlier values in 
ows, and how to add them.

To refer to earlier values in a 
ow the pre operation is used. It o�sets


ows so that, for example,

Y = pre(X)

de�nes Y to be the 
ow that has values equal to the previous values of X,

that is,

Yt = Xt�1:

The �rst value, Y0, of the stream Y is uninitialised, but it can be set using

the -> operator. Thus the 
ow Z given by

Z = 2.->pre(X)

is identical to Y except that the �rst value is 2 rather than being uninitialised;

that is, Z0 = 2.

Operations are de�ned element-wise, so, for example, addition of 
ows

satis�es

X + Y = fXt + Yt j t 2 Ng:

Now, using pre, -> and +, we can de�ne the 
ow of Fibonaci numbers by

F = 1.->1.->(pre(F) + pre(pre(F))):



CHAPTER 2. BACKGROUND 13

Reactivity is expressed by forming boolean valued 
ows. This bears a

close resemblance to imperative streams which we will describe in the next

section. Although Lustre is intended to be amenable to program veri�cation,

its discrete model of time makes this awkward for many applications that are

most naturally speci�ed using continuous time values.

The language Signal [LGLL91] is similar to Lustre, and is also based on


ows.

2.3 Imperative streams

Streams view input devices as sequences of values and produce corresponding

streams of output values [KM77]. Imperative streams are a generalisation

which allow side e�ects with each value in the stream [Sch96b]. They have

been implemented as a monad called ST in Haskell; a value of type ST a

represents an imperative program which produces values of type a at certain

times during its execution. Using a monad for imperative streams has the

advantage that arbitrary IO commands can be performed as in the IO monad.

The di�erence is that a value of type IO a represents an imperative program

that will produce a single value of type a at the end of its execution, rather

than a stream of values. Imperative streams can be used to model change over

time and handle streams of input values, so they are suitable for programming

reactive systems. They have been used for the graphical user interface toolkit

PIDGETS [Sch96a, Sch98].

Imperative streams yield values at certain times, so they are a discrete

representation of time-varying values. Streams may need to wait for values

from other streams before yielding a new value, so timing constraints are

implicit and real-time response is not guaranteed.

An until operator similar to until in Arctic and untilB in Fran is dis-



CHAPTER 2. BACKGROUND 14

cussed in [Sch96b]; the stream until c b d behaves like b until c produces

True and then it behaves like d. Scholz compares imperative streams with

Fran in his thesis [Sch98]. The monadic, discrete approach of imperative

streams results in a more imperative, state based style of programming com-

pared to Fran's purely declarative style. Finally, Sage has established an

even closer link by re-implementing Fran using imperative streams [Sag98].

2.4 Real-time process calculi

Many reactive languages make use of concurrency where multiple processes

run in parallel. Concurrency is useful for programming reactive systems

because they involve a number of entities that interact with each other. The

software must monitor and control these entities and so multiple interacting

processes provided for by concurrency is very natural.

There are two main forms of concurrency: shared variable concurrency,

where certain variables are shared by multiple processes [Hoa72]; and commu-

nicating sequential processes (CSP), where processes communicate by passing

messages [Hoa85]. The main di�erence is in the way processes communicate

with each other.

Another distinction is between synchronous and asynchronous languages;

in synchronous languages the input and output of a message occur simulta-

neously, and processes use what is known as handshake communication. In

asynchronous languages the sender does not need to wait until the receiver

is ready, so there is no handshake.

A common alternative to passing messages between processes is to use

named channels so that a process can request an input v from a channel

h, written h?v, or output a value e along a channel h, written h!e. This

approach is captured algebraically by the �-calculus [Mil91].



CHAPTER 2. BACKGROUND 15

CSP does not provide facilities for synchronising with a clock. This is

addressed in a variation called Timed CSP which allows explicit reference to

timing information [RR87, Sch90]. However, it is often not necessary to use

concurrency explicitly to describe reactive systems; for example, languages

such as Fran use a declarative style where values are de�ned in terms of each

other, and the processes for computing these values are built into the lan-

guage. It may be bene�cial to use concurrency for implementing declarative

reactive languages such as Fran, but it is not necessary to provide concur-

rency in the language.

2.5 Continuous verses discrete time

There is a fundamental conceptual di�erence between discrete and continuous

views of time. The exact nature of space and time has intrigued philosophers

for centuries, and many metaphysical arguments have been put forward in

support of each viewpoint. The outcome of these arguments depends on the

assumptions they are based on, so they do not provide a conclusive answer.

More recently, advances in Physics have changed our perspective, suggesting

that space and time are non-linear and also that both may be discrete. For

our purposes all this is not very important. In most situations time appears

to 
ow continuously, and we do not perceive an uneven progression from one

instant to another. If space and time are discrete then the granularity is so

�ne that for all practical purposes they appear to be continuous. This is why

continuous time models have been so successful in science and engineering.

A good model is one that is workable and �ts observation well, and not

necessarily one that mirrors reality most accurately.

Continuous time models have the following bene�ts. They yield a value at

any point in time, not just discrete points. They are easier to manipulate in



CHAPTER 2. BACKGROUND 16

symbolic form, and have many algebraic properties. Most importantly, they

can be integrated and di�erentiated. Calculus is perhaps the most powerful

tool ever developed for scientists and engineers.

In practice, however, continuous time is less common than discrete time.

We have seen that Esterel, Lustre and Imperative streams use discrete time

representations for time-varying quantities. This is the most common ap-

proach because digital computers are discrete machines. It is possible to rep-

resent continuous time values using functions of time, but operations such as

integration tend to be more diÆcult than for discrete time representations

for which approximation methods can be used. It is possible to combine the

approaches, however, and use discrete approximation methods for operations

such as integration and interpolate between points to obtain continuous time

values. This allows us to retain the continuous time approach, but we have to

sacri�ce exact operations where necessary. This is how Fran is implemented.

So, practically we usually need to compromise the continuous time ap-

proach by using discrete approximation methods for some operations. Al-

though we have the extra complexity of analysing errors due to approxima-

tion, many of the advantages of using continuous time remain.

2.6 Arctic

Arctic [Dan84] is intended for implementing real-time control systems of the

kind we have called reactive systems; that is, systems that require complex

decision making and must satisfy hard timing constraints. The �rst criterion

excludes signal processing, for example, and the second excludes soft real-

time systems such as operating systems, where the user may have to wait for

the machine at times.

Conceptually Arctic is based on a continuous notion of time, and inputs



CHAPTER 2. BACKGROUND 17

and outputs are modelled as functions of time. The implementation, on the

other hand, uses discrete time and computes approximations to time-varying

values. Arctic's creator, Dannenberg, claims that any Arctic implementation

will only approximate the ideal because it is impossible to measure or repre-

sent real input values or times with in�nite precision. While measurements

in the real world are always approximations, it is not true that real numbers

are impossible to represent exactly|for example [PEE97, Vui90]|although

it can be very diÆcult to implement some operations on exact representations

of real numbers. In summary, Arctic adopts continuous time conceptually|

for understanding the language and for reasoning about programs|but does

not make any guarantees about the implementation, and therefore program

veri�cation is compromised.

The principal construct in Arctic is the prototype, which is a speci�cation

of responses to events. Prototypes are instantiated to yield actual values

(outputs) when they are triggered by events. Thus a single prototype may

be instantiated many times by di�erent events. Each of the resulting objects

have their own state, which includes their start time.

As an example of a prototype, the following describes a doorbell that

does not ring between 0am and 8am:

Push causes [

if (time mod 24 hours) > 8 hours then RingBell].

Each Push event creates an instance of the prototype, which in turn will

instantiate the RingBell output event if the time of the Push event satis�es

the condition. The time of the event is given by time in the prototype|it is

an implicit parameter which gives the start time of instances of the prototype.

Another implicit parameter that is passed to instances of prototypes is a

stretch factor called dur. This allows a prototype to be speeded up or slowed

down by adjusting all timed outputs according to the stretch factor. This



CHAPTER 2. BACKGROUND 18

is signi�cant to our work because time-transformations such as speeding up

timed values can be problematic with discrete time representations.

In the following program the Ring3Times event triggers a bell that rings

three times at one second intervals:

Ring3Times causes [

RingBell @ 0

RingBell @ 1

RingBell @ 2]:

Here the operator @ is used to specify the time of output events relative

to the start time of the prototype instance. Thus, if the bell is pressed at

time t then we expect the bell to ring at times t, t+1 and t+2. Now, we

can double the speed of this prototype using the � operator so that the

bell rings at times t, t+0.5 and t+1. So time stretching a�ects the relative

times but not the start time, which means that the @ operator multiplies the

given time by the stretch factor, dur, to obtain the actual time. This ensures

time-transformations interact with composition of prototypes as we would

expect.

Arctic includes primitives for parallel and sequential composition of pro-

totypes. Sequential composition uses a third implicit parameter called stop

which gives the end time of the prototype. There are facilities for construct-

ing functions of time and for describing events. In particular, the until

operator evaluates a boolean function of time and switches from one proto-

type to another at the �rst moment after the start time when the function

yields true. This is ill de�ned, however, because a boolean function such as

t 7! t > 1 does not have a �rst moment when it is true. Later we will see

how our theory avoids this 
aw in the de�nition of a similar operator in our

language.



CHAPTER 2. BACKGROUND 19

2.7 Duration Calculus

The Duration Calculus is for reasoning about speci�cations and designs of

real-time systems. It is closely related to interval temporal logics, which

allow assertions about timing to be speci�ed without explicit references to

absolute time [Koy90, MP92]. However, it also has a simple way of describing

the proportion of time a system spends in a given state, which can be useful

in some applications. Real numbers are used to model time and boolean

valued functions of time are used to model states and events. This gives a

continuous notion of time.

The standard example is a gas burner, which can only leak unlit gas for

one twentieth of the elapsed time without a dangerous build up occurring.

A dangerous buildup cannot occur in less than one minute. Let

Leak(t) : T ime! R

be a real valued function of time that is 1 when the gas burner is leaking and

0 when it is not. The safety requirement over the interval [b; e] is given by,

e� b � 60sec: =)

Z e

b

Leak(t):dt �
1

20
(e� b):

So the total length of time when the burner is leaking is found by integrating

Leak, and this should be no more than one twentieth of the total time.

This speci�cation can be simpli�ed by eliminating explicit references to

time. We assume that all integrals are over the interval [b; e], so that the

elapsed time, l, is given by:

l =

Z
1 (=

Z e

b

1:dt = e� b):

Now the safety requirement can be expressed as:

l � 60sec: =)

Z
Leak �

1

20
l:



CHAPTER 2. BACKGROUND 20

The Duration Calculus is de�ned axiomatically in terms of integrals such as

the one above and arbitrary states. It has been used successfully to specify

a variety of reactive systems and to prove designs are correct.

2.8 Hybrid systems

Hybrid systems combine continuous devices and discrete control programs,

typically in real-time systems where the physical environment is evolving over

time. The combination of continuous and discrete values makes it challenging

to specify and implement provably correct systems.

We have already seen the Duration Calculus for specifying and reasoning

about discrete states in real-time systems. This has been extended to cap-

ture piecewise continuous states so that it can be used for specifying hybrid

systems [CRH93]. The theory is intended to interface with mathematical

analysis which is required for analysing the continuous parts of the system.

He Jifeng has described hybrid systems using an extension of CSP with a

speci�cation oriented semantics [Jif94]. We will brie
y consider an example

of describing a hybrid system using this method. This system controls the

water level in a tank by switching on a control valve. The level must be kept

between 30 and 60 units, and starts at time 0 at 40 units. The valve is open

which causes the water level to rise at 0.2 units per second. Once the valve is

closed the level will drop at 0.1 units per second until the valve is reopened.

We have the following variables:

WL is the hybrid system,
h is the water level,
C is the controller,
c is the channel that links the controller with the valve.



CHAPTER 2. BACKGROUND 21

The system is speci�ed in He's notation by:

WL
def
= (_h = 0:2)40 E (c?x �! W (x))

W (o�)
def
= (_h = �0:1) E (c?x �!W (x))

W (on)
def
= (_h = 0:2) E (c?x �!W (x))

C
def
= (await h = 30 do (c!on �! (delay 1;C)))�

(await h = 60 do (c!o� �! (delay 1;C)))

The controller C opens the valve when the water level drops to 30 units

and closes it when the water level rises to 60 units. Opening and closing

is achieved by passing the values `on' or `o�' along the channel c. The

de�nitions for W specify the rate of level change, _h, when the valve is o�

(closed) and on (open), and the change that occurs when an input is received

on channel c according to W . The overall water level system, WL, gives the

rate of level change, _h, which is 0.2 at �rst, with h = 40, and changes when

an input is received on c.

This notation is precise and amenable to reasoning and proving programs

correct. However, in Chapter 9 we show how this system can be implemented

in CONTROL, and that our notation is precise enough for both the speci�-

cation and the implementation. This has the advantage that the program is

correct by design.

Chapter summary

There are many languages designed for programming reactive systems using

a variety of techniques. We saw that most of these languages are based on

a discrete notion of time. One exception is Arctic which adopts continuous

time conceptually.



CHAPTER 2. BACKGROUND 22

Speci�cation calculi often assume that time is continuous, because it is

easier to work with, but it is then not easy to prove that an implementation is

correct with respect to its (continuous time) speci�cation unless it is written

in a language that supports continuous time.



Chapter 3

The Fran system

Fran (Functional Reactive ANimation) is a functional language for creating

interactive animations. CONTROL is based on a core fragment of Fran with

the intention of studying the semantics of the core operators in a simpler

functional language. In retrospect, it is apparent that our work has wider

signi�cance to reactive languages, and this is what we have emphasised in

the previous chapters. Because of its in
uence on our work, we will describe

Fran, and the existing work on its semantics, in detail in this chapter. The

main purposes are:

� To introduce Fran's operators on behaviours, which inspired similar

operators in CONTROL.

� To enable us to identify where CONTROL di�ers from Fran.

� To describe previous work on the semantics of Fran, and its limitations.

Fran is the latest prototype language in a research programme investi-

gating high-level languages for creating richly interactive animations. The

ideas that Fran is based on grew out of earlier work by Elliott and others on

modelled animation [ESYAE94, Ell96]. Fran is implemented in Haskell, but

most of the ideas behind the design are independent of the implementation

23



CHAPTER 3. THE FRAN SYSTEM 24

language. Therefore it is helpful to distinguish between the key concepts be-

hind the approach and speci�c details of the Haskell based implementation;

we are mostly interested in the former, but our example programs will use

the Haskell implementation of Fran.

3.1 Examples

In this section we shall describe a simple Fran animation to illustrate some

of the operators in the language and to give an impression of Fran so that

the discussion of the key concepts which follows is more concrete.

Our �rst example is an animation of the Moon orbiting the Earth in a

circular path. We require a time-varying value (a behaviour) which gives the

position of the Moon at all times. Then we can translate an image of the

Moon according to this behaviour, and overlay it on a stationary image of

the Earth. By default, images that are not translated, such as the Earth

in this example, are positioned at the origin which is at the centre of the

display. The Fran program for this animation is as follows:

orbit = vector2XY (cos time) (sin time)

earthMoon = move orbit moon `over` earth (3.1)

The de�nition of orbit gives the position vector of the Moon. It is con-

structed by vector2XY which takes the horizontal and vertical co-ordinates

and yields the corresponding vector. Notice that the arguments are be-

haviours; the horizontal coordinate (cos time) is a behaviour that yields

the cosine of the current time at all times; similarly for the vertical coordi-

nate sin time.

The overall animation, earthMoon, is exactly as it reads; move an image

of the Moon according to orbit and overlay it on an image of the Earth.



CHAPTER 3. THE FRAN SYSTEM 25

(Suitable de�nitions, such as imported bitmaps, are required for the earth

and moon images.) The animation is viewed by entering

display earthMoon

and will run forever.

Let us extend earthMoon to obtain an animation of the Moon and Earth

orbiting the Sun. The �rst step is to de�ne a smaller version of the Earth

and Moon animation;

smallEarthMoon = stretch 0.2 earthMoon

This can be put in orbit around the Sun, as follows:

sunEarthMoon = move orbit smallEarthMoon `over` sun

But in this animation the Earth and the Moon have the same orbital period,

whereas we would like the Moon to orbit the Earth every month, or twelve

times a year. We can do this by speeding up smallEarthMoon by a factor of

twelve using the faster operator as follows:

sunEarthMoon = move orbit (faster 12 smallEarthMoon)

`over` sun

The above example shows that behaviours can be freely composed. This

would not be the case for a naive implementation of the above animations

in a procedural language in which one frame of the animation is produced

with each iteration of a loop. More speci�cally, compositionality of the kind

illustrated above is only possible if the following hold:

� Behaviours use continuous time. Discrete time representations will not

compose straightforwardly when operations like faster are used.



CHAPTER 3. THE FRAN SYSTEM 26

� Behaviour expressions are pure and persistent. If they are not, side

e�ects may interfere when behaviours are composed or reused.

� Behaviours are implicitly functions of time. If they depend on an ex-

plicit time variable then encapsulation is lost.

� Behaviours are structured values; for example, vectors.

3.2 Key concepts

The example program sunEarthMoon illustrates that animation components

are compositional, and we identi�ed some prerequisites for compositionality.

In this section we will describe how the key concepts of Fran's approach lend

themselves to compositional program construction, and other bene�ts they

bring to developing animations.

Modelling. Writing programs that describe animations is often a diÆ-

cult and time consuming task. Fran makes it easier by allowing authors to

concentrate on content rather than on programming, or more precisely, on

what the animation is rather than on how to display it on the screen. So Fran

takes a declarative approach in which programs are models of animations.

The implementation uses a presentation engine which computes how to dis-

play these models as animations. The presentation engine can be optimised

by experts and then used by everyone, thus eliminating much duplication of

e�ort.

The modelling approach is a compromise, however, because low-level con-

trol is lost and so animations that are not easy to describe within the mod-

elling framework can be less eÆcient, and sometimes not possible. The choice

of modelling framework is therefore crucial|it should be suÆciently expres-

sive for most purposes but this must be balanced with the requirement to



CHAPTER 3. THE FRAN SYSTEM 27

present models eÆciently.

Continuous time. Animations are often represented as a sequence of

frames which contain the image to display at discrete points in time. This is

unnatural, however, because in the real world we usually regard motion as

continuous; that is, objects move through a continuum of points in space in a

continuous interval of time. Hence, it is more diÆcult to program animations

in a language that uses discrete time representations, such as frames, than

it is to model them mathematically. Fran adopts continuous time so that all

time-varying values are conceptually functions of time. This has the following

advantages:

� It is easier and more natural to describe time-varying values.

� Behaviours can always be composed, whereas with discrete time rep-

resentations only behaviours that have the same points in time can be

composed.

� Arbitrary time-transformations can be applied to any time-varying

value, and this does not break compositionality.

� Motion can be described by rates of change using the di�erential cal-

culus.

� It is possible, within certain limits, to run animations at approximately

the same speed, regardless of the hardware, because frames can be

computed at any point in time. The animation is unlikely to be as

smooth on a slower machine, but after say �ve seconds the animation

will be at (approximately) the same point as it would be on the faster

machine.



CHAPTER 3. THE FRAN SYSTEM 28

Behaviours. In Fran behaviours are used to describe all time-varying

aspects of animations. They are conceptually functions of time which map

times to values of various types, depending on what is being described. For

example, behaviours may yield colours, numbers, positions, shapes, images

or sound. Behaviours are encapsulated|they cannot be evaluated at speci�c

times (sampled) by the animator. Only the presentation engine can do this,

so that it can compute frames of the animation [Ell99b]. This encapsulation

is important because for certain behaviours to be eÆcient they must only be

sampled monotonically|that is, at non-decreasing times. The presentation

engine must guarantee to do this in order to obtain a reasonable level of

eÆciency. (In fact, there is a slight 
aw in the design in this respect, because

Fran provides time-transformations which allow behaviours to be speeded

up, slowed down, delayed or in fact arbitrarily time warped. Consequently

behaviours may not be monotonically sampled by the presentation engine.

Pragmatically we need not regard this as a 
aw; rather, we can expect the

animator to be aware of this limitation and use time-transformations cau-

tiously.)

Reactivity. Modelling in Fran is based on describing behaviours and

how they react to events. This latter aspect is called reactivity. It allows us

to describe interaction between the components of an animation; for example,

collisions, timed events and user input.

A reactive behaviour is one that changes course when some criterion,

called the event condition, is satis�ed; for example, a ball's velocity behaviour

that changes when the ball hits a wall. In this case, the event condition is

that the surface of the ball is in contact with the wall. This condition is

expressed using a boolean behaviour. Fran also has built in primitives for

user input events such as mouse clicks.



CHAPTER 3. THE FRAN SYSTEM 29

Usually, what to do next depends on precisely which event occurred. Fran

neatly captures this by packaging a new behaviour with the event condition,

and then this new behaviour may be used when the event occurs. It is

actually pairs comprising a condition and a new behaviour that Fran calls an

event. Various event combinators are provided to manipulate these values.

This results in a powerful and convenient notation for expressing reactivity.

Embedded language. Fran uses the embedded language approach; it

is a library written in Haskell and animations are Haskell programs that

import this library. This saves a lot of work designing and implementing

a complete language, but also restricts the syntax and implementation to

features available in the host language. As we have seen, Haskell syntax

is superlative for Fran, but as an implementation language it is not very

eÆcient. In summary, the convenience of the embedded language approach

makes it ideal for prototyping and for proof of concept, but to create an

eÆcient, industrial strength version would require an implementation in a

more conventional language. Unfortunately, it is unlikely that the embedded

language approach would work well for such implementations, because most

other languages do not o�er the syntactic convenience and expressive power

of Haskell.

3.3 Time and Lifting

The behaviour time was used in Example 3.1 in the term cos time. We

will explain how this term gives the behaviour that yields the cosine of the

current time. Firstly, time is the behaviour that at all times yields the time,

so it is the identity function on times. One way to specify the semantics of

behaviours is to de�ne a semantic function (at) which maps terms of type

Behaviour � (i.e., behaviours that yield values of type �) to functions from



CHAPTER 3. THE FRAN SYSTEM 30

times to values of type � (we will denote the set of values of type � by [[�]]),

at[[ ]] : Behaviour � ! (T ! [[�]]):

Thus the semantic equation for time is,

at[[time]] = t 7! t:

That is, time represents the identity function on times.

Example 3.1 in Section 3.1 used the function cos that operates on be-

haviours. In Fran there is a uniform way of constructing such functions from

non-behaviour functions called lifting. So, for example, the standard cosine

function,

cos :: RealVal -> RealVal

can be lifted to the behaviour level function, cosB, as follows:

cosB :: Behaviour RealVal -> Behaviour RealVal

cosB = lift1 cos

The cosB function takes a real valued behaviour as its argument, and applies

the cosine function to the value of this behaviour at all times. Thus, the

semantic equation for cosB is

at[[cosB a]] = t 7! cos(at[[a]]t):

This idea applies to all functions, so in general we may lift a function

f :: � -> �

so that it operates on behaviours

lift1 f :: Behaviour � -> Behaviour �



CHAPTER 3. THE FRAN SYSTEM 31

with the semantics that it applies the function f to the value of the behaviour

argument a at all times,

at[[lift1 f a]] = t 7! f(at[[a]]t):

Furthermore, lifting applies to constants and functions of any arity. The

semantic equations for all the operators in Fran from Elliott and Hudak's

semantics for Fran [EH97] are given in Section 3.7.

Lifting is also an important feature of CONTROL, and it is described in

this context in Section 5.1.

In Example 3.1 we used the name cos for the behaviour level cosine

function instead of cosB. This is possible in Fran because Haskell's type

class mechanism is used to overload the names of many standard functions

so that the behaviour level versions are used if the argument is a behaviour;

that is, the overloading is resolved by the (inferred) argument type. Even

numeric and other constants are overloaded this way.

3.4 Reactivity

Animations can be viewed as reactive systems where components of an an-

imation, including the user, interact with each other. To accommodate re-

activity, Fran provides an operator called untilB which can be used to con-

struct a behaviour that changes course when a given event occurs. (Fran pro-

vides other operators for reactivity, but they are de�ned in terms of untilB

which is the primitive operator.) Events have two parts; �rstly, a condition

which speci�es when the event occurs, and secondly, a value associated with

the event. The value part is usually the behaviour that will be used after the

event has occurred. So, it is the combination of a condition and a value that

Fran calls an event.



CHAPTER 3. THE FRAN SYSTEM 32

Events often require a user argument. For example, lbp u is the event

that occurs when the left mouse button is pressed, and the user argument u

is necessary to distinguish the next button press from previous ones. User

arguments also supply start times for integrals and for predicate events

(the time to start testing for the event occurrence) and are used by the

implementation for passing sampling rates.

We can change the value part of an event using the -=> operator; for

example, the condition part of lbp u is the event that occurs when the left

mouse button is pressed, and the value part is the mouse release event. We

can associate a di�erent value with button presses as follows:

lbp u -=> red

This is the event that occurs when the left button is pressed, but yields the

value red instead of the mouse release event.

Events are used in programs via the untilB operator. This takes a be-

haviour and an event:

untilB : Behaviour � -> Event (Behaviour �) -> Behaviour �:

At �rst the given behaviour is used, but when the event condition �rst be-

comes true the behaviour switches to a new one obtained from the value

part of the event. So, to obtain a behaviour that changes colour from blue

to red when the left button is pressed, we pass the behaviour blue as the

�rst argument to untilB, and then pass the event that occurs when the left

mouse button is pressed and yields red as the second argument:

blue `untilB` (lbp u -=> red):

Events can be constructed from boolean behaviours using predicate; for

example,

predicate (time >=* 5) u



CHAPTER 3. THE FRAN SYSTEM 33

is the event that occurs when the boolean behaviour (time >=* 5) �rst

becomes true; that is, when the time is greater than or equal to 5. The

operator >=* is the behaviour level greater than or equal to operator. Note

the user argument u here. In this case it is used to give the time from when

the condition should be tested, because in general predicate events should not

be tested for all times since the animation began. Although it seems that user

arguments are necessary in the Haskell-based implementation of Fran, they

complicate reactive programs signi�cantly. In CONTROL they have been

eliminated giving a cleaner semantics and allowing a simpler programming

style.

Events can be composed using operators such as .|. which chooses the

earlier of two events, and yields the value associated with this event. For

example, the event

lbp u .|. predicate (time >=* 5) u

occurs when either the left mouse button is pressed or the time reaches 5,

whichever happens �rst. Unlike the logical OR operator, this behaviour

level OR is asymmetric; if both events occur simultaneously then the new

behaviour obtained is the �rst (left) argument. There are a number of other

event operators, the details of which can be found in [EH97].

3.5 Integration for behaviours

Fran provides an operator called integral which, given a real valued be-

haviour a, yields the behaviour that gives the integral of a at all times. A

user argument must also be supplied, which for integrals is used to determine

the starting point of the interval to integrate over. For example, the integral



CHAPTER 3. THE FRAN SYSTEM 34

of the behaviour time is given by

integral time u

for some user argument u. Assuming the user has a start time of zero, we can

�nd the behaviour that is equivalent to this one by calculating the symbolic

integral. The behaviour time corresponds to the identity function on times,

t 7! t, and the symbolic integral of this function is 0:5 � t2. Therefore the

following behaviour is equivalent to the one above:

0.5*time*time:

There are a number of subtleties concerning integral. Elliott and Hudak

give the following de�nition in their semantics:

at[[integral b t0]]t =

Z t

t0

at[[b]]x:dx

Note that in the original version of Fran user arguments were simply start

times, so here t0 is a time. In later versions the start time is extracted from

the user argument. This semantics for integral fails to address a number

of issues. Firstly, not all behaviours can be integrated so the expression on

the right hand side is not always well-de�ned. Secondly, it does not de�ne

the semantics of recursive de�nitions using integral, which can have many

solutions. (For example, the program

b = integral (b^ (4/5)) 0

corresponds to the integral equation

y(t) =

Z t

0

y(s)4=5:ds:

This has many solutions, for example, y(t) = 0 or y(t) = (1=5)5t5.) Thirdly,

Elliott and Hudak's semantics does not explain how reactive behaviours can

be integrated. We will return to these issues when we discuss integration in

CONTROL.



CHAPTER 3. THE FRAN SYSTEM 35

3.6 Recursive behaviours

One of the most interesting features in Fran is that behaviours can be de�ned

recursively by writing a recursive Haskell de�nition. This can be useful, and is

sometimes necessary, when writing interactive animations. Upon re
ection,

this is as we would expect; if two objects interact with each other then their

de�nitions must be in terms of each other. We will now give some examples.

The following program gives the position of a ball falling from height 1

to the ground at height 0. When it hits the ground it remains at rest:

h = 1 - integral 1 u `untilB` predicate (h <=* 0) u -=> 0

Here the condition when the ball hits the ground, h <=* 0, is in terms of the

height, h, and so the de�nition is recursive.

We will now write a program which describes the path of body in orbit

around a �xed body according to Newton's law of gravitational attraction.

It could replace orbit in Example 3.1 to give a more realistic impression of

the Moon's orbit around the Earth. Recall that Newton's inverse square law

of gravitational attraction is

F =
Gm1m2

r2

G is the universal gravitational constant
m1; m2 are the masses of the bodies
r is the distance between the bodies

This gives the magnitude of the force on the Moon, and the direction of the

force is always towards the Earth. This directed force is proportional to the

acceleration of the Moon, so it can be integrated twice to give the position

of the Moon. These formulas can be coded directly in Fran as follows:

orbit' u = s

where

s = s0 + integral v u



CHAPTER 3. THE FRAN SYSTEM 36

v = v0 + integral a u

a = (-k/(r ^ 2)) *^ unit_s

r = magnitude s

unit_s = (1 / mag_s) *^ s

(suitable values for the constant k, the initial position s0, and the initial

velocity v0, are also required). Notice that the de�nitions of the position, s,

the velocity, v, and the acceleration, a, are mutually recursive. We cannot

avoid recursion if we want to use Newton's law of gravitation in this way

because the position depends on the acceleration, but the gravitational force,

and hence the acceleration, depends on the relative positions of the bodies.

As a �nal example, here is an animation of a ball following the mouse as

if it were being dragged on a spring through a thick liquid,

followMouse u = move p ball

where

p = integral v u

v = integral a u

a = (mouseMotion u - p) - (0.5 *^ v)

Again, the position, velocity and acceleration are mutually recursive. This

time it is because the force the spring exerts, and hence the acceleration of

the ball, depends on the position of the ball relative to the mouse. It is not

possible to solve the equations and write the position as an explicit formula,

as it is, incidentally, for the previous example, because the mouse position is

an input behaviour and is therefore not known beforehand. Therefore it is

not possible to write this program in Fran without using recursion.



CHAPTER 3. THE FRAN SYSTEM 37

3.7 Semantics

Elliott and Hudak give a denotational semantics to the operators on be-

haviours and events, treating them as a pair of mutually recursive polymor-

phic datatypes [EH97]. This is not the same as giving a complete semantics

to Fran, however, because Fran programs are written in Haskell and so they

can be considerably more complicated than expressions using only the be-

haviour and event operators. In particular, behaviours may be de�ned by

recursive de�nitions, and this is not accounted for by their semantics.

It may seem as if the semantics of Haskell is suÆcient to determine the

semantics of Fran because it is a Haskell library. However, such a seman-

tics would be at the wrong level of abstraction|it would capture all the

implementation details of behaviours but not their abstract nature. The

presentation engine uses discrete sampling to compute values of behaviours

at points in time, and computes integrals and event occurrences using nu-

merical approximation techniques. Consequently a semantics based on the

implementation would not give an exact semantics of behaviours.

So Elliott and Hudak's approach, giving a semantics to the operators on

behaviours and events, combined with an understanding of Haskell's seman-

tics, seems like a good �rst approximation to the semantics of Fran. However,

the interaction of these abstract behaviours and events with Haskell, in par-

ticular with recursive de�nitions, cannot be explained by this approach. This

is why our work takes a simpler language and provides a complete semantics

for it.

If we ignore recursion, then Elliott and Hudak's semantics captures the

abstract properties of behaviours and events. It does not capture the se-

mantics of the implementation, however, because approximation techniques

are used to compute integrals and event times. As we said in the Introduc-



CHAPTER 3. THE FRAN SYSTEM 38

tion, we should �rst try to give the values as if they were exact, and then

consider the errors due to approximation. This second stage is necessary

to be able to verify the correctness of implementations or to reason reliably

about programs. For these purposes a more advanced theory that accounts

for approximation is required. Our work does not deal with approximation

either, but we take an idealised view of CONTROL which means that the

language is de�ned to yield exact values of behaviours and event times. In

other words, this assumption is made explicit rather than being ignored. Us-

ing this approach we are able to give a complete semantics for a functional

language with behaviours, including a full treatment of recursion.

Elliott and Hudak's semantic function for behaviours assumes an abstract

domain of polymorphic behaviours, Behaviour�. These abstract behaviours

are interpreted as functions from times to values by the semantic function

`at' which we used previously:

at : Behaviour� ! T ime! �:

The intention is that these abstract behaviours correspond to the behaviours

that can be constructed in the Haskell based implementation. As we said

above, this correspondence is not exact because the implementation computes

approximations to the abstract behaviours described by this semantics.

Events belong to the abstract domain Event� and are interpreted as

T ime� � pairs by the semantic function occ:

occ : Event� ! T ime� �:

Recall that an event occurs at some time and yields a value which, for reactive

behaviours, is the behaviour that will be used after the event has occurred.

There are two problems that must be addressed here:

� An event might never occur and so it does not have an event time.



CHAPTER 3. THE FRAN SYSTEM 39

� It is not possible to see into the future to �nd when an event occurs, so a

reactive behaviour cannot be speci�ed in terms of the event time. More

precisely, at time t a reactive behaviour only needs to know whether

the event has occurred, and does not require the actual time of the

occurrence. This is vital for external events, such as mouse clicks,

which cannot be predicted ahead of time.

The �rst problem is solved by Elliott and Hudak by adding an in�nite time,

1, to the set of real numbers to represent the time of an event that never

occurs. The second problem is solved by de�ning an ordering on times such

that a time t is less than an event time te if either te is known and is greater

than t, or else it is known to be at least as great as t.

The typing constraints for operators on abstract behaviours are given

in Figure 3.1. These correspond precisely to the types of the operators in

Haskell. The semantic equations for these operators are shown in Figure 3.2.

They are straightforward interpretations of the operators we have already

seen in the preceding sections, although there are some subtleties with untilB

which we will discuss later on when we compare its semantics to until-then

in CONTROL.

For us the most important operation on events is predicate which allows

an event to be speci�ed by a boolean behaviour. This is the only kind of

event that is available in CONTROL because it does not provide for external

inputs such as mouse clicks. The semantics of predicate is given by

predicate : BehaviourBool ! T ime! Event()

occ[[predicate b t0]] = (infft > t0 j at[[b]]tg; ())

So the time of a predicate event in Fran is the in�mum of the set of times

greater than t0 when b is true. This is di�erent from our treatment of event



CHAPTER 3. THE FRAN SYSTEM 40

time : BehaviourT ime

liftn : (�1 ! : : : �n ! �)!

Behaviour�1 ! : : :! Behaviour�n ! Behaviour�

timeTransform : Behaviour� ! BehaviourT ime ! Behaviour�

integral : V ectorSpace �) Behaviour� ! T ime! Behaviour�

untilB : Behaviour� ! EventBehaviour� ! Behaviour�

Figure 3.1: Types of abstract behaviours in Fran

at[[time]]t = t

at[[liftn f b1 : : : bn]]t = f (at[[b1]]t) : : : (at[[bn]]t)

at[[timeTransform b tb]] = at[[b]] Æ at[[tb]]

at[[integral b t0]]t =
R t
t0
at[[b]]x:dx

at[[b untilB e]]t = if t � te then at[[b]]t else at[[b0]]t

where (te; b
0) = occ[[e]]

Figure 3.2: Semantics of abstract behaviours in Fran



CHAPTER 3. THE FRAN SYSTEM 41

times of predicate events, and the di�erences will be explored in detail later

on. The value associated with a predicate event is the unit value, ().

There are other operators on events in Fran, most importantly, for specify-

ing external events and for handling the values associated with events. These

are useful when programming with Fran, but are not relevant to CONTROL

because it does not have external events (all events are like Fran's predicate

events) and there are no values associated with events. The semantics of

these operators is given in [EH97].

3.8 Summary of the literature

We will now give a brief summary of the literature on Fran. Many of the ideas

behind Fran were developed in previous work, particularly TBAG [SEYAE94,

ESYAE94], MediaFlow [ESAE95] and Active VRML [Ell96] (Fran is a con-

crete realisation of the ideas in [Ell96]). The seminal paper by Elliott and

Hudak is [EH97]. This gives the key ideas, a semantics for the operators, and

some details of the implementation. The language is described emphasising

the embedded language approach in [Ell97, Ell99a].

There are many tutorials, applications and examples. Elliott has written

a tutorial [Ell98a], and two extended applications which describe two-handed

image navigation [Ell98e] and a �fteen puzzle [Ell98c]. The method of pro-

gramming with events in Fran is described in [Ell98b]. Thompson uses Fran

to program a lift simulation [Tho98]. In Chapter 9 we give a lift simulation in

CONTROL which is much simpler, and thus illustrates the improved seman-

tics of CONTROL compared to Fran. Daniels's tutorial paper constructs an

animation of crew rowing [Dan97a].

Aspects of the Haskell based implementation are discussed in [Ell98d,

Ell99b]. Fran has also been extended for robots; see [Lin98, PHE99]. Finally,



CHAPTER 3. THE FRAN SYSTEM 42

some very preliminary work on a semantics for Fran is presented in [Lin97].

Chapter summary

Fran is the primary inspiration for CONTROL. It is intended for program-

ming animations, but with suitable extensions it could also be used for imple-

menting many other kinds of reactive systems. There are four key concepts

that distinguish it from many other reactive languages: modelling, continu-

ous time, behaviours and reactivity. The implementation uses the embedded

language approach with Haskell as the host language.

Fran provides behaviours for representing time-varying quantities and

events for expressing reactivity. In addition, recursive behaviours can be writ-

ten using standard Haskell de�nitions. This o�ers an elegant and powerful

programming technique. However, the semantics of Fran, and in particular of

recursively de�ned behaviours, is not well developed. Elliott and Hudak have

given a semantics to the operators on behaviours and events, but this does

not account for recursively de�ned behaviours, nor for the approximation

methods used in the implementation.



Chapter 4

A language for behaviours

In this chapter we introduce a new language called CONTROL. The develop-

ment of this language and of its formal semantics are the principal subjects

of the remainder of this dissertation.

As we said in the introduction, CONTROL is a functional language sup-

plemented with operators for describing behaviours. These operators are

inspired by similar operators in Fran. Where they di�er from Fran is �rstly

due to some simpli�cations we have made and secondly due to improvements

we have discovered while investigating the semantics.

We begin by introducing the syntax of CONTROL followed by the do-

mains that values of each type belong to. This provides a starting point for

the more detailed discussions of the semantics that follow.

4.1 Syntax

The functional core of CONTROL is a subset of PCF [Sco93] that includes

simply typed �-terms, a recursion operator and built in numbers. Like PCF,

it uses normal order evaluation. The syntax of this functional core is as

follows:

43



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 44

K 2 Constants; x 2 Variables

Types � ::= Real j Bool j � -> �

Terms E ::= K j x j �x:�.E j E E j �x:�.E

Numbers in CONTROL are real numbers rather than integers. The set of

constants includes arithmetical operators (+, -, * etc.) and logical operators

(not, or, and etc.). Notice that there are no explicit operations for pairs, and

no if-then-else construct; these features are accounted for by constants.

Both � and � bind a variable within a term; � is for �-abstractions and �

is for recursive de�nitions. These are explained in detail in Chapter 7. The

type of the variable must be supplied for both these binding constructs. So,

for example,

�x : �:E

means that the variable x has type � and is bound by � within E (and

similarly for �).

The type system for this fragment is very straightforward|it is as for

the simply typed �-calculus with the standard rule for �. The typing rules

are given in Chapter 8 as part of the complete formal description of the

language. Note that only well typed terms are meaningful. Also, there are

no type annotations other than those for bound variables. We will sometimes

state the type of a term|for instance, E : � asserts that the term E has type

�|but this is meta-notation and not valid syntax.

The remaining operators in CONTROL are for constructing behaviours,

which are values of type Beh � for some type �. The behaviour operators

extend the grammar as follows:



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 45

Types � ::= Beh �

Terms E ::= lift0 E j E $* E j integral E j

E until E then E j �x:�.E

Here � binds a variable x within a term E, and, as for � and �, a type

for x must be supplied. We will discuss the purpose and semantics of these

behaviour operators later on. In this chapter we consider the domains val-

ues belong to, so it suÆces at this stage to know that behaviours represent

functions from times to values.

4.2 Domains

Our aim is to de�ne the mathematical meaning of all CONTROL programs;

that is, to de�ne for every valid term a value that denotes its meaning. This is

called a denotational semantics and is usually de�ned compositionally, which

means that the value of a term is constructed from the values of its immediate

subterms. This is a very economical method because all that is required is a

general formula for each syntactic construct (i.e., for each production of the

abstract grammar) and then the meaning of every term in the language can

be obtained.

Firstly we must state what domains these values belong to. This is a vital

step because it is sometimes uncertain whether the domains we assume by our

semantic equations actually exist. For example, it was not known for around

three decades whether a domain existed for the untyped �-calculus. (This is

diÆcult because functions and arguments belong to the same domain, and in

set theory function spaces are always strictly larger than the domains they

map between. CONTROL uses the simple type system and consequently



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 46

avoids this problem.) Furthermore, describing the domains reveals a lot

about a language. As Christopher Strachey advised: \I think it would be

well worth the e�ort of any language designer to start with a consideration

of the domain structure" [Str73].

For a typed language like CONTROL we require a domain corresponding

to each type. Types are either ground types|Real or Bool|or else com-

posite types|functions or behaviours. We will begin with domains for the

ground types.

Terms of type Bool represent truth values|either true or false. These

two values form the set of boolean values,

B = ftrue; falseg:

However, in most programming languages, including CONTROL, we can

write terms that are type correct but do not terminate|they get stuck in

an in�nite loop. We need a value to denote such terms; for the domain

corresponding to Bool we will use the symbol ?B . Other domains also use

the symbol ? with di�erent subscripts to denote non-terminating terms, and

such a value is called bottom. We indicate domains by enclosing types in

semantic braces [[ ]], so for the type Bool we have

[[Bool]] = B [ f?B g:

For convenience we will denote any domain formed by adding a bottom ele-

ment ?A to a set A by A?; hence,

B? = B [ f?B g:

Similarly, terms of type Real represent either real numbers or non-termination:

[[Real]] = R [ f?Rg = R? :



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 47

Many languages use a 
oating point representation for real numbers, and

then operations on them yield approximate results. In contrast, CONTROL

is an idealised language where all operations on real numbers are exact and

there is no over
ow.

We now turn our attention to functions. They require a more complex

domain structure than ground types, but the theory we make use of is well

established. Our exposition here explains why we need to use this theory,

gives all the necessary de�nitions and provides some intuition for the moti-

vation of the theory, but a detailed analysis is beyond our scope. This can be

found in any standard text covering denotational semantics [Rey98, Sto77],

or the original papers by Scott and Strachey [Sco70b, Sco70a, Sco76, SS71].

A function in a programming language is really an algorithm that will be

performed each time the function is applied to an argument. For each possible

argument the algorithm will either produce a value or else loop inde�nitely;

either way the result will be an element in the domain corresponding to the

result type of the function. Thus, it appears that a suitable domain for

function types is actual functions between domains, that is,

[[� -> �0]] = [[�]]! [[�0]]:

This equation de�nes the domain for functions of type �->�0 to be all set

theoretic functions from [[�]] to [[�0]]. Many of these functions are uncom-

putable, however, and so the functions that we can represent in CONTROL

constitute a small subset of this domain. This is not a problem because in

general we require a domain [[�]] to contain a value for every valid term of

type �, but it does not have to be the smallest such domain. However, we

can bene�t from removing some unwanted values from function domains be-

cause doing so makes it easier to de�ne the meaning of recursive de�nitions.

In the simply typed �-calculus, this is the only reason for adopting a more



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 48

complicated model than the basic set theoretic one. We will now describe

how we restrict function domains, and in Chapter 7 we will show how these

restricted domains allow us to assign meanings to recursive de�nitions.

The restriction of function domains is based on a notion of how de�ned

functions are. A function g is at least as de�ned as a function f if it is at

least as de�ned for all arguments. This is called the pointwise ordering on

function spaces. For example, consider functions in the domain B? ! B? .

We will write t, f and ? as shorthands for true, false and ?B , and write

functions,

[t : x j f : y j ? : z];

as ordered tuples,

(x; y; z):

The function (?;?;?) is the least de�ned of all the 33 functions in B? ! B? .

Both (t;?;?) and (?; f;?) are more de�ned than this least element, and

in turn (t; f;?) is more de�ned than both these functions (it is the identity

function on B?). Note that (t;?;?) is neither more nor less de�ned than

(?; f;?); they are incomparable. Therefore this ordering on functions is a

partial order. Partial orders can be drawn using Hasse diagrams, so for the

above example we have,

(t; f;?)

������

HHHHHj

(t;?;?) (?; f;?)

HHHHHj

������

(?;?;?)



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 49

This ordering on B? ! B? requires the following simple ordering on B? :

?B is less than true and false, but true and false are incomparable, that

is,

x vB?
y () x = ?B _ x = y:

The Hasse diagram for this is

true false
HHHHHj

������

?B

The partial order for the domain R? is de�ned similarly.

Given these orderings on ground types we can de�ne an ordering for any

domain D ! D0 assuming that we have an ordering on D0. This is the

pointwise order mentioned above:

f vD!D0 g () 8x 2 D : fx vD0 gx:

We obtain an ordering on all function types by induction. Because this

approach is so common in programming language semantics it is usual to use

the term domain to refer to both the set of values for a given type and the

partial order on that set. This is sensible because we are about to restrict

the domains for function types using the partial order.

For functions over in�nite sets, such as functions on integers, the partial

order vZ?!Z?
gives in�nite sequences of increasingly de�ned functions, called

!-chains. For example, consider the following chain of increasingly de�ned



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 50

functions that approximate the identity function on integers:

idZ?
j
...
j

[n 7! ?j2 : 2j1 : 1j0 : 0]
j

[n 7! ?j1 : 1j0 : 0]
j

[n 7! ?j0 : 0]
j

[n 7! ?]

The importance of !-chains is that we require all our domains to be !-chain

complete (or !-complete), which means that all !-chains must have a least

upper bound. An upper bound of a set is an element in the domain that is

greater than all the elements in the set, and a least upper bound is the least

such element. If it exists, we denote the least upper bound of a set X byF
X. Thus, for a domain D,

D is !-complete () 8 !-chains (xi) 2 D :
G

D
(xi) 2 D exists:

Both B? and R? are !-complete because the only chains are trivial ones such

as f?B ; true; true; : : :g. Function spaces are not !-complete in general, so

they need restricting.

The condition we use to restrict function spaces is !-continuity (some-

times called Scott-continuity). This is suÆcient to ensure that the domains

for function spaces are !-complete. In fact it is a stronger condition than

is necessary, but this does not matter because all computable functions are

!-continuous, and so placing this condition does not eliminate any useful

values from function domains. !-continuity requires that functions preserve

least upper bounds; that is,

f is !-continuous () 8 !-chains (xi) :
G

D0
f(xi) = f(

G
D
(xi))



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 51

To re-iterate, assuming that D and D0 are !-complete, we can show that

the subset of all functions D ! D0 comprising !-continuous functions is

!-complete. Therefore if all function spaces are limited to !-continuous

functions then all domains are !-complete by induction. Such domains are

called complete partial orders (CPOs), or pointed CPOs when they have

a least element. Our domains are pointed CPOs because they are all !-

complete, and the least elements of the domains B? , R? and [[�->�0]] are ?B ,

?R and x 7! ?[[�0]] respectively. Finally, we will use the same notation for

!-continuous functions as for functions on sets; that is,

[[� -> �]] = [[�]]! [[�0]]

Here the arrow on the right hand side denotes !-continuous functions because

[[�]] and [[�0]] are domains. In fact, this notation is consistent with the usual

notation using ! for arbitrary functions between sets so long as we assume

a discrete order (i.e., x v y () x = y) on sets because with a discrete

order there are no non-trivial in�nite chains and hence all functions are !-

continuous.

The properties that all domains are pointed CPOs and that all functions

are !-continuous are suÆcient to apply the least �xed point theorem in order

to obtain values for all recursive de�nitions. We will take this approach in

Chapter 7 when we discuss recursive functions.

4.3 Domains for behaviours

In this section we discuss the domains for behaviour types. We can write

functions that accept and yield behaviours, so to be consistent with our

interpretation of function domains we must use pointed CPOs for behaviour

domains.



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 52

Behaviours represent functions from times to values, which suggests the

following domain equation:

[[Beh �]] = T ! [[�]]:

Here! means all functions from the set of times, T = ft 2 R j t � 0g, to the

underlying set of the domain [[�]]. The least de�ned member of this domain

is the one that maps all times to ?. We de�ne the information order on

behaviours to be a 
at order, as for Bool and Real,

a vBeh � b () a = t 7! ?[[�]] _ a = b

At �rst sight this ordering appears too simplistic; we are used to pointwise

orderings on domains for function spaces. But behaviours are special rep-

resentations of functions|abstract values like real numbers|and all that is

required is that they satisfy certain operations. Although behaviours repre-

sent functions from times to values it is not possible to evaluate behaviours at

particular times in CONTROL|this would break their abstract representa-

tion. Furthermore, we have a di�erent interpretation of recursive behaviours

to recursive functions, so we do not need to apply the least �xed point theo-

rem for recursive behaviour de�nitions and therefore they do not have to be

!-continuous functions. For these reasons, this simple domain is suÆcient

for our semantics.

Another concern is that if some behaviours are not !-continuous func-

tions then they are not computable, because all computable functions are

!-continuous. This is irrelevant because we are taking an idealised view of

behaviours, assuming that we can compute various operations over them.

Finally, notice that the domain with the given order vBeh � is !-complete,

which is essential if we are going to write recursive functions over behaviours.



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 53

4.4 Semantic functions

We have established the domains that values denoting the meaning of CON-

TROL terms belong to. The next step is to de�ne the meaning of every term

by providing mappings from terms to values. These mappings are called

semantic functions and are usually de�ned compositionally; in other words,

the value of a term is constructed from the value of its immediate syntac-

tic subterms. This way, provided that we have a formula for each syntactic

construct, we can obtain the meaning of any term in the grammar.

Semantic functions must yield values in the appropriate domain, so a

term of type � must be mapped to a value in the domain [[�]]. Also, formulas

given by semantic functions must be type correct. This is straightforward

in CONTROL because the simple type system constructs the type of a term

from the types of its subterms, and so long as each semantic equation is type

correct a well typed value will result for any well typed term. Furthermore,

there is at most one valid typing for any term in CONTROL, so we may omit

type information from our semantic equations without ambiguity.

We will write [[ ]] for all semantic functions. Semantic braces are useful

because they separate the object-language from the meta-language, and we

prefer to avoid clutter and not name our semantic functions. We will de�ne

a family of functions, one for each type, and overload [[ ]] by using it for all

these functions.

Constants of type Bool and Real correspond to values in the obvious

way:

[[true]] = true;

(and similarly for false),

[[0]] = 0;



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 54

(and similarly for all real numbers). The boolean constants could be used

in a concrete syntax for CONTROL, but the syntax of real numbers is more

diÆcult to de�ne. However, we are using abstract syntax and so the actual

representation is unimportant. Therefore we can use the usual decimal no-

tation for real number terms, so numbers in the object-language and in the

meta-language have the same representation.

In addition to constants there are many built in functions on Real and

Bool types. These functions represent the usual mathematical functions

extended to yield ? when applied to ?, or when they are unde�ned. For

example, the built in function sin satis�es the following de�nition:

[[sin E]] =

�
?R [[E]] = ?R

sin[[E]]

(the function sin on the right hand side is the usual mathematical one whose

domain is the real numbers). Some functions are not de�ned for every value

in their domain, and they yield bottom at these values. For example, division

is unde�ned when the second argument is zero, thus,

[[A / B]] =

8<
:
?R [[A]] = ?R _ [[B]] = ?R

?R [[B]] = 0
[[A]]=[[B]]

All built in functions extend the usual ones in this way. To avoid clutter-

ing the notation, we will use the usual names for these extended functions.

Thus, when we write sin or = we are referring to the function de�ned by the

right hand side of the above equations. Using this convention, here are the

equations for logical-and and addition:

[[and]] = ^ 2 B? ! B? ! B?

[[+]] = + 2 R? ! R? ! R?

Functions such as these which always yield ? when any argument is ? are

called strict functions.



CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 55

There is one exception, the function if-then-else, which is not strict in

all its arguments. It is de�ned as follows:

[[if C then D else E]] =

8<
:
? [[C]] = ?B

[[D]] [[C]] = true
[[E]] [[C]] = false

This function is strict in C, but not inD or E. This is the case in virtually all

programming languages because if C is true then it does not matter whether

E terminates, and similarly if C is false then it does not matter whether D

terminates.

The semantic functions for other constructs in the language are far more

complicated than for constants. Chapters 5 to 7 introduce these functions for

di�erent parts of the language. We will �nish this section with one special

behaviour construct, time, which is the behaviour that yields, for every time,

the current time:

[[time]] = t 7! t 2 T ! R? :

Chapter summary

The syntax of CONTROL can separated into the non-behaviour fragment,

which is very close to PCF, and the behaviour operators, which extend this

fragment. CONTROL uses a minor extension to the simple type system.

A denotational semantics requires a domain corresponding to each type.

For ground types and function types these are standard CPOs. The domain

for behaviours has a 
at ordering because behaviours are an abstract type

and therefore do not need a more complex structure.



Chapter 5

Behaviour expressions

Behaviour expressions represent functions from times to values. We have

already seen one example, the behaviour time, which is the identity func-

tion on times. CONTROL has a uniform way of lifting values to behaviours,

inspired by Fran, and this makes it possible to apply all existing functions

to behaviours. Other functions of time are constructed using the primitive

operators for reactivity and integration. This chapter introduces these op-

erators and develops a semantics for them. Subsequent chapters will then

explore other aspects of the language. Our exposition follows an incremen-

tal development of the language and its semantics in unison, which helps to

motivate the eventual de�nitions. The �nal description of the syntax and

semantics of the language appears in Chapter 8: Complete formal semantics.

5.1 Lifting

In our context, lifting means turning values into behaviours. For the case

of constants, c : �, this involves making the behaviour that yields c at all

times|that is, a representation of the constant function t 7! [[c]]. For the

case of functions, f : �->�, lifting involves making the function on behaviours

that applies f to behaviours at all times. In other words, lifting a function

56



CHAPTER 5. BEHAVIOUR EXPRESSIONS 57

is similar to mapping a function over a list of values, except that the `list' is

continuous instead of discrete because there is a value for every time.

The operator that lifts constants is lift0. It can be used to lift real

numbers, for example,

[[lift0 2]] = t 7! 2 2 T ! R? :

Real-valued behaviours can be illustrated using graphs where points on the

graph represent the value of the behaviour at each time (with time on the

horizontal axis). The above example gives the graph which is a horizontal

line through 2;

-

6Value

Time0 1 2 3

1

2

3

Note that the set-theoretic function t 7! 2 is an element of the domain

T ! R? as required.

Values of any type can be lifted with lift0|it is a polymorphic operator.

The semantics of lift0 is:

lift0 : 8�:� ! Beh �

[[lift0 x]] = t 7! [[x]]: (5.1)

CONTROL does not have polymorphic data types, however. In other words,

the type system does not permit values that have polymorphic types, which



CHAPTER 5. BEHAVIOUR EXPRESSIONS 58

would require a more sophisticated type system. Polymorphic operators that

are built in, such as lift0, are not diÆcult to incorporate because they are

dealt with explicitly by the type rule for the operator.

Later on when we give the full typing rules we will see that the type system

restricts arguments to lift0 to non-behaviour types. Lifting behaviours is

not very useful. Consider lift0 b for some behaviour b. The meaning of a

behaviour is determined by the values it yields for all times, but in this case

the values are behaviours and so they also yield values at all times. However,

the value could have been de�ned as the value of the overall behaviour directly

rather than indirectly via another behaviour. In short, behaviours provide

temporal abstraction, and behaviours of behaviours do not add any useful

expressiveness.

Returning to Equation 5.1 we have that x must be a non-behaviour term.

This means that the semantic function [[ ]] on the right hand side of Equa-

tion 5.1 maps non-behaviour terms to values. At this stage the only non-

behaviour terms we can construct are constants, so this semantic function

is the trivial mapping given in the previous chapter (i.e., the one that maps

representations of constants and built-in functions to their mathematical

counterparts). Later on we will introduce facilities for writing new func-

tions in CONTROL, and then we will need to extend this semantic function

accordingly.

Given a function, we may want to apply it to a behaviour by mapping

it over the behaviour at all times. For example, say we want to construct

the behaviour whose graph is a sine wave; one way to do this is to apply the

function sin to the behaviour time at all times. This is exactly what the



CHAPTER 5. BEHAVIOUR EXPRESSIONS 59

operator lift1 enables us to do:

[[lift1 sin time]] = t 7! sin([[time]]t)

= t 7! sin((t 7! t)t)

= t 7! sin(t):

In general, lift1 can be used to map a function f1 : �->� over a behaviour

x : Beh � to yield a new behaviour lift1 f1 x : Beh �. This new behaviour

gives, at any time t, [[f1]] applied to the value of the behaviour x at time t;

that is,

lift1 : (� -> �) -> Beh � -> Beh �

[[lift1 f1 x]] = t 7! [[f1]]([[x]]t) (5.2)

= [[f1]] Æ [[x]]:

We should check that this equation is type correct. Recall that a value of

type Beh � belongs to the domain T ! [[�]], and so

[[x]]t 2 [[�]]:

This is a valid argument for [[f1]] because

[[f1]] 2 [[�]]! [[�]]

and the thus the values on both sides of Equation 5.2 belong to the domain

T ! [[�]].

Functions of any arity can be lifted in a similar way to unary functions.

For functions with two arguments, f2 : �1->�2->�, we require a primitive

operator lift2, with the following semantics:

lift2 : (�1 -> �2 -> �) -> Beh �1 -> Beh �2 -> Beh �

[[lift2 f2 x1 x2]] = t 7! [[f2]]([[x1]]t)([[x2]]t):



CHAPTER 5. BEHAVIOUR EXPRESSIONS 60

So, for example, we obtain pointwise addition of real-valued behaviours by

applying lift2 to + : Real->Real->Real, as follows:

[[lift2 + x y]] = t 7! ([[x]]t) + ([[y]]t):

The (+) on the right hand side is the one described towards the end of

Section 4.2.

In general, a function of arity n,

fn : �1 -> : : : -> �n -> �;

can be lifted to obtain the behaviour level version,

lifthni fn : Beh �1 -> : : : -> Beh �n -> Beh �;

using the lifting operator lifthni, with the following semantics:

[[lifthni fn x1 : : : xn]] = t 7! [[fn]]([[x1]]t) : : : ([[xn]]t):

There is a simpli�cation which allows all these lifting operators to be

expressed in terms of lift0 and a \lifted application" operator, $*. To

show how this works, we will express lift1 in terms of lift0 and $*.

Firstly, recall the de�nition of lift1,

[[lift1 f1 x]] = t 7! [[f1]]([[x]]t) (5.3)

Now, because lift0 is polymorphic, we can apply it to f1 : �->� to obtain

the constant valued behaviour that yields [[f1]] at all times,

[[lift0 f1]] = t 7! [[f1]]:

From this it follows that

[[lift0 f1]]t = [[f1]]: (5.4)



CHAPTER 5. BEHAVIOUR EXPRESSIONS 61

Next we de�ne, as a primitive, a lifted function application operator, $*

[[fb $* x]] = t 7! ([[fb]]t)([[x]]t) (5.5)

This takes on the left, a behaviour that yields functions, and on the right,

a behaviour that yields arguments (of the appropriate type) and applies the

functions to the arguments at each time. To de�ne lift1 in terms of lift0

and $* we reason as follows:

[[lift1 f1 x]]

= hby (5.3)i

t 7! [[f1]]([[x]]t)

= hby (5.4)i

t 7! ([[lift0 f1]]t)([[x]]t)

= hby (5.5), with fb = lift0 f1i

[[lift0 f1 $* x]]:

So lift1 can be de�ned in terms of lift0 and $*, and in general,

lifthni fn x1 : : : xn = lifthn� 1i fn x1 : : : xn�1 $* xn

so any lifting operator can be de�ned in terms of lift0 and $*. This is useful

in practice because it reduces the number of primitives in our language which

in turn reduces the number of semantic equations.

5.2 Reactivity

In CONTROL behaviours may react or change course in response to events;

following Fran, we call this reactivity. In our context, event conditions are

de�ned using boolean behaviours, and there is no facility for external events.



CHAPTER 5. BEHAVIOUR EXPRESSIONS 62

A practical language based on CONTROL may provide facilities for inter-

facing with hardware, in a similar way to Fran's treatment of mouse and

keyboard events. Unlike Fran, the event condition, given by a boolean be-

haviour, describes the event completely, and there is no value (the `after'

behaviour) packaged up with the condition.

A reactive behaviour is de�ned in terms of three behaviours: the �rst

behaviour is used initially; the second is a boolean valued behaviour, spec-

ifying the event condition; the third is a new behaviour that is switched to

as soon as the condition becomes true. For example, we could use a reactive

behaviour to describe the output of a thermostatically controlled heater; it

emits heat until the temperature reaches the desired level, at which point it

switches to lift0 0, that is, o�. Without a primitive operation for reactiv-

ity we would not be able to express this behaviour because there is no way

of evaluating behaviours at particular times within the language, and so we

could not determine when the temperature reaches the desired level.

The event condition for this example requires a lifted greater than or

equal to function. The function

>= : Real -> Real -> Bool

has two arguments, so it can be lifted using lift2 to obtain

>=* � lift2 (>=) : Beh Real -> Beh Real -> Beh Bool:

Then the event condition that the behaviour temp : Beh Real has reached

the level t1 : Real is given by

temp >=* lift0 t1:

Here we have used >=* as an in�x operator for readability.



CHAPTER 5. BEHAVIOUR EXPRESSIONS 63

In general a reactive behaviour has three parts, which are as follows:

B is the before behaviour: use this behaviour initially
C is the condition behaviour: test this boolean behaviour to deter-

mine when it becomes true
D is the after behaviour: when C becomes true, switch to this

behaviour, and use it from now on.

A syntax with a natural reading for this is,

B until C then D: (5.6)

The behaviours B and D must have the same type for the overall expression

to make sense.

Here are a couple of examples to clarify the intended semantics. The

following behaviour yields the value 1 until the time is 1 and then switches

to 2:

(lift0 1) until (time >=* lift0 1) then (lift0 2):

It yields the value 2 for all times at or after 1. To emphasise that reactive be-

haviours switch permanently when the condition becomes true, the following

behaviour is semantically identical to the previous one:

(lift0 1) until (time ==* lift0 1) then (lift0 2):

(==* is the lifted equality function.) The condition is only true for an instant

when the time is 1, and is false for all times after 1, but the behaviour

continues to yield 2 for all times after 1 because once it has reacted it switches

to the after-behaviour permanently.

One alternative semantics is: yield B when C is false and D when C is

true; that is, switch between B and D every time the value of C changes

(this is equivalent to lift3 if for a conditional function if which takes

three arguments). Practically this is not as useful as the operator described



CHAPTER 5. BEHAVIOUR EXPRESSIONS 64

above because in most systems the occurrence of an event marks a change in

the state of the system, and such changes are permanent|the event cannot

\unoccur" regardless of the value of the condition that described the event.

In other words, once an event has occurred the system responds in some

way and then continues in a new state. Another important factor in favour

of permanent switching is that it allows us to delete the behaviour B after

the event has occurred, rather than keep it running in just case we need to

switch back to it later. In functional programming terminology, the garbage

collector can reclaim B after the event has occurred.

We will now formalise the semantics of until-then. To simplify the

discussion we will assume for now that [[C]] does not map any times to bottom.

Then it is a predicate, and therefore we can de�ne the set of times when it

is true,

T = ft 2 T j [[C]]tg:

A general until-then expression of the form (5.6) should use B for any time

t that is strictly before all the times in T , and otherwise it should use D. In

other words, if t is not in the upperset of T , then use B, and otherwise use

D. Note that T does not necessarily have a minimum element, so reactive

behaviours do not always have an event time when they should switch from

B to D. This point is quite subtle and is discussed in depth in Section 5.7.

The de�nition of uppersets is as follows:

Definition The upperset of S � R is given by

" S = fs 2 R j 9s0 2 S : s0 � s:g 2

A preliminary semantics for until-then, which ignores the possibility that



CHAPTER 5. BEHAVIOUR EXPRESSIONS 65

[[C]] may yield ?B for some times, is as follows:

[[B until C then D]] = t 7!

�
[[B]]t t =2 " T
[[D]]t

where T = ft 2 T j [[C]]tg:

In general the situation is more complicated because for any time t, the

value of [[C]]t may be true, false, or ?B . This means that [[C]] is not simply

a predicate as we assumed it is in the set comprehension for T above.

In order to determine whether to use B or D it is not necessary to know

the value of [[C]] at all times|if it is only unde�ned (i.e., yields ?B ) at times

after the reactive behaviour has switched then it makes no di�erence. More

precisely, if the condition starts as false, becomes true later and subsequently

becomes unde�ned, then we know exactly when to switch from B to D, de-

spite the unde�ned points. This is not true if the condition is unde�ned before

it is true, because then we do not know when we should switch. Therefore,

in such cases the reactive behaviour is unde�ned from the time when the

condition becomes unde�ned (it is B before this time).

In short, once the condition has yielded bottom it is no longer valid for

determining when the event occurs, and once it has yielded true the event

occurrence is known and subsequent values of the condition are irrelevant.

Thus, given a time t we must consider three cases: if the condition has only

ever been false, then use B; if the condition has, before or at time t, been

true, and there are no bottoms before this true, then use D; otherwise there

must be a bottom before a true and so the result is bottom. This suggests

the following formal de�nition:

[[B until C then D]] = t 7!

8<
:

[[B]]t t =2 " T [ " Bad
[[D]]t t 2 " T ^ " T ! " Bad
?

(5.7)



CHAPTER 5. BEHAVIOUR EXPRESSIONS 66

where

T = ft 2 T j [[C]]t = trueg
Bad = ft 2 T j [[C]]t = ?B g:

5.3 Examples of reactivity

Figure 5.1 shows the values of four until-then expressions using the seman-

tics given in Equation 5.7. Notice that we have used numbers, booleans,

and the functions >= and cos, as if they were the lifted versions. We call

this implicit lifting, and it is justi�ed because it is always clear from context

whether a constant refers to the usual value or the behaviour version. For

example, if 1 is the �rst argument of an until-then expression, then it must

mean lift0 1 because until-then takes a behaviour as its �rst argument.

Implicit lifting is not part of the language, but we use it in this dissertation

to avoid an excessive proliferation of the lifting operators. In practice it can

be implemented using overloading (Fran makes use of Haskell's overloading

facilities to do this).

The �rst example is a straightforward application of the semantics so far.

It is obtained by using the de�nitions for until-then, lift0, lift2 and

time. The second example shows that if the condition is always false then

the until-then expression is equivalent to B. In other words, it proves the

axiom

B until false then D = B

We discuss other axioms involving behaviour expressions in Section 5.10. The

third example is similar to the second except that the condition is always true,

and so the until-then expression is equivalent to D. The fourth example is

again a straightforward application of the de�nitions.



CHAPTER 5. BEHAVIOUR EXPRESSIONS 67

[[1 until (time >= 1) then 2]]

= t 7!

�
1 t =2 " ft 2 T j t � 1g
2

= t 7!

�
1 t < 1
2

[[B until false then D]]

= t 7!

�
[[B]]t t =2 " ft 2 T j falseg(= ;)
[[D]]t

= t 7! [[B]]t

= [[B]]

[[B until true then D]]

= t 7!

�
[[B]]t t =2 " ft 2 T j trueg(= T)
[[D]]t

= t 7! [[D]]t

= [[D]]

[[B until (time >= cos time) then D]]

= t 7!

�
[[B]]t t =2 " ft 2 T j t � cos(t)g
[[D]]t

Figure 5.1: Examples of applying the semantics of until-then



CHAPTER 5. BEHAVIOUR EXPRESSIONS 68

5.4 Implicit verses explicit values

Notice that we have not simpli�ed the �nal example in Figure 5.1 as we have

done for the other examples. To do so would require solving t = cos(t) for

the smallest t 2 T; that is, suppose t1 is such a solution, then the condition

simpli�es to

t =2 " ft 2 T j t � t1g) = t < t1:

However, we cannot express this solution explicitly, that is, as a formula,

because no formula exists. This does not mean that a solution does not

exist|we can prove that it does|but it means that the only way we can

express this value is as the solution to an equation.

This illustrates a peculiarity of our semantics: the semantics goes as far as

providing implicit formulas (i.e., equations) for the mathematical denotations

of programs, but sometimes some mathematical analysis is necessary in order

to obtain explicit values. Furthermore, in cases such as the example above,

it is not possible to express the value explicitly.

5.5 Nested until-then expressions

So far we have introduced the following four operators for constructing be-

haviour expressions:

time, lift0, $*, until-then.

The semantics of these operators has been de�ned compositionally, that is,

in terms of the semantics of their arguments. Of course, the behaviours in

an until-then expression could themselves be until-then expressions, and

this raises some new questions regarding the semantics of reactive behaviours.

We will explore these in this section.



CHAPTER 5. BEHAVIOUR EXPRESSIONS 69

We are concerned with the interpretation of reactive behaviours of the

form

B until C then D

where any/all of B, C, and D are themselves reactive behaviours. Let us

consider the case when D is reactive to begin with. As an example, consider

the nested expression,

1 until (time >= 1.5) then

(2 until (time >= 2.5) then 3)| {z }
D

This behaviour should start as the constant behaviour t 7! 1, and then switch

to D at time 1:5. Then it should be the constant behaviour t 7! 2 until time

2:5 when it should switch to 3; the graph of this behaviour is

-

6Value

Time0 1 2 3

1

2

3

b

r b

r

Fortunately, this is exactly the interpretation that our semantics gives, as

can be veri�ed by routine calculation.

Now consider a slight variation on the previous example which is the same

except for the second condition, labelled C2,

1 until

C1z }| {
(time >= 1.5) then

(2 until

C2z }| {
(time <= 0.5 ) then

D2z}|{
3 )| {z }

D1

:



CHAPTER 5. BEHAVIOUR EXPRESSIONS 70

Intuitively we expect this behaviour to start as t 7! 1 and then switch to D1

at time 1:5 as before. Then it should be t 7! 2 forever because the condition

C2 will never become true, since we have already passed time 0:5;

-

6Value

Time0 1 2 3

1

2

3

b

r

But this is not what our semantics gives, because it evaluates conditions over

all times. The set of times when the second condition C2 is true is given by

T2 = ft 2 T j [[C2]]tg

= ft 2 T j t � 0:5g

= [0; 0:5];

and so when we switch to D1 (at time 1.5) we will immediately switch to D2

(i.e., the value 3) because all times are in " T2 = [0;1) = T; this results in

the behaviour with graph

-

6Value

Time0 1 2 3

1

2

3

b

r



CHAPTER 5. BEHAVIOUR EXPRESSIONS 71

This is not what we intended. We want behaviours to be memoryless, that

is, have an intrinsic meaning not dependent on what has gone before. From

a practical perspective this property is essential; if it were absent it would be

necessary to evaluate condition behaviours for all times in the past, which

would be very ineÆcient. More importantly, it is not useful for conditions in

nested reactive behaviours to apply for times in the past.

In summary, we should not evaluate conditions like C2 since time began,

but rather from the time when their enclosing behaviour (in this case, D1)

was switched to. In this example, we should test the condition C2 from time

1:5 onwards. This is simple to capture semantically: the behaviour D1 is

used for all times after C1 became true, that is, all times in the set,

" T1

where T1 = ft 2 T j [[C1]]tg

So we should only evaluate the condition C2 at times in this set, which can

be expressed as,

T2 = ft 2 " T1 j [[C2]]tg

Thus all conditions should be evaluated with respect to some set of times

which is the set of times when the behaviour is \alive"|all the times after

the (enclosing) behaviour was switched to. This is contextual information

necessary to make sense of conditions in reactive behaviours.

This contextual information must be passed through by our semantic

function so that it is available to the components of compound expressions.

Therefore [[ ]] needs an extra argument that gives the set of times when the

behaviour is alive. (Recall that these sets do not always have a least time, so

we cannot pass a single time denoting when the behaviour is alive from|see



CHAPTER 5. BEHAVIOUR EXPRESSIONS 72

[[time]](T0) = t 7! t

[[lift0 x]](T0) = t 7! [[x]]

[[fb $* x]](T0) = t 7! ([[fb]](T0) t) ([[x]](T0) t)

[[B until C then D]](T0)

= t 7!

8<
:

[[B]](T0)t t =2 " T [ " Bad
[[D]](" T )t t 2 " T ^ " T ! " Bad
?

where T = ft 2 T0 j [[C]](T0)t = trueg
Bad = ft 2 T0 j [[C]](T0)t = ?B g

Figure 5.2: The semantic function [[ ]]

Section 5.7.) The new de�nition of [[ ]] which includes this is given in Fig-

ure 5.2. Note that for $* the set T0 is just passed through to its components,

but for until-then the behaviours B and C are passed T0, while the after

behaviour D is passed " T , which is the times when it is alive.

We have covered the case when D is reactive, so now we need to consider

the case when B or C are reactive. In fact, the new semantic function is

correct for these cases because the behaviours B and C are alive as soon as

the overall until-then statement is, that is, for times in the set T0 in the

semantic equation.

5.6 Integrals

Sometimes it is easier to describe the rate of change of a quantity than the

quantity itself. It is essentially this observation that led Newton to develop



CHAPTER 5. BEHAVIOUR EXPRESSIONS 73

the di�erential calculus. For example, it is easy to describe the accelerations

(the rate of rate of change) of three bodies under gravitational attraction|

each acceleration is proportional to the gravitational forces acting on the

body|but it is very diÆcult to give a formula for their positions (in general

it is impossible). To allow quantities to be described by their rate of change,

CONTROL provides an operator that yields the integral of any given be-

haviour.

The integral of a top-level behaviour, f , is represented by integral f ,

and results in the behaviour that, at time t, yields the integral of [[f ]] from 0

to t (i.e., the area under the graph of [[f ]] from 0 to t). If integral is used

in the after part of some reactive behaviour, then the integrand is integrated

from the in�mum of the times when it is alive, that is from inf(T0). This

appears to be at odds with until-then which distinguishes between events

such as time >= 1 and time > 1, as explained in Section 5.2. Taking the

in�mum of the set of times when a behaviour is alive yields the same for

both of these behaviours, so integral does not make the distinction that

until-then does. However, the reason we de�ne integral this way is that

including or excluding the endpoint of the interval integrated over does not

change its value|a line of zero width has no area. So taking the in�mum is

the simplest way to de�ne integral using the standard notation for de�nite

integrals.

The formal de�nition is as follows:

[[integral f ]](T0) = t 7!

Z t

inf(T0)

([[f ]](T0) s):ds

Integration only makes sense for real-valued behaviours, so f : Beh Real.

The integrand [[f ]] may have unde�ned points, that is, map certain times

to ?R. Such points could make the integral unde�ned; for example, if the

unde�ned points are singularities (unde�ned values resulting from a division



CHAPTER 5. BEHAVIOUR EXPRESSIONS 74

by zero). If the integral is unde�ned, the above integral expression should

yield ?R.

We have not said how we should evaluate the integral expression in the

above de�nition. This must be done using mathematical analysis, and need

not concern us. Our semantics gives an implicit description of the meaning

of any given behaviour in terms of equations and integrals. If we require

an explicit formula for the function of time that the behaviour represents,

then it is obviously necessary to do some mathematical analysis. Our theory

accounts for the possibility that there may not be a unique solution to the

equations by allowing the result to be bottom. In practice, however, it is

sometimes not possible to solve the equations even when solutions exist, and

this limits our ability to reason about such programs. This is a consequence

of the limitations of current mathematical knowledge, however, and is not

due to our approach to giving a semantics to CONTROL.

A related issue is the meaning of integrals of reactive behaviours. Reactive

behaviours are particular to CONTROL, and so we must de�ne what it

means to integrate such behaviours. This is straightforward because our

semantics interprets behaviours as functions of time, and reactive behaviours

are just piecewise functions of time. Integrating piecewise functions is well

understood; integrate the pieces and add up the results. In summary, the

de�nition of integral is well de�ned for all real valued behaviours.

5.7 Avenue on event times

The usual notion of an event is some occurrence which happens at a particular

time; for example, two objects colliding or a temperature reaching a given

level. This is the view taken by Arctic, Fran and most of the discrete time

languages we have seen. In languages using continuous time where it is



CHAPTER 5. BEHAVIOUR EXPRESSIONS 75

possible to specify events by boolean behaviours, this view must assign an

event time to events such as t > 1 which have no earliest time when they are

true. An event condition using greater than may correspond to the event that

an object has passed a given position, or that a temperature has exceeded

a given level. The distinction is quite subtle; using > instead of � in a

condition behaviour only makes a di�erence at one value, and so it makes

little di�erence in languages using approximation techniques. But our theory

is exact, and so the di�erence is vitally important. In this section we will

consider the di�erent approaches in Arctic, Fran and CONTROL with regard

to this issue.

The simplest example of a condition that has no earliest time when it

becomes true is the behaviour

time > 1:

This represents the function

c(t) = t > 1

which is true for times in the set

T = ft 2 T j c(t)g = (1;1):

This set has no minimum element and therefore there is no earliest time when

the condition becomes true. If all events must have an occurrence time, then

we must have some way of calculating the event time from the set T . Notice

that the semantics we gave to until-then in CONTROL does not have to

address this issue because it switches to the new behaviour for all times in

the upperset of T , and uppersets exist for any set. Thus the behaviour

B until time > 1 then D



CHAPTER 5. BEHAVIOUR EXPRESSIONS 76

will act like B for times in the set [0; 1] and like D for times in the set (1;1).

Arctic simply ignores the problem. The last paragraph in Section 8

of [Dan84] states that

... a boolean function is evaluated to �nd the �rst moment

[after it came alive] at which the function is true.

This semantics cannot be applied to conditions like t > 1 because there is no

�rst moment when it is true.

Fran recognises the problem, and avoids it by taking the event time to

be the in�mum of times when the condition is true. In�mums of sets of real

numbers always exist (see [Apo74]) so there is always an event time if the

condition is ever true. Fran's time domain is extended with 1 so that if the

event condition never becomes true the event time is1; this simply requires

the in�mum of the empty set to be 1, which causes no diÆculty.

Although Fran assigns an event time to any possible condition behaviour,

it is not as re�ned as CONTROL because events like t � 1 and t > 1 are

semantically the same in Fran|they both have an event time of 1. A reactive

behaviour in Fran switches strictly after its event time, so for both conditions

t � 1 and t > 1 the old behaviour is used at time 1 and the new one strictly

after time 1. If Fran switched to the new behaviour at time 1, it would seem

to early for the event t > 1 because it would switch before the event condition

has ever been true. On the other hand, switching strictly after time 1, as

Fran does, seems to late for the event t � 1 which is true at time 1. As we

shall see in the next section, the only reactivity construct that yields the old

behaviour for times when the event condition has never been true and the

new behaviour otherwise is the one we have de�ned for CONTROL.

We suspect that the reason reactive behaviours in Fran switch strictly

after the event time is that this is what the implementation does. In the



CHAPTER 5. BEHAVIOUR EXPRESSIONS 77

implementation this avoids recursive reactive behaviours looping when sam-

pled, and it may have been hoped that this method which works in discrete

time also carries over to continuous time. We have found this not to be the

case, as we shall see in Section 6.11.

5.8 Avenue on alternative semantics for re-

activity

In this section we will consider alternative semantics that could be given to

until-then, and whether any semantics other than CONTROL's or Fran's

is reasonable. Firstly we must de�ne what we regard as a reasonable se-

mantics for until-then. Given that our language is idealised, we expect

reactive behaviours to respond to events without any delay; otherwise the

language would be approximate, and our approach is to avoid the complexity

of approximation by �rst considering the exact language.

We will consider the two event conditions time >= 1 and time > 1,

which represent the values t � 1 and t > 1, and the semantics of reac-

tive behaviours using these event conditions. All conditions are equivalent

to one of these two in the sense that they either become true at a particular

time, or for times strictly after some time.

Firstly, a reactive behaviour with the condition t � 1 only has two choices;

either switch at time 1 or strictly after. Switching any �nite length of time

before or after time 1 would clearly be an approximate response. These two

choices only di�er at time 1|for all other times they are the same.

Similarly, a reactive behaviour with the condition t > 1 could switch ei-

ther at time 1 or strictly after. So there are two choices for both kinds of

event, giving four possible semantics for until-then that are not approxi-

mate. It would be absurd to switch at time 1 for the condition t > 1 and



CHAPTER 5. BEHAVIOUR EXPRESSIONS 78

t � 1 t > 1

CONTROL at 1 after 1
Fran after 1 after 1
Early at 1 at 1

Figure 5.3: Di�erent semantics of until-then

strictly after time 1 for the condition t � 1, however, so there are three

possibilities that are reasonable. These are shown in Figure 5.3. The �rst

corresponds to the semantics of until-then in CONTROL, the second to

the semantics in Fran and the third we have called Early because it switches

at time 1 in both cases.

In summary, there are three di�erent semantics for until-then that are

reasonable in the sense that they do not switch a �nite duration before or

after the �rst time or times when the event condition becomes true. CON-

TROL's semantics gives the before-behaviour (in a reactive behaviour) for

times before any time when the condition is true and the after-behaviour

otherwise. The other semantics can be de�ned by �nding event times by

taking the in�mum of the times when the condition is true, and then either

switching strictly after that time (Fran) or at that time (Early). At this

stage it seems that CONTROL's semantics is the most natural, and it is

more re�ned because it distinguishes between events like t � 1 and t > 1

which the other semantics do not, but the other semantics are still reasonable

possibilities. Later on in Section 6.11 we discuss how the choice a�ects the

semantics of recursive reactive de�nitions.



CHAPTER 5. BEHAVIOUR EXPRESSIONS 79

5.9 Avenue on integrability

Any real valued behaviour can be used as an argument to the integral

operator yielding the integral if the behaviour is integrable and bottom if it

is not. In this section we consider criteria for classifying behaviours according

to integrability.

Firstly we need a precise de�nition of integration. The standard de�nition

uses Riemann sums which are approximations of the area under the curve

obtained by dividing the interval into strips and making a rectangle the

height of the curve at some point in each strip. The sum of the area of

these rectangles is the Riemann sum, and if the limit as the width of the

strips tends to zero converges, then this is the value of the integral. If it

does not then the function is not integrable over that interval. (The limit

has to converge regardless of what point in each strip is chosen for the height

of the rectangle.) The formal de�nition of Riemann-integrability and other

technical terms in this section can be found in [Apo74].

All continuous functions are Riemann-integrable (from now on, inte-

grable). We use continuous in at least three di�erent ways in this dissertation,

but when we are referring to real valued functions we mean continuous in

the sense of real analysis and not domain theory.

Many behaviours do not represent continuous functions, for example:

1. lift1 floor time

2. 1 / (time - 1)

3. 1 until (time >= 1) then 2

The �rst behaviour lifts the floor function which is discontinuous. The

second has a discontinuity because of division by zero at time 1. The third



CHAPTER 5. BEHAVIOUR EXPRESSIONS 80

explicitly de�nes a step function using a reactive behaviour. The �rst and

third examples are integrable, and more generally all bounded functions with

discontinuities at discrete points are integrable (see [TF92]). A stronger

result is the following:

Theorem 5.1 (Lebegue's criteria for Riemann-integrability) If f

is bounded on [a; b] and the set of discontinuities S on [a; b] has zero measure,

then f is Riemann-integrable on [a; b].

Sets with zero measure include all countable sets as well as some peculiar

uncountable sets (such as the Cantor set, [Apo74, pp. 180]). A reactive be-

haviour may react many times, but event occurrences are in sequence and so

the set of discontinuities in any reactive behaviour must be countable. There-

fore it follows that any bounded reactive behaviour is integrable (assuming

that no built in functions that are not integrable are lifted).

5.10 Avenue on axioms

There are a few simple axioms which hold for behaviour expressions. Using

our semantics it is straightforward to verify these axioms. In Section 5.3 we

saw the following equivalences:

B until false then D = B

B until true then D = D

The following property of lifting holds:

(lift0 f) $* (lift0 a) = lift0 (f a)

Assuming a function integrate which calculates the symbolic integral of

behaviours, we have

integral b = integrate b



CHAPTER 5. BEHAVIOUR EXPRESSIONS 81

Often the symbolic integral does not exist or is diÆcult to compute, so this

equivalence only applies to a relatively small subset of behaviours.

There are very few useful axioms in terms of the basic operators. In

particular, until-then is not associative.

Chapter summary

There are four operators for constructing behaviour expressions: lift0, $*,

until-then and integral. The lifting operators provide a way of apply-

ing existing functions to behaviours. The until-then operator is used for

expressing reactivity. It is quite subtle for two reasons:

1. Conditions specifying events do not always have a �rst time when they

occur.

2. Nested until-then expressions must test conditions from when their

enclosing behaviour came alive, and not for all times.

These considerations lead to de�ning event occurrences in terms of uppersets

of times when the condition is true, and de�ning a semantic function that

passes these uppersets on to after-behaviours.

The integral operator is relatively straightforward because reactive be-

haviours can be integrated in a piecewise fashion. However, we can not

always obtain explicit formulas for the meaning of integral expressions as

the existing techniques for analytical integration do not cover all cases.



Chapter 6

Behaviour de�nitions

So far we have seen how to write behaviour expressions which are used to

represent functions of time. In this chapter, we will introduce behaviour def-

initions which let us name behaviours by variables and then refer to those

behaviours elsewhere by their names. This can be useful when a behaviour

expression appears more than once in a program, because it avoids duplicat-

ing the expression. More importantly, if behaviour de�nitions are allowed to

be recursive then they increase the expressiveness of the language consider-

ably. In this chapter we discuss simple recursive de�nitions and later on in

Chapter 9 we give realistic examples of programs that cannot be written in

CONTROL without using them.

As we shall see, the standard approach for giving a semantics to recursive

de�nitions does not work for behaviours. This leads us to develop a new

approach, which is the main subject of this chapter.

82



CHAPTER 6. BEHAVIOUR DEFINITIONS 83

6.1 Recursive behaviour de�nitions

A common syntax for de�ning multiple, mutually recursive functions is,

letrec a1 = E1

...

an = En

in F

where each variable ai may appear in any Ej, and, of course, in the body F .

It is much simpler to describe the semantics of a single recursive de�nition,

and in fact it is suÆcient to do so because there is a standard method of trans-

lating multiple recursive de�nitions into a single nested recursive de�nition

(see Section 7.7).

We will call our construct for recursive de�nitions letbeh to avoid con-

fusion with letrec, and to emphasise that it can only be used to de�ne

behaviours. The syntax is,

letbeh a = E in F

where a is a variable, and E and F are behaviours.

Many recursive behaviour de�nitions, such as

letbeh a = a in a;

are not meaningful, but are two situations where they are particularly useful:

1. De�ning a behaviour that changes when it reaches a certain value.

This requires a reactive behaviour where the condition refers to the

behaviour being de�ned.



CHAPTER 6. BEHAVIOUR DEFINITIONS 84

2. De�ning a behaviour in terms of its rate of change using integral,

where the rate of change refers to the behaviour being de�ned. This

corresponds to integral equations in mathematics, which are essentially

ordinary di�erential equations expressed di�erently.

Recursive reactive de�nitions turn out to be quite diÆcult to give a semantics

to because the standard approach does not work. In the following sections

we will explain the problem with applying the standard approach, and the

method by which we give a semantics to these de�nitions. Finally, we will

extend the method to include recursive integral de�nitions.

6.2 Recursive reactive de�nitions

To describe a behaviour that changes when it reaches some value, a recursive

de�nition of the following form is required:

letbeh a = : : : B until C[a] then D : : : in F : (6.1)

That is, part of the expression de�ning a is reactive and changes when a

reaches some value, as speci�ed by the condition C[a] that depends on a.

So these kinds of behaviours are ones that react to themselves. If we con-

sider multiple de�nitions like these, where the conditions refer to any of the

variables, we see that we are describing behaviours that interact with each

other. Interaction between components is an essential aspect of most reactive

systems, and in CONTROL it is not possible to express interaction without

this kind of recursive de�nition.

We will now consider a subset of de�nitions of the form (6.1), where the

right hand side is an until-then expression at the top-level,

letbeh a = B until C[a] then D in F: (6.2)



CHAPTER 6. BEHAVIOUR DEFINITIONS 85

We restrict our attention to this class of de�nitions because they have a

simple meaning; they are equivalent to non-recursive de�nitions of the form,

letbeh a = B until C[B] then D in F:

The condition C[a] is only relevant before the event occurs|afterwards a is

D and C[a] is no longer required|and before the event occurs a acts like

B. This is a consequence of a basic causality requirement; D will be used

after the event has occurred, and so it should not a�ect the event itself.

This principle is not adhered to if we take a naive approach to recursion,

however, because the semantics of until-then stipulates that as soon as the

condition becomes true, the behaviour switches to some new behaviour, and

in programs like (6.2) this means that D is not used only after the event, it is

used at the event time as well. We will now describe this problem formally.

6.3 Least �xed points

To give a compositional semantics to a language with de�nitions, we need

some way of capturing bound variables so that we can interpret them in

sub-expressions where they appear free. This can be achieved by passing an

environment to the semantic function; then the environment gives the values

of the free variables in every program phrase. Abstractly, an environment,

u, is a function from variables to values, and we write [uja : x] for the

environment that is identical to u except that it maps a to x, overriding

any previous assignment for a in u. We write [[P ]]u for the meaning of the

program P in the environment u.

Using environments, the semantics of letrec prescribes that a recursive

de�nition means a solution to the corresponding equation in the appropriate



CHAPTER 6. BEHAVIOUR DEFINITIONS 86

semantic domain; that is,

[[letrec a = E in F ]]u = [[F ]][uja : x]

x = [[E]][uja : x]:

To re-iterate, the meaning of a is a solution to the equation in x. For a

PCF-like language, these equations can be solved by expressing the problem

slightly di�erently, as �nding the �xed points (i.e., x1 such that G(x1) = x1)

of the function

G(x) = [[E]][uja : x];

and then choosing the least �xed point with respect to an information order-

ing as discussed in Section 4.2. This ordering is such that there is always a

least solution (so we have a canonical choice for the meaning of a), and that

this is the solution we require from a computational perspective.

Adopting this approach for recursive behaviour de�nitions yields,

[[letbeh a = E in F ]](T0)u = [[F ]](T0)[uja : x] (6.3)

x = [[E]](T0)[uja : x] (6.4)

(i.e., as for letrec but with the extra argument T0 which is the set of times

when the behaviour argument is alive). For now, we will ignore the issue of

choosing canonical solutions to these equations, and just consider whether

solutions exist.

Let E in Equations (6.3) and (6.4) be

E � B until C[a] then D:

Then Equation (6.4) is

x = [[B until C[a] then D]](T0)[uja : x]:



CHAPTER 6. BEHAVIOUR DEFINITIONS 87

Now, using the semantics of until-then given in Figure 5.2 (we assume that

C[a] is not bottom in this discussion) we obtain,

x = t 7!

�
[[B]](T0)[uja : x]t t =2 " T
[[D]](" T )[uja : x]t

T = ft 2 T0 j [[C[a]]](T0)[uja : x]tg:

At this stage it is instructive to try this semantics with some programs;

for example, applying the semantics to the program

letbeh a = 1 until (time >= a) then 2 in a:

Doing so yields the following equation for x (we let T0 = T):

x = t 7!

�
1 t =2 " T
2

(6.5)

T = ft 2 T j t � x(t)g: (6.6)

There are no solutions to these equations, which we will now prove formally.

Proposition 6.1 Equations (6.5) and (6.6) have no solutions for x 2 T !

R? and T 2 P(T).

Proof For t < 1 the condition t � x(t) must be false because x(t) is either

1 or 2. Therefore, T contains no times less than 1, and so t =2 " T is true

for t < 1. Hence, by (6.5) we have x(t) = 1 for t < 1. But at t = 1 there

is a kind of Russellian paradox. We know that x(1) is either 1 or 2. Let us

consider both cases:

� Suppose that x(1) = 1. Then 1 � x(1) =) 1 2 T by (6.6), and so

1 2 " T . But 1 2 " T =) x(1) = 2 by (6.5), which contradicts our

assumption.

� Suppose that x(1) = 2. Then 1 � x(1) =) 1 =2 T by (6.6), and,

since T contains no times less than 1 or 1 itself, we have 1 =2 " T . But

1 =2 " T =) x(1) = 1 by (6.5), which contradicts our assumption. 2



CHAPTER 6. BEHAVIOUR DEFINITIONS 88

In short, if we assume that x(1) = 1, then equations (6.5) and (6.6) imply

that x(1) = 2, and conversely, if we assume that x(1) = 2, then equations

(6.5) and (6.6) imply that x(1) = 1.

We could conclude from this that the meaning of the program is ?T!R?

(or is t 7! 1 for t < 1 and unde�ned for t � 1), but we want to give such

programs a stronger meaning|in fact, they are only useful if we can do so.

The problem is exactly the same in the general case (6.2), and it arises

because until-then stipulates that as soon as the condition becomes true

it should yield the after-behaviour, D, but this changes the condition at

the instant it becomes true, so it may then not be true (as in the example

above). The only way to avoid this contradictory situation, and retain the

view of recursive de�nitions as solutions to equations, is to delay switching

slightly. This goes against our intention that CONTROL is an idealised,

instantaneous response language, and moreover, it can be shown that all

reasonable possibilities for de�ning until-then this way lead to unacceptable

anomalies in the semantics. (These alternatives are explored in Section 6.11.)

Therefore we must take a di�erent approach to the semantics of recursive

reactive de�nitions.

6.4 Non-reactive evaluation

In this section we will give an informal description of our solution to the

problem with recursive reactive de�nitions. We have just seen a proof that

some recursive reactive behaviours denote bottom because a contradiction

arises at the times when the condition becomes true. Put simply, interpreting

a de�nition of the form

a = B until C[a] then D;



CHAPTER 6. BEHAVIOUR DEFINITIONS 89

leads to a contradiction because the condition C[a] depends on the meaning

of a, and a changes from B to D at the instant C[a] becomes true, which

means it may not be true after all.

We could avoid such contradictions by preventing reactive behaviours

from switching when determining event occurrences. The idea is to interpret

all reactive behaviours of the form

B until C then D

as if they were just B. We call this non-reactive evaluation. It is necessary

to evaluate the whole program this way because any reactive behaviour, in-

cluding nested until-then's, could cause the problem. Note that before any

events have occurred, interpreting programs using non-reactive evaluation is

no di�erent from an interpretation that takes reactivity into account.

As an example, the reactive behaviour

1 until (time >= a) then 2

is interpreted non-reactively as the behaviour 1. This ignores the condition

which refers to a variable, possibly recursively.

Say there are n until-then expressions in our program, and we refer to

them by Ai, where,

Ai � Bi until Ci then Di:

One of these, say Ae for some index e, must react �rst (we will begin by

ignoring the possibilities of no events ever occurring and of simultaneous

events occurring). Using non-reactive evaluation, we can �nd the set of times,

Ti, when Ci is true, for each until-then expression. For the behaviour that

reacts �rst, Ae, the set Te must contain earlier times than all the other sets

Ti. This means that we know non-reactive evaluation will give the correct



CHAPTER 6. BEHAVIOUR DEFINITIONS 90

meaning of the program for times before those in Te, because no event has

occurred. It does not tell us anything about the value of any behaviours for

times in " Te, because they may depend on the value of the expression Ae,

which has reacted (and non-reactive evaluation assumes it has not reacted).

We can evaluate behaviours for times in " Te if we replace Ae by De in our

program, to account for it reacting. Then, if we use non-reactive evaluation

again, we will get the correct meaning up to the next event occurrence. This

suggests the following iterative procedure for interpreting behaviours in a

program P :

1. Evaluate P non-reactively.

2. For each reactive behaviour Ai, �nd Ti.

3. Let Te be the set with the earliest times.

4. The evaluation in 1 is valid for times before Te.

5. To evaluate P for times in " Te, replace Ae by De in P , and repeat this

procedure.

6.5 Transitions

We will now formalise the procedure described above. The procedure yields

a sequence of programs (Pi) beginning with the program P (= P0). Each

program in the sequence is the same as the previous one except that one

reactive behaviour (or more, if events are simultaneous)|say

Aei � Bei until Cei then Dei

for the i-th program|has been replaced by Dei (this of course assumes that

Aei is the �rst behaviour to react in Pi).



CHAPTER 6. BEHAVIOUR DEFINITIONS 91

This is a kind of reduction, similar to term re-writing or reduction in

the lambda calculus. One di�erence is that we are not only interested in

the sequence of programs (Pi); we are also interested in the result of non-

reactively evaluating each program and in the intervals when these evalua-

tions are valid. Thus, we begin by evaluating P : � non-reactively over T.

This yields p0 2 T ! [[�]], and enables us to �nd the set of times Te0 when

the �rst condition Ce0 becomes true. Then we know that p0 is the meaning

of P over the interval Tn " Te0 . We will annotate arrows denoting transitions

with these values using the following notation:

P
p0

����!
T n "Te0

P1:

For the second transition we evaluate P1 over the times " Te0 to obtain the

meaning p1 which is valid over the interval " Te0n " Te1; hence the second

transition is

P1
p1������!

"Te0 n "Te1

P2;

and so on.

In general, we need to de�ne a transition relation such that a program P

is related to P 0 when evaluating P non-reactively over T0 (the times when P

is alive) yields p and this is valid up to times in T1|in other words over the

interval T0 n T1. Using our notation this is written as

P
p

����!
T0 n T1

P':

For example, the reactive behaviour

1 until (time >= 1) then 2

alive for times in T makes a transition to the behaviour 2, and acts like the

behaviour 1 over the interval [0; 1), thus,

1
t7!1

�����!
T n [1;1)

2:



CHAPTER 6. BEHAVIOUR DEFINITIONS 92

The behaviour 1 is shorthand for lift0 1 which is non-reactive and therefore

equals t 7! 1 over any interval.

This transition relation can be de�ned compositionally, that is, on the

syntactic structure of programs. This way the transition P makes is calcu-

lated from the transitions of its immediate sub-phrases, and so on, producing

a tree-structured derivation of the overall transition.

We must ensure that only the behaviour (or behaviours) that reacts �rst

makes a transition. So, if Ce is the �rst condition to become true then at

some place in the tree we will have

Be until Ce then De
be����!

T0 n "Te
De

and as we go down the tree this behaviour is combined with other behaviours

in such a way that only this one changes. (The other behaviours react later

and therefore should not change.)

As an example of a behaviour with two sub-phrases, we will consider

A+B where + is the behaviour level addition operator. This is a special case

of lift2, and in turn lift2 is de�ned in terms of lift0 and $*, but it is

simpler to use + to illustrate transitions of compound expressions.

Say we take a bottom up approach to constructing the derivation tree for

the transition A+B makes, and start by �nding the transitions

A
a

����!
T0 n TA

A0 B
b

����!
T0 n TB

B0: (6.7)

This means that A is non-reactive for times before those in TA, and similarly

for B. The overall expression A+B is non-reactive over the smaller of the

intervals T0 n TA and T0 n TB. This gives three possibilities for the transition

that A+B makes:

1. A reacts �rst (TA ! TB):

A + B
t7!a(t)+b(t)
������!

T0 n TA
A0 + B:



CHAPTER 6. BEHAVIOUR DEFINITIONS 93

2. B reacts �rst (TB ! TA):

A + B
t7!a(t)+b(t)
������!

T0 n TB
A + B0:

3. A and B react simultaneously (TA = TB):

A + B
t7!a(t)+b(t)
������!

T0 n TA
A0 + B0:

This bottom up approach works, but we can reduce the number of rules by

taking a top down approach. All we need is a rule for Case 3, so A+B makes

a transition to A0+B0, and a no-change rule which allows B0 to be B when

Case 1 applies, or A0 to be A when Case 2 applies. We will now explain this

in more detail.

6.6 The no-change rule

Taking a top-down approach means that we start by trying to �nd the tran-

sition the overall behaviour makes. Continuing our last example, we want

to �nd the transition that the behaviour A+B makes. It is non-reactive over

the interval T0 n M , where M is either TA or TB, whichever contains the

earliest times. Then we �nd the transitions that A and B make, as in 6.7.

But we require the transitions they make over T0 nM and so one of them

may have to make a no-change transition; if A reacts �rst, B will have to

make a no-change transition and vice-versa.

The rule for addition of behaviours, which we call lift2 (+), is

A
a

����!
T0 nM

A0 B
b

����!
T0 nM

B0

A + B
t 7!a(t)+b(t)
������!

T0 nM
A0 + B0

hlift2 (+)i

This captures Case 3 with M = TA = TB. The derivations for the premises

are exactly as in 6.7.



CHAPTER 6. BEHAVIOUR DEFINITIONS 94

If A reacts �rst (Case 1) then TA ! TB (TA contains earlier times than TB)

and B makes a no-change transition. Firstly we will describe the no-change

rule, which is as follows:

B
b

����!
T0 n TB

B0

B
b

���!
T0 n X

B
hno-changei

�
X ! TB
X = " X

�

The side condition X ! TB speci�es that X contains earlier times than TB

(recall that TB is an upperset, so if X contains more times than TB then

it must contain earlier times). Since X contains earlier times, the interval

T0 nX must be strictly smaller than T0 nTB and therefore B must make a no-

change transition (i.e., a transition from B to B) over this smaller interval,

as the rule dictates. The second side condition is necessary to ensure that X

is an upperset, because otherwise T0 nX would not be an interval.

The following derivation shows how the no-change rule and the lift2 (+)

rule can be used to deal with Case 1:

A
a

����!
T0 n TA

A0

B
b

����!
T0 n TB

B0

B
b

����!
T0 n TA

B
hno-changei

�
TA ! TB
TA = " TA

�

A + B
t7!a(t)+b(t)
������!

T0 n TA
A0 + B

hlift2 (+)i

Notes:

1. The transitions for A and B at the leaves (top) are exactly as in 6.7.

2. For Case 1, TA ! TB is true.

3. TA = " TA is true because TA is an upperset.

The result of this derivation is that a transition to A0 +B is made, which is

what we require for Case 1. Case 2 is symmetrical to this one.



CHAPTER 6. BEHAVIOUR DEFINITIONS 95

A concern is that the choice of rules in derivations is no longer deter-

ministic because the no-change rule can be used anywhere. This would be a

problem if it resulted in many di�erent meanings for some programs because

we want our semantics to give a unique meaning to all programs. In fact

this is not the case and it is easy to show that the rules are deterministic so

long as the non-reactive interval for every transition is as long as possible;

see Theorem 8.10 in Section 8.7.

The lift2 (+) rule above is a special case of the lift2 rule which in turn

is a derived rule from the basic lift0 and $* rules. These two rules are

straightforward because they yield the same values as in Figure 5.2. The lift0

rule is valid over the interval T0 n ; = T0 because the value the behaviour

yields never changes. The set T0 is an upperset and thus the value is valid

for all times in the future. It is therefore irrelevant what behaviour this rule

makes a transition to, and so the rule yields the empty term " as the next

behaviour;

lift0 lift0 x
t7![[x]]
���!
T0 n ;

"

The rule for $* uses the same method as the lift2 rule to deal with the

three cases when FB reacts �rst, A reacts �rst, or FB and A react simulta-

neously;

$*

FB
fb

����!
T0 nM

FB0 A
a

����!
T0 nM

A0

FB $* A
t7!(fb(t))(a(t))
��������!

T0 nM
FB0 $* A0

The rule for time is as we would expect:

time time
t7!t
���!
T0 n ;

".



CHAPTER 6. BEHAVIOUR DEFINITIONS 96

6.7 Transitions for reactive behaviours

The most important transition rules are those for until-then because they

allow a reactive behaviour to update when an event occurs, which is the pur-

pose of the transition system. When an event occurs, part of the derivation

tree for the transition will be of the form

B
b

����!
T0 n TB

B0 C
c

����!
T0 n TC

C 0

B until C then D
b

����!
T0 n "T

D (ut-a)

where T = ft 2 T0 j c(t)g (this assumes that c is not bottom). This derivation

is only valid when the event speci�ed by C occurs before either B or C react,

that is, when

" T ! TB [ TC :

Otherwise (i.e., when B or C reacts �rst) the derivation is like that for lift2

(+); we introduce a variableM to represent the earlier of TB and TC and use

the following derivation:

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b

����!
T0 nM

B0 until C 0 then D. (ut-b)

As for lift2 (+), this rule, in conjunction with the no-change rule, is suÆcient

to deal with the three cases (i.e., when B reacts �rst, when C reacts �rst,

and when B and C react simultaneously). Notice that we are not concerned

with when D reacts because it is not yet alive. The condition when this

rule applies is when either B or C reacts before the condition speci�ed by C

becomes true, that is, when

M ! " T:



CHAPTER 6. BEHAVIOUR DEFINITIONS 97

What about the case when C becomes true exactly when B or C react,

that is, when " T =M? In this case we give priority to the top-level reactive

behaviour, and make the transition to D as in (ut-a) above.

There is an alternative derivation for (ut-a) that achieves the same result

and is more like (ut-b). The rule obtained is preferred because then the

rules for the two cases are similar. All we need to do is replace TB and TC

in (ut-a) with M which represents the earlier of the two uppersets, that is,

M = TA [ TB. Then the derivation is as in (ut-a) with possible applications

of the no-change rule when TA and TB are not both equal to M . The side

condition when this derivation is valid is " T � M (recall that this rule

applies when B or C react at or after the time/s when C becomes true,

which is when the set " T is a superset of M). Thus, the rule for derivations

like (ut-a), which we call occ, is

occ

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b

����!
T0 n "T

D

�
" T �M

�

An example of applying the occ rule is:

1
t7!1
��!
T n ;

" time >= 1
t7!t�1
���!
T n ;

"

1 until (time >= 1) then 2
t7!1

�����!
T n [1;1)

2 (ex-occ)

Here the set T is given by

T = ft 2 T j (t 7! t � 1)(t)g

= ft 2 T j t � 1g

= [1;1):

The rule when the event does not occur before B or C reacts is called

non-occ and is as follows:



CHAPTER 6. BEHAVIOUR DEFINITIONS 98

non-occ

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b

����!
T0 nM

B0 until C 0 then D
(M ! " T ) .

An example of applying non-occ requires B or C to be a reactive behaviour,

and one that reacts before C becomes true; say B is the behaviour in (ex-occ),

B � 1 until (time >= 1) then 2

and we denote the transition tree for B by X:

X �

1
t7!1
��!
T n ;

" time >= 1
t7!t�1
���!
T n ;

"

1 until (time >= 1) then 2
t7!1

�����!
T n [1;1)

2

Using this as the before-behaviour in a reactive behaviour yields:

X

time >= 2
t7!t�2
���!
T n ;

"

time >= 2
t7!t�2

�����!
T n [1;1)

time >= 2
hno-changei

B until (time >= 2) then 0
t7!1

�����!
T n [1;1)

2 until (time >= 2) then 0

In the preceding discussion we assumed that the condition does not yield

bottom at any time. As discussed in Section 5.2, we can only determine

when the event occurs if the condition becomes true before any times map to

bottom. We can capture this by de�ning the set of times when the condition

is bottom,

Bad = ft 2 T0 j c(t) = ?B g;

as in Section 5.2, and then restricting the occ and non-occ rules by adding

side conditions which ensure that no bottoms have thus far been found. So,

for the occ rule we must add the extra side condition

" T ! " Bad;



CHAPTER 6. BEHAVIOUR DEFINITIONS 99

and for the non-occ rule we require

M ! " Bad:

(The set T is given by

T = ft 2 T0 j c(t) = trueg:)

To deal with reactive behaviours where the condition becomes bottom

before it is true we require the rule

bad-cond

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b0

���!
T0 n ;

"

where b0 is the function that is like b until the condition becomes bottom,

and is then bottom:

b0 = t 7!

�
b(t) t =2 " Bad
?

:

The side condition for this rule just requires the condition to yield bottom

at or before B or C reacts and at or before the condition is bottom;

" Bad � M ^ " Bad �" T () " Bad �M [ " T:

Notice that the side conditions for occ, non-occ and bad-cond are mutually

exclusive and exhaustive. This is necessary for the rules to be deterministic

because the premises are the same in all these rules.

We now have transition rules for lift0, $*, time, and until-then. The

next step is to de�ne a rule for letbeh.

6.8 Transitions for recursive reactive de�ni-

tions

Recall that our motivation for developing the transition rules was to capture

a procedure that enables us to give meanings to recursive reactive de�nitions



CHAPTER 6. BEHAVIOUR DEFINITIONS 100

such as

letbeh a = 1 until time >= a then 2 in a: (6.8)

A transition rule for de�nitions will require an environment to map variables

to values. In keeping with our inference style rules we will adopt the syntax

often used for deductions; if E can make a transition to E 0 in the environment

u, we write

u ` E
e

����!
T0 n Te

E':

The letbeh rule interprets a de�nition

letbeh a = E in F

using the transition E makes in the environment where a maps to the non-

reactive evaluation of E (i.e., the value e on the top of the arrow). This gives

the rule

[uja : e] ` E
e

����!
T0 nM

E' [uja : e] ` F
f

����!
T0 nM

F'

u ` letbeh a = E in F
f

����!
T0 nM

letbeh a = E 0 in F 0

(Again, M is used in the same way as in the lift2 (+) rule.) This approach

does not have the problem encountered in Section 6.3 because E is evaluated

non-reactively.

It is instructive to apply these rules to Example 6.8 above. This requires

a rule for lift2 (=>) analogous to the lift2 (+) rule.

6.9 Transitions for integral behaviours

In an integral behaviour, the integrand may be reactive. This presents no

real diÆculty, however, because we can integrate over non-reactive intervals|

which are obtained using the transition rules|and then add up the pieces.



CHAPTER 6. BEHAVIOUR DEFINITIONS 101

For example, using the transition rules we have already seen that

1 until (time >= 1) then 2

represents the behaviour that is t 7! 1 over the interval T n [1;1) = [0; 1)

and t 7! 2 afterwards. The integral of this behaviour is the integral of these

two parts, adding the overall interval of t 7! 1 over [0; 1) (which equals 1) to

the second part:

t 7!

� R t
0
1:ds t 2 [0; 1)

1 +
R t
1
2:ds

= t 7!

�
t t 2 [0; 1)
1 + 2t

Mathematically this is just integrating a discontinuous function by adding

together the integrals over the continuous parts. Hence the transition rule

for integral evaluates the integrand over a non-reactive interval and then

computes the integral, that is,

integral

A
a

����!
T0 nM

A0

integral A
t7!

R
t

inf(T0)
a(s):ds

����������!
T0 nM

X

To complete the rule we need to de�ne X, the behaviour for the next tran-

sition. The next transition will evaluate the behaviour from the times in

M , and since integrals are cumulative we must add the integral so far (i.e.,

accumulated over the previous intervals) to this. So we must add

k =

Z inf(M)

inf(T0)

a(s):ds

to the integral of the new integrand, A0. The value k is a real number,

however, and we require the representation of this number in CONTROL.

The function Real 2 R ! Real serves this purpose; it is the inverse of [[ ]] for

terms of type Real. Using Real we de�ne

X � Real

 Z inf(M)

inf(T0)

a(s):ds

!
+ integral A':



CHAPTER 6. BEHAVIOUR DEFINITIONS 102

A similar problem arises for integrals with badly behaved integrands as

for reactive behaviours with bad conditions. The integral rule above requires

the side condition that a is integrable on the interval T0 nM . If this is not

the case, then the following rule applies:

bad-integral

A
a

����!
T0 nM

A0

integral A
t7!?R���!
T0 n ;

"

This asserts that if a is not integrable on the interval T0 nM , then the value

of the integral expression is bottom for all times in the future. The reason

for this is that integrals are cumulative and so if we do not know its value

over some interval, then we cannot determine its value at any time after

that interval. As an example, we cannot integrate the behaviour

1 / (time - 1)

because there is a division by 0 at time 1. Therefore the bad-integral rule

applies and yields t 7! ?R for this behaviour.

6.10 Transitions for recursive integral de�ni-

tions

Unlike recursive reactive de�nitions, recursive integral de�nitions do mean

the solutions to the corresponding equations. For example, the de�nition

a = 1 + integral a

means a solution to the integral equation

x(t) = 1 +

Z t

0

x(s):ds:

This equation has a unique solution, x(t) = et. In general, however, there

may not be a unique solution, and such de�nitions denote t 7! ?R.



CHAPTER 6. BEHAVIOUR DEFINITIONS 103

We need to obtain integral equations from side conditions in the transition

system. This means introducing mathematical variables, such as x above,

and equating them to the result of the right hand side of a recursive de�nition

in the letbeh rule. More explicitly, the right hand side of a recursive integral

de�nition de�ning a variable a is evaluated in the environment where a maps

to x, and the result of this is equated with x. Thus, assuming x is a new

variable, the letbeh rule is modi�ed as follows:

[uja : x] ` E
e

����!
T0 nM

E' [uja : x] ` F
f

����!
T0 nM

F'

u ` letbeh a = E in F
f

����!
T0 nM

letbeh a = E 0 in F 0
(x = e)

It is easy to verify that this new rule, together with the integral rule, gives

the correct integral equation for the example from the start of this section.

Note that for non-integrals, the introduction of the variable x is super
u-

ous, and eliminating it yields the same result as for the previous letbeh

rule. Therefore our new letbeh rule works as before for recursive reactive

de�nitions.

The values above the arrows are no longer the denotations of behaviours

over non-reactive intervals because they may contain free variables. These

free variables are constrained by side conditions, and have a �xed value when-

ever the program is meaningful. So the transition rules are used to form

equations, and the solutions to these equations are the denotations. This

interpretation of the transition rules is explained further in Section 9.1.

Before we introduced the above rules to accommodate integrals, we still

needed to solve equations to �nd the denotations of programs; in particular,

to decide whether the occ or non-occ rule should be used it was necessary

to solve a side condition. So this is a fundamental feature of our semantics,

and not due solely to integration. Of course, solving equations|particularly



CHAPTER 6. BEHAVIOUR DEFINITIONS 104

integral equations|may involve very diÆcult mathematical analysis. This

was observed in Section 5.6 in the context of plain integrals, and clearly

allowing integral equations greatly increases the diÆculty of the analysis.

6.11 Avenue on delayed switching

In Section 5.8 we considered alternative semantics for until-then which were

still exact in the sense that there was not a �nite length of time between the

times when the condition becomes true and the reactive behaviour switch-

ing. It is now worth reconsidering these alternatives in relation to recursive

reactive de�nitions in case they provide a simpler semantics.

In Section 6.3 we proved that some recursive reactive programs have no

meaning if we take the view that recursive de�nitions are equations. This is

the usual interpretation of recursive de�nitions, so it is perhaps more satisfac-

tory to change the semantics of until-then than devise a new interpretation

of recursive de�nitions. However, we shall see that none of the alternative

semantics for until-then make this possible.

There are two possible alternative semantics for until-then which we

called Fran and Early. We will consider only the Fran alternative in this

section; the analysis for Early is similar.

The Fran alternative uses Elliott and Hudak's semantics for untilB and

predicate in Fran for until-then in CONTROL,

[[B until C then D]]t0 u = t 7!

�
[[B]]t0 u t t � te
[[D]]te u t

where T = ft 2 T j t � t0 ^ [[C]]t0 u tg
te = inf(T )

Here the values t0 and te are times; these replace the sets of times used in

our semantics because every event has an event time. Note that we have



CHAPTER 6. BEHAVIOUR DEFINITIONS 105

ignored the possibility that the condition may yield ? at some times. With

this semantics a reactive behaviour switches from B to D strictly after the

in�mum of the times when C is true (te). Part of the reason for switching

strictly after is to avoid the problem with recursive de�nitions. The idea is

that a recursive reactive behaviour of the form

letbeh a = B until C[a] then D in F

always yields B at the time when the event occurs, and so the condition (in

terms of a) is not a�ected by a switching. For example, given the term

letbeh b = 1 until (time >= b) then 2 in b

we obtain the corresponding equations:

x = t 7!

�
1 t � te
2

te = inf(ft 2 T j t � x(t)g)

This has one solution,

x = t 7!

�
1 t � 1
2

This approach looks very promising until we consider some other exam-

ples. The following program does not have any meaning under this semantics:

letbeh b = 1 until (time > b) then 2 in b (6.9)

In other words, there are no solutions to the following equations:

x = t 7!

�
1 t � te
2

te = inf(ft 2 T j t > x(t)g)

One could be argued that such programs should not have any meaning, but

there is a more serious problem. Consider the program

letbeh b = 1 until (time > b) then 0 in b (6.10)



CHAPTER 6. BEHAVIOUR DEFINITIONS 106

which gives the equations,

x = t 7!

�
1 t � te
0

te = inf(ft 2 T j t > x(t)g)

These equations have a solution, which is anomalous because 6.9 is the same

program as 6.10 except for the after-behaviour. So under this semantics the

after-behaviour can in
uence whether the event can be determined or not.

This breaks the causality principle that things in the future cannot a�ect the

present.

In summary, Elliott and Hudak's semantics for untilB and predicate

in Fran can be used for until-then in CONTROL, but this does not pro-

vide a reasonable semantics for recursive de�nitions under the equational

interpretation of de�nitions. In fact, it is worse than using our semantics

for until-then because although it gives a meaning to more programs it

violates the causality principle.

Chapter summary

Some behaviours can only be expressed if we can refer to them in their own

de�nition, in other words, if we can de�ne them recursively. In particular, in

some reactive behaviours the condition needs to refer to the behaviour itself.

This technique is not an equational approach to de�ning behaviours recur-

sively because there are no solutions to the resulting equations. The intended

meaning of such de�nitions relies on the operational notion of non-reactive

evaluation, and this can be formalised by a transition system. Integrals can

also be accommodated by the transition system so that recursive integral

de�nitions make sense.



Chapter 7

Functions and behaviours

So far we have seen operators for constructing behaviours, but we have no

facilities for:

� Parameterising a behaviour by a variable.

� Constructing a periodic, or repeating, behaviour (or more generally a

behaviour with an in�nite number of states).

Most programming languages provide parameterised expressions that can be

named and referred to elsewhere. This allows the same expression to be

re-used with di�erent values of the parameter. These parameterised expres-

sions are often called functions because they behave similarly to functions

in mathematics. Another ingredient universal in programming is repetition,

often provided for by recursion in functional languages and by loops in im-

perative languages. Recursion in CONTROL makes it possible to describe

periodic behaviours; that is, behaviours that repeat the same values over

some interval, as sin does. In imperative and functional programming the

combination of parameterising code by variables and repetition is essential

for many programs. We will see that this also applies to CONTROL when

we introduce functions and recursion.

107



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 108

Functions and recursion are key aspects of PCF, and the mechanisms we

adopt for CONTROL are the same. However, in addition to recursive func-

tions CONTROL has recursive behaviours which we discussed in Chapter 6.

These two mechanisms for recursive de�nitions are quite di�erent, but, as

we shall see, they complement each other to provide a powerful program-

ming paradigm. In this chapter we show how the semantics for the separate

mechanisms can be uni�ed within one language.

7.1 Functions

Consider the term:

integral (time * lift0 2) + integral (time * lift0 3): (7.1)

Assuming that we can de�ne a function f of a variable x by

f x = integral (time * lift0 x); (7.2)

then Term 7.1 can be re-expressed as

f 2 + f 3:

This saves writing almost the same expression twice.

We will use �-notation for functions in CONTROL. A term

�x:L

represents a function that takes an argument and yields the term L with the

value of the argument substituted for all free occurrences of x. With this

notation we would write f from (7.2) as follows:

f = �x. integral (time * lift0 x):



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 109

In some languages there is a let construct so that functions can be de�ned

and then used within the main program term. Using such a facility Term 7.1

could be written as

let f = �x. integral (time * lift0 x)

in f 2 + f 3:

In general, the let construct binds a variable, f , to a term, F , within a body,

M,

let f = F in M:

However, we already have a mechanism for binding variables within a term,

�-abstraction. The let notation is equivalent to an abstraction, to abstract

over f in M , and an application, to apply F to this abstraction. Lambda

notation therefore subsumes let, and we can de�ne let as syntactic sugar

as follows:

let f = F in M � (�f:M)F:

We can also de�ne the function de�nition notation we used in (7.2) as syn-

tactic sugar:

let f n = F in M � let f = �n.F in M:

We will now give a brief description of the syntax and semantics of �-

terms. Firstly, recall the syntax of variables, �-abstractions and applications

from Chapter 4,

Types � ::= � -> � function types

Terms E ::= x variables

j �x:�.E �-abstractions

j E E applications:



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 110

Notice that a type must be supplied for �-bound variables. In the above

discussion we omitted types for simplicity, but from now on types will be

given for all bound variables.

Both the operational and denotational semantics of �-terms are important

in our theory of CONTROL. The following informal descriptions are made

precise in Chapter 8.

The operational semantics of �-terms is based on �-reduction, which de-

�nes the application of a function (i.e., an abstraction) to an argument to be

the result of substituting the argument for the bound variable,

� � rule (�x : �:L)N ! L=[x : N ];

where L=[x : N ] denotes substituting the term N for free occurrences of the

variable x in L.

The denotational semantics requires an environment to be passed to the

semantic function. The environment assigns a value to every free variable in

the term. The semantic equations are as follows, where x is a variable and u

is an environment: for variables,

[[x]]u = ux;

�-abstractions represent actual functions,

[[�x : �:L]]u = d 7! [[L]][ujx : d];

and applications are de�ned as function application,

[[MN ]]u = ([[M ]]u)([[N ]]u):

(The formulas on the right hand side are guaranteed to be type correct by

our use of the simple type system.)



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 111

7.2 Recursive functions

Although �-abstractions are convenient, they do not by themselves add much

expressiveness to the language because of the restrictions imposed by the

simple type system. In particular, it is not possible to describe repeated

patterns of computation, such as a behaviour that repeats over some interval.

In this section we will explain this point and introduce a recursion operator

that allows a function to call itself, which enables repeated computation.

Operationally this operator is straightforward, but denotationally it is more

diÆcult to capture. However, we will show that the usual treatment of

recursive functions is compatible with our semantics of behaviour operators

(this does not include recursive behaviours as discussed in Chapter 6).

A recursive de�nition has the form

f = F (7.3)

where the function f recurs on the right hand side, that is, in F . If we wrote

this de�nition using let then the occurrence of f on the right hand side

would be free, and not associated with the function f being de�ned.

In the untyped �-calculus it is possible to de�ne recursion combinators

such as

Y � �f:(�x:f(xx))(�x:f(xx)):

They have the property that

Y G! G(Y G); (7.4)

and this allows recursive de�nitions (7.3) to be written as

Y (�f:F ):



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 112

To see how this de�nition provides recursion, consider the following reduc-

tion:

Y (�f:F )

! hby 7:4i

(�f:F )(Y (�f:F ))

! h�-reductioni

F=[f : (Y (�f:F ))]:

In the function body F the variable f is replaced by Y (�f:F ) which is the

de�nition of f , and by the same reduction sequence the de�nition of f can be

unwound as many times as necessary. The combinator Y is not a valid term

of the simply typed �-calculus because xx is untypable (x is a function and

its own argument). In fact, all recursion combinators are untypable in the

simply typed �-calculus, and therefore we need a built in recursion operator

in CONTROL to enable us to write recursive functions.

We could de�ne a recursion operator, say rec, that allows us to write

recursive function in the same way that Y does in the untyped �-calculus,

rec (�f : �:F):

But in such de�nitions we always write an abstraction to abstract over f in

F . Therefore an alternative is to de�ne a binding construct, �, which binds

a variable within a function body recursively, giving the equivalent term

�f : �:F

We prefer this construct because it avoids an extra �-abstraction and makes

it clear which variable is bound recursively.



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 113

As for �-abstractions, we can de�ne a let mechanism as syntactic sugar:

letrec f = F in M � let f = �f : �:F in M

� (�f : �:M)(�f : �:F ):

Notice that we require a type for f on the right hand side. Strictly speaking,

types should be given in all letrec de�nitions, but as letrec is not part of

the formal language we will not do so.

Operationally the semantics of recursive de�nitions is very simple; we

require the following reduction rule to unwind a recursive function one level:

�-rule �f : �:F ! F=[f : (�f : �:F )]

This rule gives the equivalent term in the simply typed �-calculus to reduction

on Y (�f:F ) in the untyped �-calculus.

Denotationally the semantics of � is more complicated. We discussed

domains for function types in Chapter 4 and described a domain structure

that ensures recursive de�nitions have a unique meaning. We will complete

the picture by showing how that theory enables us to de�ne the meaning of

recursive de�nitions.

In functional languages a recursive function de�nition such as

fact n = if n == 0 then 1 else n * (fact (n-1))

is interpreted as the solution to an equation involving an unknown f

f(n) =

�
1 n = 0
n� (f(n� 1))

This is why functional languages are declarative|de�nitions are equations

that always hold, so the right hand side can always be substituted for the

function. So the meaning of fact is a solution for f in this equation, but



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 114

unfortunately there are many solutions:

f?(n) =

�
n! n � 0
?

f0(n) =

�
n! n � 0
0

fx(n) =

8<
:

n! n � 0
x n = �1

(�1)n�1x�
Qjnj�1

i=1
1
i

The last solution fx is valid for any value of x, so there are in�nitely many

solutions.

In general there are many solutions to equations arising from recursive

de�nitions, but there is only ever one solution that agrees with the opera-

tional interpretation of recursive de�nitions. Operationally, we evaluate a

recursive de�nition by unwinding the function body and substituting for the

argument each time a recursive call is made. The solution that agrees with

evaluation is always the one that satis�es the equations and terminates for

as few arguments as possible, that is, the least de�ned solution (for the ex-

ample above this is f?). Intuitively this is because the term does not contain

any information about the result when computation loops inde�nitely, so

the result should be bottom|the least de�ned value. For example, there is

nothing in the de�nition of fact to suggest that the result should be 0, or

any other number, for negative arguments.

Suppose that g0 is the meaning of the recursive de�nition �f : �:F in

some environment u; that is,

g0 = [[�f : �:F ]]u (7.5)

The meaning should remain the same after a �-reduction step; that is, the



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 115

denotational semantics should agree with the operational semantics. Thus,

g0

= hby 7.5i

[[�f : �:F ]]u

= h�i

[[F=[f : (�f : �:F )]]]u

= hsubstitutioni

[[F ]][ujf : [[(�f : �:F )]]]

= hby 7.5i

[[F ]][ujf : g0]:

Therefore g0 is certainly a solution to the following equation in g:

g = [[F ]][ujf : g]:

This equation is usually expressed equivalently as �nding a �xed point of the

function

G = g 7! [[F ]][ujf : g]:

The solution we require, g0, is certainly a �xed point of G, but in general

there may be many �xed points. Fortunately, there is a way of selecting the

one that corresponds to our operational semantics|the solution we require

is always the least �xed point with respect to the ordering on domains we

de�ned in Section 4.2. Moreover, the following theorem guarantees that for

any G arising from a recursive de�nition, there must be a least �xed point.

Theorem 7.1 (Least fixed point) If G : D ! D is an !-continuous

function on the CPO D, then G has a least �xed point given by

g0 =
1G
n=0

Gn(?) 2



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 116

So the Least Fixed Point Theorem guarantees that all recursive de�nitions

can be assigned a meaning, and provides a formula for these meanings. Be-

cause of the ordering on domains, we expect these meanings to correspond to

the functions obtained from an operational perspective, and it can be shown

that this is so.

7.3 Examples of recursive functions

Using recursive functions we can write many new behaviours that cannot

be expressed without them. For example, the following recursive function

de�nes a reactive behaviour that increments by one as each second passes:

letrec a n = n until (time>=n+1) then a(n+1) in a 0

The right hand side of the de�nition is a reactive behaviour that yields n

until the time equals n + 1. At this time it calls itself with the argument

n + 1, so every second the behaviour increases by 1. If �-abstractions or

recursive functions were not part of CONTROL, and no other mechanisms

were introduced, it would not be possible to write a program which yields an

equivalent behaviour.

Formally we can interpret the above program operationally and deno-

tationally given the semantic techniques introduced thus far. We begin by

desugaring the program as follows (we omit type declarations on � and �



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 117

bound variables for clarity):

letrec a n = n until (time>=n+1) then a(n+1) in a 0

�

letrec a = �n.n until (time>=n+1) then a(n+1)| {z }
A

in a 0

�

let a = �a.A in a 0

�

(�a.a 0) (�a.A)

The �nal line is a program in the core syntax, and therefore it can be inter-

preted operationally by the � and � rules:

(�a.a 0) (�a.A)

! h�i

(�a.A) 0 (7.6)

! h�i

(A=[a:�a.A]) 0

�

(�n.n until (time>=n+1) then (�a.A)(n+1))0

! h�i

0 until (time>=0+1) then (�a.A) (0+1)

�

0 until (time>=1) then (�a.A) 1

We now have an until-then term at the top-level. This can be evaluated

using the transition rules from Chapter 6, and we �nd that the behaviour



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 118

yields 0 over the interval [0, 1) and then behaves like (�a.A) 1. The term

(�a.A) 1 is exactly the same as Term 7.6 above except 1 replaces 0. Thus,

by replacing 0 with 1 in the above evaluation it is straightforward to calculate

that over the interval [1, 2) the behaviour yields 1 and then behaves like

(�a.A) 2. An inductive argument can be used to �nd the complete meaning

of the program, e�ectively capturing the repetition of this procedure.

We will now interpret the same program denotationally, beginning with

the unsugared program,

(�a.a 0) (�a.A) (7.7)

We need to apply the semantic equations for � and �, but our semantic

function also requires the set of times when the behaviour is alive, initially

T, as discussed in Chapter 5. Thus,

[[(�a.a 0) (�a.A)]](T)[]

= h� and �i

(d 7! [[a 0]](T)[a : d])(
1G
n=0

(g 7! [[A]](T)[a : g])n?)

=

(d 7! d(0))(
1G
n=0

(g 7! [[A]](T)[a : g])n?)

=

(
1G
n=0

(g 7! [[A]](T)[a : g])n?)0 (7.8)



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 119

Next we must evaluate g 7! [[A]](T)[a : g]. We will do this as a side step:

g 7! [[A]](T)[a : g]

=

g 7! [[�n.n until time>=n+1 then a(n+1)]](T)[a : g]

= h�i

g 7! d 7! [[n until time>=n+1 then a(n+1)]](T)[a : gjn : d]

= huntil-theni

g 7! d 7! t 7!

�
[[n]](T)[a : gjn : d] [[time>=n+1]](T)[a : gjn : d]
[[a(n+1)]](" T )[a : gjn : d]

=

g 7! d 7! t 7!

�
d t � d+ 1
g(d+ 1)

Now substituting this formula in the Equation 7.8 yields the value of Term 7.7

as follows:

[[(�a.a 0) (�a.A)]](T)[]

=

(
1G
n=0

(g 7! d 7! t 7!

�
d t � d+ 1
g(d+ 1)

)n?)0

7.4 Recursive behaviours revisited

In Chapter 6 we studied a construct for recursive behaviour de�nitions with

the syntax

letbeh a = B in F:

This is similar to the syntax for letrec and we can de�ne letbeh as syntactic

sugar in terms of a recursive binding construct, �, and a �-abstraction (as



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 120

we did for letrec) as follows:

letbeh a = B in F � let a = �a : �:B in F

� (�a : �:F )(�a : �:B)

The example from Section 6.3,

letbeh a = 1 until (time >= a) then 2 in a;

can then be expressed as

�a:Beh Real.1 until (time >= a) then 2:

To interpret this behaviour we must use the transition rules because they

capture non-reactive evaluation and this is essential for making sense of terms

such as this one. In other words, we can �nd the meaning of such terms using

the operational semantics, but not using the purely denotational methods.

The denotational semantics developed in Chapter 5 and in this chapter does

not account for the complete language because it does not interpret � de�-

nitions. For this reason our complete semantics in the next chapter will only

describe the operational style semantics based on the transition rules. It is

unlikely that any compositional denotational semantics extending ours could

capture �-de�nitions because of the problem discussed in Chapter 6 with

recursive reactive behaviours.

7.5 Combining recursive behaviours and re-

cursive functions

We now have described two mechanisms for de�ning a behaviour recursively:

letbeh and letrec. They both work very di�erently, and have di�erent



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 121

semantics. In this section we will discuss the following points regarding

these recursion mechanisms:

� Why we need both.

� When each one should be used.

� How both can be used in the same program.

� The combined semantics.

We will consider examples to demonstrate why both mechanisms are

needed. There is no way to program

letbeh a = 1 until (time >= a) then 2 in a

using letrec because there are no solutions to the corresponding equations

(as we saw in Section 6.3). This was the motivation for the letbeh con-

struct. It is essential that a on the right hand side of the de�nition refers to

behaviour being de�ned, and unwinding the de�nition by replacing a by the

right hand side, as letrec does, leads to an in�nite regression. This program

is not describing a repeating pattern, as letrec does, but rather it assumes

the existence of a behaviour object, a, and refers to this object in its own

de�nition. As we saw in Chapter 6, the method of non-reactive evaluation

allows us to interpret such de�nitions correctly.

Similarly, we cannot write the program

letrec a n = n until (time>=n+1) then a(n+1) in a 0

using letbeh. The letbeh construct is only de�ned for behaviours, and in

this de�nition a is a function from numbers to behaviours. Furthermore,

there is no simple extension of letbeh to account for functions because this



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 122

interpretation would suggest there are an in�nite number of behaviour ob-

jects, one for each value of the function argument. But recursive de�nitions

such as this example do not refer to the behaviour with the same value of the

argument, so no behaviour object refers to itself and the letbeh mechanism

is therefore unnecessary. The usual semantics of letrec gives exactly the

interpretation we have in mind for such functions.

We will now consider when we should use each mechanism. When we

have an actual behaviour object that can only be de�ned in terms of itself

then we must use letbeh. When we have a function that yields a behaviour

when supplied with an argument, and that behaviour is reactive and calls

itself in when the behaviour reacts, we must use letrec. In fact, we do

not necessarily require a function to write a letrec de�nition. Consider the

behaviour that yields the time until the time is 1, and then repeats these

values every second. Its graph is a saw wave that increases linearly with

gradient 1 for one second, and then drops instantly back to 0:

-

6Value

Time0 1 2 3

1

2

3

�
�
�

b

r�
�
�

b

r�
�
�

b

r

This can be described by the following term:

letrec a = (integral 1) until (integral 1 >= 1) then a in a:



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 123

We use letrec here because we are describing a repeating behaviour. This

is similar to the program ones,

letrec ones = 1 : ones in ones;

in a lazy functional language with lists (e.g., Haskell), which yields the in�nite

list of ones. Both programs de�ne a recursive value rather than a recursive

function.

It is useful to use both recursion mechanisms in the same program as the

next example demonstrates:

letbeh

p = integral

(

letrec

v = 1 until p >= 1 then

-1 until p <= -1 then v

in v

)

in p

This behaviour is 0 initially and increases at a rate, v, of 1 until it reaches

1. Then it increases at a rate of -1 until it reaches -1 and then increases at

a rate of 1 again. Thus it is a triangle wave with amplitude 1 and period

4. Graphically we may think of this program as describing the horizontal

position of a ball bouncing (elastically) between two walls at -1 and 1, and

travelling at a constant speed of 1.

It is not diÆcult to write an equivalent behaviour that does not use

letbeh because it is easy to work out what p is on the right hand side and

substitute it for an equivalent behaviour. However, if in the above program



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 124

we add some term to the integral expression then it becomes more diÆcult to

solve for p, and in some cases impossible. Therefore many slight variations

of the above program make essential use of both letbeh and letrec.

Our �nal question concerns the semantics of programs like the example

above that use both recursion mechanisms in the same program. As we

said earlier, our denotational semantics does not account for letbeh so we

must use the operational semantics provided by the transition system. To

accommodate �-abstractions and recursive de�nitions we need to extend the

transition system. The method for doing this derives from the example in

Section 7.3. A behaviour term that is an application or recursive function

at the top-level must be evaluated by �rst performing some evaluation steps

using the � and � rules. This is repeated until a behaviour is obtained at the

top-level; that is, the top-level syntactic construct is lift0, $*, until-then,

integral or �. Then the transition rules can be applied to interpret the

term. This can be achieved by adding the following rule to the transition

system:

reduce

E ! E 00 E 00 e
����!
T0 nM

E 0

E
e

����!
T0 nM

E 0

A term E that is an application or recursive function is �rst evaluated one

step to the term E 00, and then if E 00 can make a tranistion to E 0 the overall

term can make this transition. Note that the reduce rule may need to be

applied repeatedly, as many times as necessary to obtain a behaviour at the

top-level. The evaluation relation! is de�ned precisely in the next chapter.

7.6 Local and global time

In this section we provide de�nitions of local and global time behaviours.

This serves three purposes: �rst, it demonstrates that the behaviour time



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 125

does not need to be a primitive; second, that we can de�ne local time (the

time since the enclosing behaviour came alive); and third, it further illustrates

the di�erence between letbeh and letrec.

The following program de�nes a behaviour ltime that gives the time

since the enclosing behaviour came alive; that is, the local time. By using

this behaviour in a reactive behaviour we can observe the semantics of local

time, for example,

letrec ltime = integral 1

in ltime until (time >= 1) then ltime

By applying the semantics it is straightforward to show that the graph cor-

responding to this behaviour is

-

6Value

Time0 1 2 3

1

2

3

�
�
�

b

r�
�
�
�
�
�
��

Intuitively, letrec creates a recursive binding for ltime and each occurrence

in the main body is unwound by the � rule. Therefore the second ltime is a

new behaviour that is alive from time 1 onwards, and it equals the integral of

1 from time 1 onwards. In general, behaviours de�ned using letrec produce

a family of behaviours, one for each occurrence of the behaviour in the main

body, and each one comes alive when the enclosing behaviour comes alive.

This explains why a behaviour such as ltime seems to be reset and start



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 126

integrating from zero again after the event. We would expect functions that

yield behaviours to work this way because when such functions are applied

to an argument a new behaviour results, but the same applies to behaviour

values such as in the example above.

Now let us write the same program but with letbeh instead of letrec

and gtime instead of ltime,

letbeh gtime = integral 1

in gtime until (time >= 1) then gtime

Applying the semantics yields a behaviour whose graph is:

-

6Value

Time0 1 2 3

1

2

3

�
�
�
�
�
�
�
�
�
�

In this program the second occurrence of the behaviour gtime is not reset at

time 1. Intuitively, a behaviour de�ned using letbeh is an object, and that

object is the same wherever it is referred to in the main body. Examining the

semantics we can con�rm this because the � transition rule updates the body

(in this example, integral 1) in the new behaviour, thus a letbeh de�nition

lifts a behaviour out of the main body and ensures that all references to this

behaviour yield this value.



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 127

7.7 Multiple de�nitions

We have seen that both letbeh and letrec are useful recursion mechanisms

and that sometimes we need both in the same program. To allow recursive

functions and behaviours that are mutually recursive, we require a form of

de�nition that enables us to give both simultaneously. In PCF multiple

mutually recursive de�nitions can be dealt with by forming a tuple of the

variables and a tuple of the right hand sides, and forming a single recursive

de�nition (see [Rey98, pp. 301] or [Mit96, pp. 64]). For example, for two

mutually recursive de�nitions:

letrec f = F [f; g]
g = G[f; g]

in M
�

letrec (f; g) = (F [f; g]; G[f; g])
in M

This will not work for us because we have two di�erent recursion mechanisms,

and so multiple de�nitions cannot be reduced to a single de�nition using

tuples.

There is another standard method which reduces multiple de�nitions into

a nested de�nition (see [Ten91, pp. 111] or [Mit96, pp. 338]). For two mutu-

ally recursive de�nitions the translation is as follows:

letrec f = F [f; g]
g = G[f; g]

in M
�

letrec f = letrec g = G[f; g]
in F [f; g]

in letrec g = G[f; g]
in M

The right hand side of the de�nition for f de�nes g so that it can be referred

to in the expression F [f; g]. The main body also de�nes g, this time so

that it can be referred to in the term M . The variable f can be referred to

on the right hand side of its de�nition, because letrec allows this, and in

the main body of course. Therefore this translation preserves the meaning

of the overall term. The only slight drawback is that the de�nition of g is

duplicated.



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 128

This translation works for multiple letrec and letbeh de�nitions be-

cause the appropriate construct can be used for each one. Thus, we can add

a general let mechanism for multiple de�nitions, which allows either recur-

sion mechanism to be used for each de�nition by tagging the de�nition; for

example:

let beh a = A

rec f = F

in M.

This program de�nes a recursive behaviour a, and a recursive function f ,

and they can be mutually recursive. Such programs can be translated into

the core syntax using the method described above. In this case eliminating

the multiple de�nitions gives

letbeh a = letrec f = F

in A

in letrec f = F

in M.

The translation may be continued by desugaring letbeh and letrec to ob-

tain a term in the core syntax.

7.8 Avenue on Zeno

Many reactive systems run forever, sending outputs continually and reacting

to inputs. This is di�erent to non-termination when a program gets into an

in�nite loop, because outputs are always being produced. An example of

such a program is the one we saw earlier which increments a behaviour by

one each second. It is also possible to write programs that become stuck

temporally, yet never stop producing output. Here is an example:



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 129

letrec zeno n = n until time>=((n-1)/n) then zeno(n+1)

in zeno 1

In this program a sequence of events occur at times 0
1
; 1
2
; 3
4
; 4
5
; : : : , and each

time the value of the behaviour increases by 1. The limit of this sequence of

event times is 1, so there are in�nitely many events that occur before time 1.

We cannot say anything about the value of this behaviour at or after time 1

because it never reaches time 1.

Semantically we should regard values of this behaviour after time 1 to be

?. However, our semantics cannot make this explicit because it is not possible

in general to determine when a behaviour will become stuck temporally. We

can use our semantics to reason about the value of terms such as these, but

unfortunately it is not true in general that our semantics gives the value of

behaviours at all times. Although this is a limitation, it is no worse than

being unable to determine which values terminate in PCF. Furthermore, in

many cases, such as for zeno, using meta-level reasoning we are able to

identify when a behaviour will become stuck temporally.

Chapter summary

The functional subset of CONTROL has the same operational and denota-

tional semantics as PCF. In this chapter we saw how the operational seman-

tics can be combined with our semantics of behaviours, and in particular

how the two di�erent recursion mechanisms can be incorporated. This in-

volved adding a rule to the transition system for reducing �-abstractions and

recursive functions. Then we considered a general let construct for multi-

ple mutually recursive letrec and letbeh de�nitions. This is based on a

translation that converts multiple mutually recursive de�nitions into a nested

recursive de�nition. This way terms can be translated into the core syntax



CHAPTER 7. FUNCTIONS AND BEHAVIOURS 130

and evaluated by the operational semantics.



Chapter 8

Complete formal semantics

In this chapter we present a complete formal semantics for CONTROL. This

brings together the development from the preceding chapters, and formalises

the type system, evaluation rules and transition rules. The semantics is

described bottom up so that all parts are de�ned before they are used. These

parts are then brought together to give a semantics for terms.

8.1 Syntax

The abstract syntax of CONTROL is as follows (x represents variables):

Types � ::= Real j Bool j �->� j Beh �

Constants K ::= 0 j 1 j : : : j true j false j + j : : : j if� j : : :

Terms E ::= K j x j �x:�.E j E E j �x:�.E j

lift0 E j E $* E j integral E j

E until E then E j �x:�.E

This abstract grammar is ambiguous if interpreted as a concrete context-free

grammar. Therefore, when we write terms they must be fully parenthesised

to avoid ambiguity. However, we can relax this requirement, and thereby

make terms more readable, by declaring the precedence and associativity

131



CHAPTER 8. COMPLETE FORMAL SEMANTICS 132

of each construct. (This is useful for discussing terms, but is not part of

the formal language description.) The constructs listed in descending order

of precedence, and grouped into constructs with equal precedence, are as

follows:

Types Beh, ->

Terms (lift0, integral), $*, until-then, (�, �, �)

As usual, function types associate to the right and function application as-

sociates to the left|similarly for behaviour application. The until-then

operator is neither left nor right associative. The constants assume their

usual precedence and associativity.

Built in functions are included as constants. A full list of constants is

given in Appendix A.

Free variables are de�ned as follows:

Definition The set of free variables of a term E is given by FV (E), which

is de�ned by the following equations:

FV (0) = fg

(and similarly for all constants),

FV (x) = fxg

FV (�x:�.L) = FV (L) n fxg

(and similarly for � and �),

FV (MN) = FV (M) [ FV (N)

(and similarly for all the remaining constructs). 2



CHAPTER 8. COMPLETE FORMAL SEMANTICS 133

A term that has no free variables is closed, and otherwise it is open. A

CONTROL program is a closed term.

We sometimes want to distinguish non-behaviour terms from behaviour

terms. The set of non-behaviour terms can be de�ned syntactically, rather

than via types, as follows:

NonBeh E ::= K j x j �x:�.E j E E j �x:�.E.

There are no behaviour constants in CONTROL.

8.2 Type system

A typing judgement asserts that a term E has type � in a context �, and is

written as

� ` E : �:

The context � gives the types of the free variables in E. Contexts are de�ned

as follows:

Definition A context � 2 Context is a partial function from variables

to types:

Context = Variable* Type: 2

A context � is valid for a term E if it assigns types to all the free variables

in E, that is, if

FV (dom �) � FV (E):

We use inference rules to specify which typing judgements are valid; that

is, valid typing judgements in our type system are those that can be derived

using the inference rules given in Figure 8.1. We use standard inference style



CHAPTER 8. COMPLETE FORMAL SEMANTICS 134

rules (see [Ten91] or [Car97]) with one notational shorthand: if the type

assignment is the same for all the premises as for the conclusion, then we

leave it out.

All constants have a type rule, or more precisely, a type axiom because

there are no premises. The types of all the constants in CONTROL are

given in Appendix A from which the corresponding type rules can be inferred.

Some rules, such as the rule for if�, are axiom schemas which de�ne a family

of constants, in this case an if function for each type.

The lift0 typing rule has a side condition, x 2 NonBeh. This is required

to ensure that the argument to lift0 is not a behaviour type, as discussed

in Section 5.1.

The rules for $*, until-then, and integral are straightforward. The

var, �, app and � rules are standard for PCF-like languages (see [Rey98,

pp. 319]). The construct � is the recursive binding mechanism for behaviours

from Chapter 6.

8.3 Explicit typing

We take an intrinsic view of types, which means that only terms that have a

valid typing judgement have any meaning, and that the meaning of a term

may depend on the typing judgement, not just on the term itself. In general,

if the meaning of a term may depend on its typing judgement, then terms

with many di�erent typing judgements may not have a unique meaning.

However, we shall see that given a valid context there is a unique typing

judgement for every term, which allows us to omit typing information in

semantic de�nitions. We will prove this and also give a simple algorithm for

type checking terms.

The syntax requires a type annotation for all bound variables. This uses



CHAPTER 8. COMPLETE FORMAL SEMANTICS 135

var � ` x : �x

�

[�jx : �] ` F : �

� ` �x:�.F : �->�

app
E : �->� F : �

E F : �

�

[�jf : �] ` F : �

� ` �f:�.F : �

lift0
x : �

lift0 x : Beh � x 2 NonBeh

$*
FB : Beh (�->�) A : Beh �

FB $* A : Beh �

until-then
B : Beh � C : Beh Bool D : Beh �

B until C then D : Beh �

integral
A : Beh Real

integral A : Beh Real

�

[�ja : Beh �] ` A : Beh �

� ` �a:Beh �.A : Beh �

Figure 8.1: Typing rules



CHAPTER 8. COMPLETE FORMAL SEMANTICS 136

the notation hVariablei : hTypei which is similar to the notation hTermi :

hTypei that appears in the type rules for expressing the types of terms. It

is not necessary for these notations to be the same, and to be clear we will

emphasise the distinction: the only purpose of type annotations in terms

is to simplify the process of deriving typing judgements, whereas a typing

judgement provides all the type information necessary to interpret a term.

So the process of deriving a valid typing judgement for a term is a necessary

part of interpreting the term semantically. However, the process is completely

routine, because with the help of the type annotations on bound variables

it is possible to obtain a valid typing judgement using a simple bottom up

approach. This is what is meant by explicit typing. Terms could contain

more typing information|every subterm could be explicitly annotated by

its type|but this would be tiresome and make programs diÆcult to read.

Annotating bound variables is the minimum typing information that must

be present, for arbitrary terms, to enable explicit typing.

The bottom up type checking algorithm is given in Figure 8.2. It works by

recursively traversing the syntatic structure of the term and constructing the

type bottom up. This mirrors the way we would construct a typing derivation

using the rules. We begin with a term E belonging to the grammar and a

valid context �. The type rules are syntax directed, that is, there is one rule

for each syntactic construct, and this rule de�nes the type of a term from

the types of its immediate subterms. Therefore there must be one type rule

that matches the top-level syntactic construct for E, and so on recursively

until we reach the leaves (terminals of the grammar). So, if the leaves have

unique types then by induction all �nite terms have unique types. The leaves

are either constants, which have a �xed type, or variables, which are either

free or bound in E. If a variable is free in E then � gives its type. If it is



CHAPTER 8. COMPLETE FORMAL SEMANTICS 137

bound then at some point in the derivation tree the type of the variable is

provided by a type annotation, and this will have been added to the context

by the rule for the binding construct. Thus the types of all terminals are

known and the type of the overall term is built up compositionally from

these types. Type checking would be more diÆcult without explicit types

for bound variables, and in fact many programs would have more than one

valid typing judgement (e.g., �x:x : �->� for any �). This is not the case

with explicit typing, as we shall now prove.

Theorem 8.1 (Uniqueness of typing judgements) For any context �

that is valid for a term E, there is either a unique typing judgement of the

form

� ` E : �;

or else there is no valid typing judgement for E in �.

Proof By induction on the structure of proofs of typing judgements. For

each typing rule we assume that the property holds for the premises and we

show that it holds for the conclusion. If there are no judgements satisfying

all the premises then there is no valid judgement for the overall term, so the

theorem holds in such cases.

Base cases.

All constants have a unique type by de�nition.

var: The context gives the unique type for any variable.

Inductive cases.

�: If there is a judgement � ` F : �, then the conclusion � ` �x : �:F :

� ! � is unique because � is �xed by the type annotation on x, and � is

unique by the induction hypothesis.



CHAPTER 8. COMPLETE FORMAL SEMANTICS 138

T : Context� Term * Type

T (�; 0) = Real

(and similarly for all constants),

T (�; x) = �x

T (�; �x : �:E) = T ([�jx : �]; E)

T (�; E F ) =

8<
:

� T (�; E) = �->�
T (�; F ) = �

error

T (�; �x : �:E) =

�
� T ([�jx : �]; E) = �
error

T (�; lift0 x) =

�
Beh T (�; x) x 2 NonBeh
error

T (�; E$*F ) =

8<
:

Beh � T (�; E) = Beh (�->�)
T (�; F ) = Beh �

error

T (�; B until C then D) =

8<
:

Beh � T (�; B) = T (�; D) = Beh �
T (�; C) = Beh Bool

error

T (�; integral A) =

�
Beh Real T (�; A) = Beh Real

error

T (�; �x : �:E) =

�
Beh � T ([�jx : �]; E) = Beh �
error

Figure 8.2: A bottom up type checking algorithm



CHAPTER 8. COMPLETE FORMAL SEMANTICS 139

app: If there are valid judgements � ` E : �->� and � ` F : �, then they

are unique by the induction hypothesis, and so � ` EF : � is the unique

judgement.

Similarly for all remaining rules: if there are unique judgements for the

premises, then they will construct a unique judgement in the conclusion.

2

Corollary 8.2 For any closed term E, there is a unique typing judgement

of the form

` E : �: 2

8.4 Semantics of non-behaviour terms

Terms in the grammar for NonBeh do not use behaviours at all, and these

terms have a particularly simple meaning because they are terms of the

simply typed lambda calculus with a recursion operator. We need a denota-

tional semantics for these terms because non-behaviour values can be lifted

using lift0, and then used in conditions of reactive behaviours. Conditions

must be evaluated to �nd when behaviours react, and so their value must be

known.

As for arbitrary terms, non-behaviour terms only have a meaning if they

satisfy a typing judgement. Valid typing judgements are speci�ed by exactly

the same inference rules as for arbitrary terms, but because none of the

constructs in the syntax build behaviours all terms will be of non-behaviour

type.

The domains for each (non-behaviour) type are as discussed in Section 4.2;

Real and Bool correspond to 
at domains and functions correspond to !-

continuous functions between pointed !-CPOs. This ensures that the least



CHAPTER 8. COMPLETE FORMAL SEMANTICS 140

�xed point theorem can be applied to interpret recursive de�nitions. Fig-

ure 8.3 gives these domains and the semantic function F for non-behaviour

terms.

The semantic function F is valid for open and closed terms. It is useful

to be able to interpret open terms so that we can reason about program

fragments and programs parameterised by a variable. To interpret open

terms we need an environment that maps variables to values:

Definition An environment u 2 Env is a partial function from variables

to values:

Env = Variable* Value: 2

An environment u is valid for a context � if it assigns meanings to values in

the appropriate domains for all variables; that is,

dom u � dom � ^ 8v 2 �; uv 2 [[�v]]:

Here [[�v]] is the domain corresponding to the type of v (the context � maps

variables to types).

To interpret a term E we require a valid context, � (which can be empty

if E is closed), and an environment that is valid for �. This ensures that the

semantic equations are type correct. For terms of type �

F [[ ]] 2 Term! Env! [[�]]:

The semantic equations (in Figure 8.3) for constants and variables are

straightforward. Lambda abstractions build continuous functions (for a proof

of this see [Gun92, pp. 130]). Applications evaluate the function and argu-

ment in the environment and then use function application. Finally, recursive

de�nitions compute least �xed points which are guaranteed to exist by the



CHAPTER 8. COMPLETE FORMAL SEMANTICS 141

Types: � ::= Real j Bool j � -> �

[[Real]] = R?

[[Bool]] = B?

[[�1 -> �2]] = [[�1]]! [[�2]]

Terms: K 2 Constants; x 2 V ariables

E ::= K j x j �x:�.E j E E j �x.E

F [[0]]u = 0 (etc:)

F [[x]]u = u(x)

F [[�x:�.L]]u = d 7! F [[L]][ujx : d]

F [[M N ]]u = (F [[M ]]u)(F [[N ]]u)

F [[�x:�.L]]u = �x�(d 7! F [[L]][ujx : d])

where �x�(f) =
F1

n=0 f
n(?�)

Figure 8.3: Direct denotational semantics of non-behaviour terms



CHAPTER 8. COMPLETE FORMAL SEMANTICS 142

least �xed point theorem (and they correspond to the functions we expect

from a computational perspective|that is, \unwinding" recursive functions).

These semantic equations give the unique meaning of any well-typed non-

behaviour term.

8.5 Substitution

We will de�ne substitution which is required for the evaluation rules that are

used in our semantics. We then give some properties of the semantic function

F with regard to substitution.

It is easier to de�ne the simultaneous substitution of all free variables in

an expression and then take the substitution of a single variable as a special

case. This requires a substitution map that gives the terms to substitute for

each free variable:

Definition A substitution map is a partial function from Variables to

Terms,

Æ 2 Variable* Term: 2

A substitution map Æ is valid for a term E in the context � if it assigns terms

to all the free variables in E,

dom Æ � FV (E);

and if each term is the same type as the variable it replaces,

8v 2 dom Æ;� ` Æv : �v:

This requires � to be a context that gives the types of all the free variables

in E and all the free variables in the terms in the range of Æ.



CHAPTER 8. COMPLETE FORMAL SEMANTICS 143

One subtlety of substitution is that we must be careful that free variables

in the terms we are inserting are not bound by mistake. This can happen

when we substitute open terms into the body of a �-abstraction or other

binding mechanism. The solution we adopt is to rename bound variables

to some completely fresh variable so that this problem cannot arise. This

raises a slight complication, however, because unless you have some canon-

ical way of choosing new variables, this method can lead to di�erent terms

resulting from the same substitutions. In practice, this does not cause any

real diÆculty because such terms are semantically equivalent, they just have

di�erent names for certain bound variables. Therefore it is usual to study

terms modulo renaming of bound variables. This is known as �-equivalence

in the �-calculus.

(It is often overlooked that name clashes do not arise when evaluating

programs, that is, closed terms. It is easy to show that evaluation|by which

we mean leftmost outermost reduction, stopping at �-abstractions, as in

Section 8.6|never substitutes open terms if the overall term is closed, and

so substitution can be simpli�ed by removing renaming entirely.)

Definition Substitution of all the free variables of an expression E by the

substitution map Æ is written E=Æ and de�ned by the following equations:

0=Æ = 0

(and similarly for all constants),

x=Æ = Æx

�x:�.E=Æ = �xnew:�.(E=[Æjx : xnew])

where 8w 2 FV (E) n fxg : xnew =2 FV (Æw)



CHAPTER 8. COMPLETE FORMAL SEMANTICS 144

(and identically for � and � in place of �),

(E F )=Æ = (E=Æ)(F=Æ)

(and = distributes through all the remaining operators). 2

Substitution of a term N for a single variable x in E can then be achieved

by

E=[idV arjx : N ]

where idV ar is the identity function on variables. This gives the substitution

that maps all variables to the same variable, except for x which is mapped to

the term N . This notation is slightly cumbersome, so for substitution only

we will interpret the notation [x : N ] as [idV arjx : N ].

It is essential that substitution preserves types. This can be proved by

straightforward induction on the above de�nition of substitution.

Theorem 8.3 (Substitution preserves types) If � is a valid context

for both E and Æ, and Æ is a valid substitution map for E, then

� ` E : � =) � ` E=Æ : � 2

Next we consider some properties of the semantics of non-behaviour terms

(i.e., F ) with regards to substitution and environments. In the following

theorems we assume that all environments and substitution maps are valid

for the terms involved. Proofs of these properties can be found in Reynolds

book [Rey98].

Theorem 8.4 (Coincidence theorem for F ) If ux = u0x for all x 2

FV (E), then F [[E]]u = F [[E]]u0. 2



CHAPTER 8. COMPLETE FORMAL SEMANTICS 145

Theorem 8.5 (Substitution theorem for F ) If ux = F [[Æx]]u0 for all

x 2 FV (E) then F [[E]]u = F [[E=Æ]]u0. 2

Theorem 8.6 (Renaming theorem for F ) If xnew =2 FV (E)nfxg, then

F [[�x : �:E]] = F [[�xnew : �:(E=[x : xnew]]]:

(and similarly for �). 2

8.6 Evaluation rules

The reduce transition rule|which will be de�ned in the next section|

performs evaluation on terms to reduce function applications and expand

recursive functions. We use the terminology evaluation rather than reduc-

tion because evaluation stops at �-abstractions; that is, we never evaluate

inside an abstraction. The evaluation rules are de�ned as a relation on terms

as follows:

Definition A term E evaluates in one step to E 0 if (E;E 0) belongs to the

relation !2 Term� Term, which is de�ned by the axiom schemas:

� (�x:�.L)N ! L=[x:N]

� (�x:�.L) ! L=[x:(�x:�.L)]

and the inference rule

lazy
M !M 0

M N !M 0 N . 2

These three rules are standard for an operational semantics of PCF-like lan-

guages; see [Ten91, pp. 104] or [Gun92, pp. 106]. However, we need to

perform evaluation on behaviour valued terms, so we will prove that some

standard properties which hold for the PCF fragment also hold for the com-

plete language.



CHAPTER 8. COMPLETE FORMAL SEMANTICS 146

The ! relation is deterministic, which is equivalent to stating that it is

a partial function. We will now prove this property.

Theorem 8.7 (Evaluation is deterministic) For any term E, if E !

E 0 and E ! E 00 then E 0 � E 00. Consequently, ! is a partial function.

Proof By induction on the structure of terms. We will show that for any

term only one evaluation rule can apply, and it always gives a unique eval-

uation step. There are two cases, because the evaluation rules can only be

applied to an application or a recursive de�nition.

Case E � MN . If M � �x : �:L then the � rule applies (the lazy rule

cannot apply because an abstraction cannot be evaluated further, that is,

there does not exist M 0 such that M ! M 0) and otherwise the lazy rule

applies. The result of the � rule is a substitution, which is unique assuming

a canonical choice of new variable names. For the lazy rule, M 0 is unique by

the induction hypothesis, and so the result M 0N is unique.

Case E � �x : �:L. The � rule gives a unique term, again assuming a

canonical choice of new variables in the substitution. 2

As we would expect, evaluation preserves closedness.

Theorem 8.8 If E is closed and E ! E 0 then E 0 is closed.

Proof By induction on the structure of terms.

Case E � (�x : �:L)N . The � rule applies. The overall term is closed

and so N must be closed. The only free variable in L is possibly x, so if the

closed term N is substituted for x in L, then the resulting term is closed.

Case E � (�x : �:L). The � rule applies. x is the only possible free

variable in L, so if it is substituted for the term �x : �:L, which is closed by

assumption, then the result is closed.



CHAPTER 8. COMPLETE FORMAL SEMANTICS 147

Case E �MN . The lazy rule applies. M and N must be closed because

E is closed. M 0 is closed by the induction hypothesis, and therefore M 0N is

closed. 2

This property allows us to evaluate programs by performing sequences

of evaluation steps because a closed term will always remain closed. Let

!� be the transitive, re
exive closure of !, then E !� E 0 signi�es that E

evaluates to E 0 in a �nite number of steps (possibly zero). This relation is

not a function, but because ! is a function there is only one term that E

can evaluate to in any given number of steps.

An important property of evaluation is that it preserves types, which we

state formally in the following subject reduction theorem.

Theorem 8.9 (Subject reduction for !) If � ` E : � and E ! E 0

then � ` E 0 : �.

Proof By induction on the structure of terms.

Case E � (�x : �:L)N . The � rule applies. By assumption, � ` (�x :

�:L)N : �. This judgement must be obtained from the app rule, hence the

premises

� ` �x : �:L : �! � and � ` N : �

must be valid. Then, by the � type rule we must have

[�jx : �] ` L : �

and so L=[x : N ] is a valid substitution because both x and N have type �.

Therefore, by Theorem 8.3, � ` L=[x : N ] : � as required.

Case E � (�x : �:L). The � rule applies. By assumption

� ` �x : �:L : �



CHAPTER 8. COMPLETE FORMAL SEMANTICS 148

and by the �-rule the premis

[�jx : �] ` L : �

must hold. Hence L=[x : (�x : �:L)] is a valid substitution because both x

and �x : �:L have type �, and by Theorem 8.3 � ` L=[x : (�x : �:L)] : �.

Case E � MN . The lazy rule applies. By the induction hypothesis M 0

has the same type as M , and so by the app rule M 0N must have the same

type as MN . 2

We will need this theorem to prove subject reduction for our transition

system, and ultimately soundness of the type system with respect to evalu-

ation (i.e., well typed programs will not go wrong with a type error at any

stage during evaluation).

8.7 Transition rules

In Section 6.5 we motivated a transition system to formalise the operational

method of non-reactive evaluation. Here we give the complete rules for the

transition system and prove some important properties.

Recall that the meaning of a behaviour depends on the set of times when it

is alive. To interpret a behaviour over consecutive intervals using transitions

we start with a (term, set of times) pair and make a transition to another

such pair. For example, the term

1 until (time >= 1) then 2

alive for times in T makes a transition to the term 2 alive for times in [1;1).

The transition rules also specify the value of the behaviour over the interval,

so one possibility is to de�ne the transition system as a ternary relation,

�! 2 (Term� P(T)) � V alue� (Term� P(T)):



CHAPTER 8. COMPLETE FORMAL SEMANTICS 149

For readability, we will write an element of the relation such as

((1 until (time>=1) then 2;T); t 7! 1; (2; [1;1))) 2 �!

using the notation

1 until (time>=1) then 2
t7!1

�����!
T n [1;1)

2:

This emphases that the value of the behaviour over the interval T n [0;1) is

t 7! 1.

Sometimes we can interpret a behaviour for all times. For example, the

behaviour lift0 1 represents t 7! 1 for all times. In such cases it does not

make sense for the transition rule to give a new (term, set of times) pair

because there are no more transitions that can be made. In other words,

such transitions have reached a terminal con�guration. To make this clear,

we write the empty term, ", as the resulting term, so the pair ("; ;) is a

terminal con�guration. The empty term is not part of the grammar, so we

de�ne the transition system as follows to account for this:

�! 2 (Term� P(T)) � V alue� (Term [ f"g � P(T)):

The transition rules are given in Figures 8.4, 8.5 and 8.6. In the rules

for $*, integral and � there is a problem when the premis transition yields

" because the conclusion transition will construct a new behaviour using ",

but " is not in the grammar. However, this is a minor point because in such

cases the value of the overall behaviour is known for all times, so the new

behaviour is not required. One way to address this problem is to assert that

whenever " appears in any premise, the resulting value in the conclusion is

always ".

Recall that to interpret open terms we require an environment, u, and

that we can add this to the transition rules using the notation for assumptions



CHAPTER 8. COMPLETE FORMAL SEMANTICS 150

lift0 u ` lift0 E
t7!F [[E]]u
�����!

T0 n ;
"

$*

F
f

����!
T0 nM

F 0 B
b

����!
T0 nM

B0

F $* B
t7!(f(t))(b(t))
�������!

T0 nM
F 0 $* B0

no-change

B
b

����!
T0 n TB

B0

B
b

���!
T0 n X

B
X ! TB
X = " X

integral

B
b

����!
T0 nM

B0

integral B
I

����!
T0 nM

K + integral B0
R
b exists

K � Real(
R inf(M)

inf(T0)
b(s):ds)

I = t 7!
R t
inf(T0)

b(s):ds

bad-integral

B
b

����!
T0 nM

B0

integral B
?T!R?����!
T0 n ;

" no
R
b exists

Figure 8.4: Transition rules I : Behaviour expressions and no-change



CHAPTER 8. COMPLETE FORMAL SEMANTICS 151

Formulas for occ, non-occ and bad-cond rules:

T = ft 2 T0 j c(t) = trueg
Bad = ft 2 T0 j c(t) = ?B g

Transition rules:

occ

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b

����!
T0 n "T

D
" T �M
" T ! " Bad

non-occ

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b

����!
T0 nM

E
M ! " T
M ! " Bad

E � B0 until C 0 then D

bad-cond

B
b

����!
T0 nM

B0 C
c

����!
T0 nM

C 0

B until C then D
b0

����!
T0 nM

" " Bad �M [ " T

b0 = t 7!

�
b(t) t =2 " Bad
?[[�]]

Figure 8.5: Transition rules II : Reactive behaviours



CHAPTER 8. COMPLETE FORMAL SEMANTICS 152

�

[uja : x] ` B
b

����!
T0 nM

B0

u ` �a:B
b

����!
T0 nM

�a:B0 x = b

env u ` a
u(a)
���!
T0 n ;

"

reduce

E ! E 00 E 00 e
����!
T0 nM

E 0

E
e

����!
T0 nM

E 0

Figure 8.6: Transition rules III: Behaviour de�nitions and reduce

in inference systems:

u ` A
a

����!
T0 nM

A0:

The environment does not change from one transition to the next because

CONTROL is purely declarative. However, it does serve a dual purpose in

the transition system; it is also used by the � rule to bind variables to values.

The lift0 rule yields a constant valued function

t 7! F [[E]]u

using the denotation semantics of non-behaviour terms from Section 8.4.

The rules for until-then are exactly as given in Section 6.7 and the rules

for integral are as given in Section 6.9.

For recursive behaviour de�nitions the � rule is like the letbeh rule from

Section 6.10 but without the body. This is because letbeh is de�ned as



CHAPTER 8. COMPLETE FORMAL SEMANTICS 153

syntactic sugar in terms of � and �, as discussed in Section 7.4.

We would like the transition system to be deterministic, in other words,

any given (term, set of times) pair should appear at most once (as the �rst

element) in the relation. This makes it possible to assign unique meanings to

programs using the transition system, which otherwise would require a proof

that di�erent transitions for a term result in the same overall value. To be

deterministic we require that only one rule applies to any (term, set of times)

pair, and that every rule speci�es a unique transition. The �rst requirement

is broken by the no-change rule, which can be used on any (term, set of

times) pair, giving two possible rules in most cases. However, in practice the

no-change rule is only used when combining sub-behaviours of a compound

expression so that all of the behaviours except one can remain unchanged

by the overall transition. So long as the overall transition is made over the

longest possible interval, the uses of the no-change rule are necessary so

there is only one possible derivation of the overall transition. This suggests

the following theorem for the determinacy of transitions.

Theorem 8.10 (Transitions are deterministic) Given any behaviour

A, upperset T0 and valid environment u, there is at most one triple (A0; a;M)

such that M is the smallest set satisfying

u ` A
a

����!
T0 nM

A0:

Proof By induction on proofs of transitions. We assume that the theorem

holds for sub-proofs and show that the resulting transition is unique.

Case A � lift0 E. The lift0 rule gives the transition where A0 � ",

a = F [[E]]u and M = ;. These values are unique (F is a function). Another



CHAPTER 8. COMPLETE FORMAL SEMANTICS 154

transition is possible by �rst applying the no-change rule. In fact, this rule

can be applied any number of times before �nally applying the lift0 rule.

However, any such transition results in larger sets for M (consider the side

condition X ! TB for the no-change rule). Therefore, the transition with

the smallest set M can only be obtained by applying the lift0 rule on its

own. The same is true for all other cases, so from now on we will ignore the

no-change rule unless it is actually needed in a transition derivation.

Case A � MN . The reduce rule is the only rule (other than no-change)

which applies. If A ! A00 then A00 is unique (by Theorem 8.7) and by the

induction hypothesis

A00 a
����!
T0 nM

A0

is the unique transition (for the smallest M).

Case A � F $* B. Only the $* rule applies. By the induction hypothe-

sis, the transitions F and B make, if they can make any, are unique for the

smallest sets MF andMB. To apply the $* rule we must apply the no-change

rule on one of these transitions so the overall transition can be made over

M = MF [MB. This is the smallest such M containing both MF and MB

(it must contain these sets because the interval of the transition must be

non-reactive), and so the overall transition is unique.

The remaining cases are similar to this one. For constructs which have

many rules, such as until-then, only one applies for any (term, set of times)

pair because the side conditions are mutually exclusive. 2

Transitions preserve closedness of terms and preserve types.

Theorem 8.11 If A is closed and

u ` A
a

����!
T0 nM

A0



CHAPTER 8. COMPLETE FORMAL SEMANTICS 155

then A0 is closed.

Proof By induction on proofs of transitions. No transition rule introduces

an open term (assuming the induction hypothesis holds) when the initial

term is closed, so this proof is straightforward. Note that the case for the

reduce rule relies on evaluation preserving closedness. 2

Theorem 8.12 (Subject reduction for �!) If � ` A : Beh � and

u ` A
a

����!
T0 nM

A0

then � ` A0 : Beh �. (It is not meaningful to construct a judgement when

A0 = " because " is not a term, so the theorem does not include this case.)

Proof By induction on proofs of transitions. The rules lift0, bad-integral,

bad-cond and env yield A0 = " so we do not need to consider them.

Cases $*, no-change, integral, non-occ and �. These rules reconstruct the

same kind of term with new behaviours, and these new behaviours have the

same types as the original ones by the induction hypothesis.

Case occ. The typing rule for until-then stipulates that D has the same

type as B until C then D.

Case reduce. By subject reduction for !, E 00 has the same type as E,

and by the induction hypothesis E 0 preserves this type. 2

8.8 Semantics of behaviour terms

The semantics of behaviours is de�ned in terms of the transition system.

This gives the meaning of a behaviour term over a non-reactive interval. If a



CHAPTER 8. COMPLETE FORMAL SEMANTICS 156

value beyond this interval is required then the next transition must be found,

and so on. Thus, if A is a behaviour that satis�es a typing judgement

� ` A : Beh �

and u is a valid environment for A, then the meaning of A is given by the

following semantic function:

B : Term! P(T) ! Env ! T ! [[�]]

B[[A]](T0)u = t 7!

�
a(t) t 2 T0 nM
B[[A0]](M)u(t)

where u ` A
a

����!
T0 nM

A0:

8.9 Semantics of all terms

Given a term, if it is a behaviour then its meaning can be found using B,

and if it is a function in the non-behaviour fragment of CONTROL then its

meaning can be found using F . This suggests the following semantic function

for a term E satisfying a typing judgement

� ` E : �

and an environment u that is valid with respect to �:

[[E]]u 2 [[�]]

[[E]]u =

�
F [[E]]u � 2 NonBeh
B[[E]](T)u

There are other possibilities, however, such as a term which is a function

yielding a behaviour, and our semantics does not directly give a meaning for

such terms. This is because there are no transitions that a function yielding



CHAPTER 8. COMPLETE FORMAL SEMANTICS 157

a behaviour can make|it is necessary to apply the function �rst. However,

because free variables are allowed in our semantics it is possible to apply the

function to a variable that is bound within the environment, thus giving a

behaviour which can be evaluated with our semantics.

Chapter summary

In this chapter we brought together the methods described in the previous

chapters to form a complete formal semantics for CONTROL. We used the

transition system introduced in Chapter 6 and the evaluation rules from

Chapter 7 to construct an operational semantics for any term. This requires

evaluating non-behaviour terms using the standard denotational semantics

because to determine which transition to make it is necessary to know the

value of condition behaviours.

We proved some useful properties of our semantics. It is determinis-

tic, which requires �rst proving that the evaluation and transition rules are

deterministic. Finally, type soundness follows from the subject reduction

theorems.



Chapter 9

Applications of the semantics

The semantics from Chapter 8 can be used to �nd the value of any well-typed

CONTROL program. We will describe how to apply the semantics and then

we will provide some examples. For the �rst three examples we give detailed

accounts of how the semantics is used to �nd the value of each program; for

each of the remaining examples we describe the program but do not give a

complete interpretation.

9.1 Interpreting programs

We will explain how, in practice, the formal semantics from the previous

chapter can be used to �nd the meaning of any given program.

In some examples we have assumed that time is a primitive in CON-

TROL, but in fact it needs to be de�ned explicitly. However, we do not want

to de�ne time, or other often used terms, in every program, so we will as-

sume that there is a `prelude' which contains such de�nitions. The �rst step

towards interpreting a program is to add the prelude to the main program.

Then we must desugar all let statements to obtain a program in the core

syntax. Only programs that are well typed|in other words generated by

the typed syntax rules|have any meaning; by de�nition the meaning of pro-

158



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 159

grams that are ill typed is unde�ned. At this stage we have either a program

that does not construct any behaviours, in which case we can apply the se-

mantics of non-behaviour terms from Section 8.4, or else we have a program

whose result is a behaviour, in which case we use the transition rules. The

procedure described so far is shown in Figure 9.1.

Now we will describe the procedure for evaluating a behaviour-valued

program. The transition rules yield formulas involving free variables. In

turn the free variables are constrained by side conditions, and these side

conditions must be solved to �nd the value of the variables and hence of the

overall program. This is generally over a �nite interval when no behaviours

react, and so this process is repeated to �nd the meaning of the program for

later times. If there are no reactive behaviours in a program, then the rules

will give its meaning over all times and no more transitions will be required.

For some programs, however, there may always be reactive components, and

so this process could continue inde�nitely. In such cases, it is necessary to

use induction arguments to reason about programs; this is illustrated by the

example in Section 9.4. The iterative procedure we have just described is

shown in Figure 9.2.

To complete the interpretation, the values obtained over non-reactive

intervals are pieced together as follows:

[[P ]] = t 7!

8><
>:

p0(t) t 2 T n T1

p1(t) t 2 T1 n T2
...

...

where the values pi and sets Ti are obtained by deriving the transitions

P
p0���!

T n T1
P1

p1����!
T1 n T2

: : :

As we said above, this involves solving equations for all the free variables for

each transition.



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 160

?

P

Add prelude

?

P 0

Desugar

?

P 00

Well typed? -No
Unde�ned

?

YesP 00 : �

� =2 NonBeh? -No
[[P 00]]

?

YesP 00 : Beh �0

Apply transition rules

Figure 9.1: Interpreting programs, part I



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 161

?

A : Beh �

Apply transition rules

?

Equations

Mathematical analysis

?

Possible solutions

Unique solution? -No t 7! ?[[�]]

?

YesOne solution

Valid for all times? -No
Next transition

�

?

Yes

Value

A0 : Beh �

Figure 9.2: Interpreting programs, part II



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 162

9.2 A recursive reactive de�nition

The �rst example is the program,

letbeh a = 1 until (time >= a) then 2 in a:

For convenience, we will use B to refer to the right hand side of the

de�nition of a,

B � 1 until (time >= a) then 2:

We begin by de-sugaring the program,

letbeh a = B in a

� hletbehi

(�a.a) (�a.B):

Let A denote this unsugared program. The next step is to use the transition

rules to �nd the value of A over a non-reactive interval, that is,

` A
a0���!

T nM
A1:

The term A is an application, and the only rule that applies is the reduce

rule which will reduce it to a top-level behaviour, using the evaluation rules,

as follows:

(�a.a) (�a.B)

! h�i

�a.B:

Then, by the � rule, we must interpret B in the environment where a maps

to x, that is,

[a : x] ` B
b

���!
T nM

B0; (9.1)



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 163

1
t7!1
���!
T nM

1
hlift0'i

time
t7!t
���!
T nM

time
htime'i

a
x

���!
T nM

a
henv'i

time >= a
t7!t�x(t)
�����!
T nM

time >= a
hlift2'i

[a : x] ` 1 until (time >= a) then 2
t7!1
���!
T nM

2
hocci

Figure 9.3: First transition for Example 9.2

and then we solve for

x = b (9.2)

which is the side condition from the � rule. The derivation of this transition

is best represented as a tree; see Figure 9.3. Note that we use a special

convention in tree-like derivations; if the environment is the same in the

premis as it is in the conclusion, then we leave it out. The environment does

not change at all in this derivation (it is always [a : x]), so it only appears at

the bottom.

The side condition from the occ rule is,

M = " T; (9.3)

where

T = ft 2 T j (t 7! t � x(t))(t)g

= ft 2 T j t � x(t)g: (9.4)

The derivation tree shows that the variable b used in (9.1) is equal to t 7! 1.

Therefore we can solve side condition (9.2),

x = t 7! 1



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 164

and substituting this into side condition (9.4) gives,

T = ft 2 T j t � 1g = [1;1):

In this case, " T = T , and so the variable M in the derivation tree equals

[1;1) (by side condition (9.3)).

In the derivation tree we made used dashed versions of the rules lift0,

time, env and lift2. These are derived rules which combine an application of

no-change with the rule so that the transition is over the required interval.

So far we have shown that A represents the function t 7! 1 over the

interval T n [1;1) = [0; 1). The next transition is on the behaviour 2 which

is trivial,

2
t7!2

�����!
[1;1) n ;

"
hlift0i

The ; signi�es that there are no more transitions (because the behaviour is

not reactive) and so the value is t 7! 2 for all times in [1;1). We now know

the complete value of the program,

[[letbeh a = B in a]] = t 7!

�
(t 7! 1)(t) t 2 [0; 1)
(t 7! 2)(t) t 2 [1;1)

= t 7!

�
1 t < 1
2

9.3 A recursive integral

This example illustrates integral equations. The program is,

letbeh a = 1 + integral a in a:

Again, we use B to refer to the right hand side of a,

B � 1 + integral a



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 165

1
t7!1
��!
T n ;

"
hlift0i

a
x

��!
T n ;

"
henvi

integral a
t7!

R
t

inf(T)
x(s):ds

���������!
T n ;

"

hintegrali

[a : x] ` 1 + integral a
t7!1+

R
t

inf(T)x(s):ds

�����������!
T n ;

"

hlift2 (+)i

Figure 9.4: First transition for Example 9.3

and then the program is the same as in the previous example except for B.

The procedure is therefore the same: de-sugar; use the reduce rule; and �nd

the �rst transition that B makes; that is, �nd,

[a : x] ` B
b

���!
T nM

B0;

The derivation tree for this transition is shown in Figure 9.4. Note that there

are no side conditions restricting M in the derivation tree, so it can be any

set of times. If we choose M = ; then the transition is valid over the interval

T n ;; in other words, for all times.

This time the side condition x = b is,

x = t 7! 1 +

Z t

inf(T)

x(s):ds

and, since inf(T) = 0, this is the integral equation,

x(t) = 1 +

Z t

0

x(s):ds:

This integral equation has a unique solution,

x1(t) = et:

(see [HW91] for details). This is the complete meaning of the program.



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 166

9.4 A recursive function

In Section 7.3 we saw the following program

letrec b = �n.n until (time >= n+1)

then b (n+1)

in b 0:

The function b takes a number n and yields a behaviour that is initially n

and increments by one for each second after time n. The program calls b

with zero so that the result is a counter starting from zero and incrementing

each second.

We will refer to the right hand side of the de�nition of b by B,

B � �n.n until (time >= n+1) then b (n+1):

Then we de-sugar and apply the reduce rule as follows:

letrec b = B in b 0

� hletreci

(�b.b 0) (�b.B)

! h�i

(�b.B) 0

! h�i

(�n.n until (time >= n+1)

then (�b.B) (n+1)) 0

! h�i

0 until (time >= 0+1) then (�b.B) (0+1)

We can apply the transition rules to this last program because it is a be-

haviour. We will refer to the after-behaviour of this term by F1;

F1 = (�b.B) (0+1)



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 167

0
t7!0
���!
T nM

0
hlift0'i

time
t7!t
���!
T nM

time
htime'i

0+1
t7!1
���!
T nM

0+1
hlift0'i

time >= 0+1
t7!t�1
���!
T nM

time >= 0+1
hlift2i

0 until (time >= 0+1) then F1
t7!0

�����!
T n [1;1)

F1

hocci

Figure 9.5: First transition for Example 9.4

The derivation tree for the overall term is shown in Figure 9.5. Notice that

this time the environment is empty, because there are no behaviours that are

de�ned recursively (b is a function and not a behaviour).

The side conditions from the hocci rule are

M = " T

T = ft 2 T j (t 7! t � 1)(t)g

= ft 2 T j t � 1g

= [1;1):

Hence, the �rst transition tell us that the program means t 7! 0 over the

interval T n [1;1) = [0; 1). The next transition is on the behaviour

(�b.B) (0+1)

over the interval [1;1). However, this is the same as the �rst transition

except with (0+1) replacing 0 and [1;1) replacing T throughout. Hence,

the transition will yield t 7! 1 over the interval [1; 2). Then a simple inductive



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 168

argument shows that the meaning of the program, A, is,

[[A]] = t 7!

8>>><
>>>:

0 t 2 [0; 1)
1 t 2 [1; 2)
2 t 2 [2; 3)
...

...

:

The graph of this function is:

-

6Value

Time0 1 2 3

1

2

3

b

r b

r

It is now straightforward to show that program A is semantically equivalent

to

lift0 floor $* time

where floor is a built in function with the following semantics:

[[floor]] = x 7!

8>>><
>>>:

0 x 2 [0; 1)
1 x 2 [1; 2)
2 x 2 [2; 3)
...

...

:

(i.e., the usual 
oor function on real numbers.)

9.5 Chess Clocks

A chess clock has two clock faces which show the time each player in a game

of chess has remaining. At the start of the game both clocks are set with a



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 169

�xed amount of time and white's clock begins counting down. After white has

moved she presses a button which stops her clock, and black's clock begins

to count down. Similarly, after black has moved he presses a button and

white's clock again starts to count down. For a computer implementation

this requires external input for the buttons, such as mouse button events.

CONTROL does not provide such facilities so we will represent button presses

by boolean behaviours that are true at times when the button is held down;

say wb for white's button and bb for black's. These behaviours are just free

variables in the program, so we can interpret the program with respect to

these behaviours.

One way to calculate the time a player has used up is to integrate a

playing-indicator behaviour. This is a behaviour that is 1 while a player is

taking their turn and 0 while their opponent is. Only one player is using up

time at any instant, so when white's playing-indicator switches from 1 to 0

black's should switch from 0 to 1, and vice versa. Therefore it is easier to

de�ne the playing-indicators for both players as a pair,

letrec pi = (1, 0) until wb then

(0, 1) until bb then pi

in ...

So we need to extend CONTROL with pairs. The syntax is extended as

follows:

� ::= �*�

E ::= (E, E) j fst E j snd E

and the type rules for pairs are:

E : � F : �

(E, F) : �*�
E : �*�

fst E : �
E : �*�
snd E : �



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 170

The domains for pair types are product domains ordered pointwise, and a

pair of values is interpreted denotationally by interpreting each element of

the pair.

Returning to the playing indicator pi, the semantics of until-then en-

sures that it reacts the next time when wb or bb is true, ignoring all the

button presses in the past. This is exactly what we require. (In Fran this

can only be achieved by using user arguments which would complicate the

program considerably.) Furthermore, if white presses her button whilst black

is playing (or vice versa) it has no e�ect. This is important because players

may accidentally press their button twice in rapid succession.

The behaviour pi is a repeating behaviour, so it must be de�ned by

letrec and could not be de�ned by letbeh. The amount of time each

player has left, say wt and bt, can be de�ned as follows:

wt � t0 - integral (fst pi)

bt � t0 - integral (snd pi)

Here t0 is the amount of time players have at the start of the game. These

values could be represented graphically in an extension of CONTROL with

output. (We have implemented a similar program in Fran to display chess

clocks.)

Here is a complete program which yields the pair (wt, bt),

letrec pi = (1, 0) until wb then

(0, 1) until bb then pi

in (t0 - integral (fst pi), t0 - integral (snd pi))



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 171

Desugaring this program gives,

(� pi : Beh (Real * Real).

(t0 - integral (fst pi), t0 - integral (snd pi)))

(� pi : Beh (Real * Real).

(1, 0) until wb then ((0, 1) until bb then pi))

Because this program does not make use of recursive behaviours, it can be

interpreted by either our denotational or operational semantics. Given values

for wb and bb we can then compute the value of the behaviour. This requires

a lengthy but straightforward calculation.

9.6 Water tank

In Section 2.8 we considered a hybrid system that describes a water tank

controller which maintains the level of water in a tank by opening and closing

a valve; when the level rises to 60 units it closes the valve and when it falls to

30 units it re-opens the valve. This system can be implemented in CONTROL

as follows:

let beh h = 40 + integral h'

rec h' = 0.2 until h >= 60 then

-0.1 until h <= 30 then h'

in h

This program is considerably simpler than the description given in the CSP-

based speci�cation notation used in Section 2.8. Moreover, it is a CONTROL

program and so it is executable as well as a precise speci�cation of the system.

Again, to �nd the complete meaning of the program requires a lengthy but

routine calculation. It is then possible to prove conditions such as 30 � h �

60, which is the main goal of the �nal section of He's paper [Jif94].



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 172

9.7 Lift

Lifts are a typical example of reactive systems and lift simulations are valu-

able for analysing proposed designs. Our lift program has only two 
oors

with a button on each 
oor to call the lift. There are no buttons inside the

lift to select which 
oor.

The buttons are modelled by boolean behaviours b0 and b1 for the ground


oor and �rst 
oor; these are true when the button is pressed and false

otherwise. When a button is pressed it lights up and remains lit until the

lift stops at that 
oor. The status of the ground 
oor button is given by the

following behaviour, where at0 is a boolean behaviour that is true when the

lift is at the ground 
oor,

l0 = false until b0 then

true until at0 then l0

(and similarly for l1). So the button is unlit (l0 is false) until it is pressed

(b0 becomes true) and then it is lit (true) until the lift arrives (at0), and

then it returns to its original unlit state.

The lift waits at 
oor 0 until there is a request from 
oor 1 (i.e., until the

button on 
oor 1 becomes lit). Then it goes up to 
oor 1 and waits there

until there is a request from 
oor 0. Then it goes down and is back to its

initial position. The position of the lift, where p0 and p1 are the positions

of the 
oors, is as follows:

p = p0 until l1 then

goUp until at1 then

p1 until l0 then

goDown until at0 then p



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 173

The position behaviours goUp and goDown are just linear functions:

goUp = p0 + integral v

goDown = p1 - integral v

where v is the velocity of the lift. (Ideally this should vary as the lift accel-

erates and decelerates, but as a �rst approximation it could be constant.)

The behaviour at0 is just a boolean behaviour:

at0 = (p == p0)

(and similarly for at1).

These de�nitions seem intuitive but when we try to construct the whole

program it is not clear whether we should use letrec or letbeh to de�ne

p. It is certainly a repeating behaviour, which suggests that we should use

letrec, but it also refers to itself (it appears in the conditions at0 and

at1) which suggests that we should use letbeh. The solution is to de�ne a

repeating behaviour p' using letrec, and then de�ne the actual behaviour p

in terms of p' using letbeh. The resulting de�nitions are mutually recursive

so we must use the multiple let statement described in Section 7.7. The same

technique is used for l0 and l1. The overall program which gives the position

of the lift is as follows:

let rec p' = p0 until l1 then

goUp until at1 then

p1 until l0 then

goDown until at0 then p'

beh p = p'

rec l0' = false until b0 then



CHAPTER 9. APPLICATIONS OF THE SEMANTICS 174

true until at0 then l0'

beh l0 = l0'

rec l1' = false until b1 then

true until at1 then l1'

beh l1 = l1'

beh at0 = (p == p0)

beh at1 = (p == p0)

in p



Chapter 10

Summary and future work

In this chapter we consider the implications of our work and identify the

main contributions. Then we describe some possibilities for future work.

10.1 Summary

We have presented a complete formal semantics for a new language called

CONTROL. This language provides powerful facilities for describing be-

haviours and for using them in conjunction with functions. It is intended

as a core for practical languages for programming reactive systems, and we

believe that such languages will bene�t from the simple way temporal and

reactive components can be described. This simplicity was demonstrated by

the example programs given in Chapter 9.

The semantic theory of CONTROL is interesting �rstly because it solves

some technical problems concerning events and integration, and secondly be-

cause it combines the continuous mathematics of behaviours with the discrete

mathematics of functions. Traditionally these branches are quite separate but

in the �eld of reactive systems it is clear that they are both essential. Our

theory may therefore have implications to related areas such as speci�cation

of reactive systems and hybrid systems.

175



CHAPTER 10. SUMMARY AND FUTURE WORK 176

Our original motivation was to develop a semantics for Fran, and our

theory of CONTROL is a valuable �rst step towards this. Our semantics of

the core operators improves on previous attempts by distinguishing events

that occur at a given time from those that occur strictly after some time.

Also we de�ne concrete domains of values for all types. We will not propose

to use our theory as a basis for a semantics for Fran, however, because we

have improved the design of CONTROL, based on semantic considerations,

and it di�ers from Fran in a number of ways, as we shall now describe.

Firstly, we have eliminated user arguments (or start times) which com-

plicate reactive programs in Fran. This was achieved by making the times

when behaviours are alive implicit in the structure of programs. Secondly,

we have introduced a new facility for de�ning recursive behaviours. This

makes the distinction between recursive functions that yield behaviours and

actual behaviour objects that have a recursive de�nition. The examples in

this dissertation show the practical importance of this distinction, and the

elegant programming style that results. Furthermore, it provides resetable

and persistent behaviours which are essential given that the start time of

behaviours can no longer be speci�ed.

These changes improve signi�cantly on Fran, and CONTROL programs

are often much simpler than the corresponding Fran programs. Consequently

we would prefer to change Fran so that its core is based on CONTROL rather

than adapting our semantics for the existing Fran language.

Our formal semantics provides a rigorous basis for reasoning about CON-

TROL programs. For small examples it is possible to use the semantics to

prove that programs are correct. This generally involves a combination of

techniques; in particular, applying the transition rules, using mathematical

analysis for integrals and using induction for recursive de�nitions. This makes



CHAPTER 10. SUMMARY AND FUTURE WORK 177

it less suitable for automatic veri�cation compared to many languages, and so

we may need to develop new techniques for reasoning about large programs.

We will now consider some speci�c topics for future work in addition to

those mentioned above.

10.2 Implementations of CONTROL

An implementation of CONTROL would allow us to experiment with larger

programs and develop the language so that it is usable for real applications.

There are a number of diÆculties with implementing our semantics, however,

as we shall now discuss.

We have developed a theory of an idealised language. In particular, CON-

TROL makes the following assumptions:

� Real numbers and operations on them are exact.

� Integration of real valued behaviours is exact.

� Events in reactive behaviours are determined exactly.

In practice, we do not have the techniques to implement these features. The

operations available on representations of exact real numbers has expanded

in recent years ([PEE97]), but not suÆciently to implement CONTROL.

The techniques for exact integration ([EE96]) are not enough for CONTROL

because integrals may appear in recursive behaviours, and such programs are

then equivalent to integral equations rather than plain integrals. However,

future progress in this area may allow an implementation of CONTROL using

these exact representations of real numbers. That said, it is important to

distinguish these techniques from symbolic, or analytic, techniques for solving

integral equations. It is highly unlikely that we will ever have symbolic



CHAPTER 10. SUMMARY AND FUTURE WORK 178

techniques for solving all integral equations because in most cases there does

not exist a formula that represents the function that satis�es the equations.

More precisely, for some cases it is possible to prove that a function satisfying

the equations exists, but that there is no closed form formula for this function.

At present there are two possible approaches for implementations:

1. Restrict the types and operators so that real numbers, integrals and

event occurrences can be computed exactly.

2. Use approximation methods.

We have done preliminary investigations into both these approaches. A sub-

set of the reals with exact operations can be obtained using ratios of integers.

We have tried this in Haskell by using the type Ratio Integer for real num-

bers. We must be sure to avoid all operations that can compute irrational

numbers. One way is to restrict behaviours to linear functions, and conse-

quently integration may only be applied to constant behaviours otherwise

the result will be non-linear. Because all behaviours are linear, event detec-

tion is simply �nding the intersection of straight lines (which are always at

rational points). Of course this approach is very restrictive and only useful

in applications where we know beforehand that all behaviours are linear.

Approximation methods are used by Fran for the same three features that

we require them for in CONTROL. We have experimented with many dif-

ferent representations of behaviours and techniques for integration [Dan97b],

but we have not implemented full CONTROL using approximation tech-

niques. One reason is that the embedded language approach that Fran uses

is not possible for CONTROL because there are two di�erent mechanisms

for recursion. Embedding CONTROL in Haskell would only allow recursive

de�nitions using Haskell's recursion mechanism. For this reason it is neces-



CHAPTER 10. SUMMARY AND FUTURE WORK 179

sary to write a new interpreter or compiler for CONTROL rather than use

the embedded language approach. Disappointingly for Fran researchers, we

cannot improve the existing implementation of Fran with our core language

semantics for the same reason.

10.3 Discrete models

It is important to have an operational semantics for approximate implementa-

tions. This would provide a formal description for verifying implementations

and for reasoning about the behaviour of programs. It must capture the

approximation techniques used, ideally in a modular way so that di�erent

methods can be substituted into the same semantic framework. A semantics

taking this approach will be based on discrete time models of behaviours

because the approximation methods are discrete. In this section we will

consider discrete models.

A discrete representation of behaviours uses (time, value) pairs to give the

value of a behaviour at various points in time. This is similar to imperative

streams, except that they also allow side e�ects [Sch96b]. One way to de�ne

a sequence of (time, value) pairs is to de�ne a function which maps lists of

times to corresponding lists of values. Using this approach we have de�ned

the core operators of CONTROL as a Haskell program|see Appendix B. It

only implements real valued behaviours to illustrate the approach; extending

this to all types of behaviours may be possible using the advanced extensions

of the Haskell type system [Jon97]. We have used Euler's method [BF93] for

calculating integrals.

The discrete model gives an operational semantics for the core operators.

It becomes more complicated when �-abstractions and recursive functions are

introduced, but there are no serious diÆculties. Recursive behaviours can be



CHAPTER 10. SUMMARY AND FUTURE WORK 180

accounted for by introducing a variable which denotes a list of values. This

will lead to recursively de�ned lists, but these should be valid for recursive

integrals and reactive behaviours for the following reasons:

� Euler's method for integration is designed to solve integral equations,

so it does not need the current sample point to calculate the integral

at that point, only the previous points. Therefore recursive integrals

never create cyclic dependencies.

� Recursive reactive behaviours can be dealt with in the same way Fran

does; until evaluates the condition at the previous point, ensuring

that the de�nitions are never cyclic.

One interesting idea for validating the semantics of recursive behaviours with

this semantics is to use recursive lists in Haskell and then show that they are

productive [Sij89].

Given that the discrete model has a relatively simple semantics it seems

natural to try and extrapolate an exact semantics as the limit of the approx-

imate semantics. In other words, de�ne the exact semantics to be the list of

(time, value) pairs obtained as the gap between points tends to zero. This

approach was explored early on in our research, but there are some technical

problems:

� Assuming that our aim is to show that discrete models approximate

the idealised exact model, the approach is circular because the exact

model is in terms of a particular discrete model.

� Say we approach the limit by inserting new points between existing

points. At the limit the number (time, value) pairs is countable, and

so they do not cover the real line. Therefore it is not a continuous time

model.



CHAPTER 10. SUMMARY AND FUTURE WORK 181

It may be possible to overcome these problems, but there is another drawback

with this approach; it does not provide a convenient and useful theory for

reasoning about programs because all values are expressed as limits. This

makes it very diÆcult to manipulate the values obtained, whereas our direct

approach gives actual functions of time which are simple to use.

10.4 Approximation and convergence

In the previous section we discussed discrete models of behaviours. The

intention is that they approximate the exact semantics and are easier to

implement, but we need to establish what it means for a discrete model to

approximate the exact semantics. The situation is similar to approximation

techniques in numerical analysis, where careful analysis of the errors for

each methods is crucial to the development of new methods. The approach

taken in numerical analysis is usually the one suggested by Strachey that

we mentioned in the introduction: �rst consider the result if the values were

exact, and then consider the errors due to approximation. It may be easier to

reason about the errors for individual programs, but if we can obtain useful

error results for the language, then we save much repetition of e�ort.

Following numerical methods the most promising direction is trying to

establish when a discrete model converges to the exact semantics as the gap

between sample times tends to zero. The idea of convergence is similar to

the suggestion in the previous section of extrapolating an exact model from

a discrete model, but the problems we identi�ed there are less important

here because we are not using convergence to construct a model, merely to

establish a correspondence. So convergence is just making a claim about a

given discrete model, and if a model converges to the exact semantics then

it is likely to be easier to reason about the errors due to approximation than



CHAPTER 10. SUMMARY AND FUTURE WORK 182

if it does not.

An open question is whether the limit of the discrete model we outlined

in Section 10.3 converges to our exact semantics. Without integration we

expect there is a close correspondence. The term lift x always yields x, and

f $* b will converge so long as f and b do. Integrals may cause diÆculties

because our exact semantics yields bottom when there are many solutions to

integral equations, whereas Euler's method will always compute a solution.

Convergence results for reactivity, functions and recursive behaviours are

challenging areas for future work.



Appendix A

Constants in CONTROL

0, 1, : : : : Real

true, false : Bool

if� : Bool -> � -> � -> �

+, -, *, / : Real -> Real -> Real

-, sin, cos, tan, exp, log : Real -> Real

/\, \/, <-> : Bool -> Bool -> Bool

not : Bool -> Bool

>, <, >=, <= : Real -> Real -> Bool

==�, /=� : � -> � -> Bool

183



Appendix B

A discrete model of CONTROL

in Haskell

type MReal = Double

type Time = MReal

data Beh = Lift0 MReal

| Time

| Lift1 (MReal -> MReal) Beh

| Until Beh Cond Beh

| Integral Beh

data Cond = LiftB (Bool -> Bool -> Bool) Cond Cond

| LiftC (MReal -> MReal -> Bool) Beh Beh

ats :: Beh -> [Time] -> [MReal]

ats (Lift0 x) ts = map (\t -> x) ts

ats (Time) ts = ts

ats (Lift1 f b) ts = map f (ats b ts)

ats (Until b c d) ts = take i bs ++ ats d (drop i ts)

where

bs = ats b ts

cs = atsC c ts

184



APPENDIX B. A DISCRETE MODEL OF CONTROL IN HASKELL 185

i = length (takeWhile (== False) cs)

ats (Integral b) ts = euler ts (ats b ts)

euler ts xs = eulerStep 0 ts xs

where

eulerStep s (t0:ts@(t1:_)) (x:xs)

= s : eulerStep (s + (t1-t0)*x) ts xs

atsC (LiftB op c1 c2) ts

= zipWith op (atsC c1 ts) (atsC c2 ts)

atsC (LiftC op b1 b2) ts

= zipWith op (ats b1 ts) (ats b2 ts)



References

[Apo74] T. M. Apostol. Mathematical Analysis. Addison Wesley, 2 edi-

tion, 1974.

[Ber97] G. Berry. The foundations of Esterel, 1997.

[BF93] R.L. Burden and J.D. Faires. Numerical analysis. PWS-Kent

Publishing Company, 1993.

[Car97] Luca Cardelli. Type systems. Allen B. Tucker (Ed.): The Com-

puter Science and Engineering Handbook. CRC Press, ISBN:

0-8493-2909-4. Chapter 103, pp 2208-2236, 1997.

[CRH93] Zhou Chaochen, A. P. Ravn, and M. R. Hansen. An extended

duration calculus for hybrid systems. In Hybrid Systems, R.L.

Grossman, A. Nerode, A.P. Ravn, H. Rischel (Eds.), LNCS 736,

Springer-Verlag, pages 36{59, 1993.

[Dan84] R. B. Dannenberg. Arctic: A functional language for real-time

control. In ACM Symposium on LISP and Functional Program-

ming, pages 96{103, 1984.

[Dan97a] Anthony C. Daniels. Fran in action!

http://www.cs.nott.ac.uk/~ acd/publications.html, 1997.

186



REFERENCES 187

[Dan97b] Anthony C. Daniels. Implementing real-valued functions for in-

tegrals and ODEs. http://www.cs.nott.ac.uk/~ acd/report.ps,

1997.

[EE96] Mart�in Escard�o and Abbas Edalat. Integration in Real PCF.

In Proceedings of the 11th Annual IEEE Symposium on Logic

In Computer Science, New Brunswick, New Jersey, USA, pages

382{393, 1996.

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation.

In Proceedings of the 1997 ACM SIGPLAN International Con-

ference on Functional Programming, 1997.

[Ell96] Conal Elliott. A brief introduction to ActiveVRML. Technical

Report MSR-TR-96-05, Microsoft Research, 1996.

[Ell97] Conal Elliott. Modeling interactive 3D and multimedia anima-

tion with an embedded language. In In the Proceedings of the

�rst conference on Domain-Speci�c Languages, October 1997.

[Ell98a] Conal Elliott. Composing reactive animations. Dr. Dobb's Jour-

nal, July 1998.

[Ell98b] Conal Elliott. Declarative event-oriented programming.

http://www.research.microsoft.com/ conal/papers/default.htm,

1998.

[Ell98c] Conal Elliott. A �fteen puzzle in Fran.

http://www.research.microsoft.com/ conal/papers/default.htm,

1998.



REFERENCES 188

[Ell98d] Conal Elliott. Functional implementations of continuous mod-

eled animation. In In the Proceedings of PLILP/ALP '98, 1998.

[Ell98e] Conal Elliott. Two-handed image navigation in Fran. In 1998

Glasgow Functional Programming Workshop, 1998.

[Ell99a] Conal Elliott. An embedded modeling language approach to

interactive 3D and multimedia animation. To appear in IEEE

Transactions on Software Engineering, 1999.

[Ell99b] Conal Elliott. From functional animation to sprite-based display.

In Proceedings of PADL '99, 1999.

[ESAE95] Conal Elliott, Greg Schechter, and Salim Abi-Ezzi. Media
ow,

a framework for distributed integrated media. Technical Report

SMLI TR-95-40, Sun Microsystems Laboratories, June 1995.

[ESYAE94] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi.

TBAG: A high level framework for interactive, animated 3D

graphics applications. In Proceedings of SIGGRAPH '94, 1994.

[Gun92] Carl Gunter. Semantics of programming languages. MIT Press,

1992.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-

chronous data
ow programming language LUSTRE. In Proceed-

ings IEEE, volume 79, pages 1305{1305, 1991.

[Hoa72] C. A. R. Hoare. Towards a theory of parallel programming. In

Operating systems techniques: Proceedings of a seminar. Hoare,

C. A. R. and Perrott, R. H. editors. A. P. I. C. studeies in Data

processing 9., pages 61{71. Academic Press, London, 1972.



REFERENCES 189

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-

hall international, London, 1985.

[HW91] J.H. Hubbard and B.H. West. Di�erential equations: A dynam-

ical systems approach. Part 1: Ordinary di�erential equations.

Springer-Verlag, 1991.

[Jif94] He Jifeng. From CSP to hybrid systems. In A Classical Mind,

Essays in Honour of C.A.R. Hoare, Prentice Hall, pages 171{

189, 1994.

[Jon97] Mark P. Jones. First-class polymorphism with type inference. In

In Proceedings of the Twenty Fourth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages,

1997.

[KM77] G. Kahn and D.B. MacQueen. Coroutines and networks of par-

allel processes. In IFIP77, B. Gilchrist (ed.), North-Holland,

pages 993{998, 1977.

[Koy90] R. Koymans. Specifying real-time properties with metric tem-

poral logic. Real-Time Systems, Kluwer Academic Publishers,

2(4):255{299, 1990.

[Lan66] P. Landin. The next 700 programming languages. Communica-

tions of the ACM, 9(3):157{166, 1966.

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMarire. Pro-

gramming real times applications with Signal. In Proceedings

IEEE, pages 1321{1336, 1991.



REFERENCES 190

[Lin97] Gary Shu Ling. Fran: Its semantics and existing problems.

http://pantheon.yale.edu/~ sling/research/690Report.ps.zip,

1997.

[Lin98] Gary Ling. Frob|functional robotics.

http://www.cs.yale.edu/ ling/, 1998.

[Mil91] R. Milner. The polyadic �-calculus: A tutorial. Technical Report

ECS-LFCS-91-180, Department of Computer Science, University

of Edinburgh, 1991.

[Mit96] John C. Mitchell. Foundations for programming languages. MIT

Press, 1996.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag: Heidelberg, Germany,

1992.

[PEE97] P. J. Potts, A. Edalat, and M. H. Escard�o. Semantics of ex-

act real arithmetic. In Proceedings of the Twelfth Anual IEEE

Symposium on Logic in Computer Science, pages 248{257, 1997.

[PHE99] John Peterson, Paul Hudak, and Conal Elliott. Lambda in mo-

tion: Controlling robots with haskell. In Proceedings of PADL

'99, 1999.

[Rey98] John C. Reynolds. Theories of programming languages. Cam-

bridge University Press, 1998.

[RR87] G.M. Reed and V.W. Roscoe. Metric spaces as models for real-

time concurrency. Mathematical Foundations of Programming.



REFERENCES 191

Lec. Notes in Comp. Sci. 298, Springer-Verlag, pages 331{343,

1987.

[Sag98] Meurig Sage. Chronos. http://www.dcs.gla.ac.uk/~meurig/chronos/,

1998.

[Sch90] S. Schneider. Correctness and communication in real-time sys-

tems. PhD thesis, Oxford University Computing Laboratory,

1990.

[Sch96a] E. Scholz. Pidgets|unifying pictures and widgets in a

constraint-based framework for concurrent functional gui pro-

gramming. In 8th International Symposium on Programming

Languages: Implementations Implementations, Logics, and Pro-

grams, Aachen, Germany, Springer-Verlag, 1996.

[Sch96b] Enno Scholz. A monad of imperative streams. In Glasgow FP

workshop, 1996.

[Sch98] E. Scholz. A framwork for programming interactive graphics in a

functional programming language. PhD thesis, Freien Universit�at

Berlin, 1998.

[Sco70a] Dana S. Scott. The lattice of 
ow diagrams. Technical Report

PRG-3, Programming Research Group, Oxford University Com-

puting Laboratory, 1970.

[Sco70b] Dana S. Scott. Outline of a mathematical theory of computation.

Technical Report PRG-2, Programming Research Group, Oxford

University Computing Laboratory, 1970.



REFERENCES 192

[Sco76] Dana S. Scott. Data types as lattices. SIAM journal on com-

puting, 5(3):522{587, 1976.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,

OWHY. Theoretical computer science, 121, 1993.

[SEYAE94] Greg Schechter, Conal Elliott, Ricky Yeung, and Salim Abi-Ezzi.

Functional 3D graphics in C++|with an object-oriented, mul-

tiple dispatching implementation. In Proceedings of the 4th Eu-

rographics Workshop on Object-Oriented Graphics, 1994.

[Sij89] Ben A. Sijtsma. On the productivity of recursive list de�ni-

tions. ACM Transactions on Programming Languages and Sys-

tems, 11(4):633{649, 1989.

[SS71] Dana S. Scott and Christopher Strachey. Toward a mathematical

semantics for computer languages. Technical Report PRG-6,

Programming Research Group, Oxford University Computing

Laboratory, 1971.

[Sto77] Joseph E. Stoy. Denotational semantics: The Scott-Strachey

approach to programming language theory. MIT press, 1977.

[Str73] Christopher Strachey. The varieties of programming language.

Technical Report Technical monograph PRG-10, Programming

research group, Oxford University computing laboratory, 1973.

[Ten91] R. D. Tennent. Semantics of programming languages. Prentice-

Hall, 1991.

[TF92] Thomas and Finney. Calculus and analytic geometry. Addison-

Wesley Publishing Company, 1992.



REFERENCES 193

[Tho98] Simon Thompson. A functional reactive animation of a lift us-

ing Fran. Technical Report TR 5-98, Computing Laboratory,

University of Kent, May 1998.

[Vui90] J. E. Vuillemin. Exact real computer arithmetic with continued

fractions. IEEE Transactions on Computers, 39(8):1087{1105,

1990.


